1
|
Xu H, Li S, Liu Y, Sung YY, Zhou Y, Wu H. A novel pH-sensitive nanoparticles encapsulating anti-PD-1 antibody and MDK-siRNA overcome immune checkpoint blockade resistance in HCC via reshaping immunosuppressive TME. J Exp Clin Cancer Res 2025; 44:148. [PMID: 40380202 DOI: 10.1186/s13046-025-03396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/18/2025] [Indexed: 05/19/2025] Open
Abstract
OBJECTIVE Immunotherapy, notably the immune checkpoint blockade (ICB), has demonstrated significant promise in the management of diverse neoplasms. However, the PD-1 inhibitor has exhibited suboptimal objective response rates and did not achieve the primary endpoints in hepatocellular carcinoma (HCC) patients, primarily due to resistance to ICB fostered by the immunosuppressive tumor microenvironment (TME). To address ICI resistance and minimize adverse effects, we have engineered an innovative tumor-specific nanomedicine for the concurrent administration of aPD-1 and MDK-siRNA. METHODS Both in vitro and orthotopic HCC models were employed to investigate and establish the efficacy of the novel tumor-specific nanomedicine in overcoming the immunosuppressive TME. Specifically, the impact of the nanomedicine on the M2 polarization and polyamine metabolism within tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) was delineated. The immunomodulatory and antitumor effects, along with the side effects, of the nanomedicine integrating both aPD-1 and MDK-siRNA were assessed. RESULTS A dual pH-responsive nanomedicine was successfully fabricated to co-deliver MDK-siRNA and aPD-1. The nanomedicine achieved targeted drug delivery to tumors by engaging with circulating PD-1+ T cells and accompanying their migration into the tumor mass. Additionally, nanomedicine promoted efficient drug release within the acidic TME, deploying aPD-1 for ICI therapy and retaining MDK-siRNA-encapsulated nanomedicine to regulate TAMs and MDSCs synergistically. The synergistic application of MDK-siRNA and aPD-1, coupled with the efficient tumor-targeted drug delivery, potently suppressed M2 polarization and polyamine metabolism in TAMs and MDSCs, thereby overcoming the immunosuppressive TME and leading to significant therapeutic efficacy with minimal side effects in HCC. CONCLUSION We have developed an innovative tumor-specific nanocarrier for the co-delivery of aPD-1 and MDK-siRNA. We validated that the synthesized nanomedicine (aPD-1-siRNA@NP) yielded highly effective treatment and minimal side effects in both in vitro and orthotopic HCC models. Our work presents a nanomedicine-based approach for targeted dual-drug delivery, achieving notable efficacy in the treatment of HCC.
Collapse
MESH Headings
- Animals
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/administration & dosage
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice
- Nanoparticles/chemistry
- Nanoparticles/administration & dosage
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Drug Resistance, Neoplasm
- Hydrogen-Ion Concentration
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Disease Models, Animal
Collapse
Affiliation(s)
- Hai Xu
- Department of Oncology, Huangjiahu Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Shuo Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifan Liu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | | | - Yong Zhou
- Hubei Key Laboratory of theory and application research of liver and kidney in traditional Chinese medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Huikun Wu
- Department of Oncology, Huangjiahu Hospital of Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
2
|
Liu J, Liu J, Wang Y, Chen F, He Y, Xie X, Zhong Y, Yang C. Bioactive mesoporous silica materials-assisted cancer immunotherapy. Biomaterials 2025; 315:122919. [PMID: 39481339 DOI: 10.1016/j.biomaterials.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Immunotherapy is initially envisioned as a powerful approach to train immune cells within the tumor microenvironment (TME) and lymphoid tissues to elicit strong anti-tumor responses. However, clinical cancer immunotherapy still faces challenges, such as limited immunogenicity and insufficient immune response. Leveraging the advantages of mesoporous silica (MS) materials in controllable drug and immunomodulator release, recent efforts have focused on engineering MS with intrinsic immunoregulatory functions to promote robust, systemic, and safe anti-tumor responses. This review discusses advances in bioactive MS materials that address the challenges of immunotherapy. Beyond their role in on-demand delivery and drug release in response to the TME, we highlight the intrinsic functions of bioactive MS in orchestrating localized immune responses by inducing immunogenic cell death in tumor cells, modulating immune cell activity, and facilitating tumor-immune cell interactions. Additionally, we emphasize the advantages of bioactive MS in recruiting and activating immune cells within lymphoid tissues to initiate anti-tumor vaccination. The review also covers the challenges of MS-assisted immunotherapy, potential solutions, and future outlooks. With a deeper understanding of material-bio interactions, the rational design of MS with sophisticated bioactivities and controllable responsiveness holds great promise for enhancing the outcomes of personalized immunotherapy.
Collapse
Affiliation(s)
- Jiali Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Jiying Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yaxin Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Xu R, Lin P, Zheng J, Lin Y, Mai Z, Lu Y, Chen X, Zhou Z, Cui L, Zhao X. Orchestrating cancer therapy: Recent advances in nanoplatforms harmonize immunotherapy with multifaceted treatments. Mater Today Bio 2025; 30:101386. [PMID: 39742149 PMCID: PMC11683241 DOI: 10.1016/j.mtbio.2024.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/17/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Advancements in cancer therapy have increasingly focused on leveraging the synergistic effects of combining immunotherapy with other treatment modalities, facilitated by the use of innovative nanoplatforms. These strategies aim to augment the efficacy of standalone treatments while addressing their inherent limitations. Nanoplatforms enable precise delivery and controlled release of therapeutic agents, which enhances treatment specificity and reduces systemic toxicity. This review highlights the critical role of nanomaterials in enhancing immunotherapy when combined with chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, and sonodynamic therapy. Additionally, it addresses current challenges, including limited in vivo studies, difficulties in standardizing and scaling production, complexities of combination therapies, lack of comparative analyses, and the need for personalized treatments. Future directions involve refining nanoplatform engineering for improved targeting and minimizing adverse effects, alongside large animal studies to establish the long-term efficacy and safety of these combined therapeutic strategies. These efforts aim to translate laboratory successes into clinically viable treatments, significantly improving therapeutic outcomes and advancing the field of oncology.
Collapse
Affiliation(s)
- Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| |
Collapse
|
4
|
Liu L, Fu S, Gu H, Li Y, Zhu G, Ai H, Li W. Platinum(IV)-Backboned Polymer Prodrug-Functionalized Manganese Oxide Nanoparticles for Enhanced Lung Cancer Chemoimmunotherapy via Amplifying Stimulator of Interferon Genes Activation. ACS NANO 2025; 19:2726-2741. [PMID: 39772457 DOI: 10.1021/acsnano.4c15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The stimulator of interferon genes (STING) pathway exhibits great potential in remodeling the immunosuppressive tumor microenvironment and initiating antitumor immunity. However, how to effectively activate STING and avoid undesired toxicity after systemic administration remains challenging. Herein, platinum(IV)-backboned polymer prodrug-coated manganese oxide nanoparticles (DHP/MnO2NP) with pH/redox dual responsive properties are developed to precisely release cisplatin and Mn2+ in the tumor microenvironment and synergistically amplify STING activation. In vitro, we demonstrate that DHP/MnO2NP can effectively induce tumor cell DNA damage and leak into the cytoplasm, cooperating with Mn2+ to promote STING activation and significantly upregulate the expression of proinflammatory cytokines. Additionally, DHP/MnO2NP can selectively release cisplatin and Mn2+ to mediate tumor killing while reducing toxicity to normal cells. In vivo, DHP/MnO2NP exerted increased therapeutic efficacy by inducing STING activation and initiating robust antitumor immunity. Specifically, DHP/MnO2NP effectively skewed tumor-associated macrophages toward a proinflammatory phenotype and upregulated the expression of proinflammatory cytokines in tumors by up to 99-fold relative to the control. And the infiltration of CD8+ T cells was also significantly increased. When STING signaling was blocked, the antitumor effects and immunostimulatory efficacy of DHP/MnO2NP were significantly inhibited. Moreover, DHP/MnO2NP possess the advantage of enhanced tumor homing and retention, resulting in stronger and longer-lasting anticancer effects. Overall, DHP/MnO2NP provide a potential platform for potentiating cancer chemoimmunotherapy and hold promise for precision treatment.
Collapse
Affiliation(s)
- Li Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| | - Shengxiang Fu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| | - Guonian Zhu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, P. R. China
| | - Weimin Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Chengdu 610041, P. R. China
| |
Collapse
|
5
|
Liang Y, Wu J, Yan Y, Wang Y, Zhao H, Wang X, Chang S, Li S. Charge-Reversal Nano-Drug Delivery Systems in the Tumor Microenvironment: Mechanisms, Challenges, and Therapeutic Applications. Int J Mol Sci 2024; 25:9779. [PMID: 39337266 PMCID: PMC11432038 DOI: 10.3390/ijms25189779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The charge-reversal nano-drug delivery system (CRNDDS) is a promising system for delivering chemotherapy drugs and has gained widespread application in cancer treatment. In this review, we summarize the recent advancements in CRNDDSs in terms of cancer treatment. We also delve into the charge-reversal mechanism of the CRNDDSs, focusing on the acid-responsive, redox-responsive, and enzyme-responsive mechanisms. This study elucidates how these systems undergo charge transitions in response to specific microenvironmental stimuli commonly found in tumor tissues. Furthermore, this review explores the pivotal role of CRNDDSs in tumor diagnosis and treatment, and their potential limitations. By leveraging the unique physiological characteristics of tumors, such as the acidic pH, specific redox potential, and specific enzyme activity, these systems demonstrate enhanced accumulation and penetration at tumor sites, resulting in improved therapeutic efficacy and diagnostic accuracy. The implications of this review highlight the potential of charge-reversal drug delivery systems as a novel and targeted strategy for cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Yizhu Liang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Jiashuai Wu
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Yutong Yan
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Yunduan Wang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Hongtu Zhao
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Xiaopeng Wang
- Innovation Institute, China Medical University, Shenyang 110122, China
| | - Shijie Chang
- Department of Biomedical Engineering, China Medical University, Shenyang 110122, China
| | - Shuo Li
- Department of Biochemistry & Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| |
Collapse
|
6
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
7
|
Liu D, Qin H, Gao Y, Sun M, Wang M. Cardiovascular disease: Mitochondrial dynamics and mitophagy crosstalk mechanisms with novel programmed cell death and macrophage polarisation. Pharmacol Res 2024; 206:107258. [PMID: 38909638 DOI: 10.1016/j.phrs.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/25/2024]
Abstract
Several cardiovascular illnesses are associated with aberrant activation of cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis, and macrophage polarisation as hallmarks contributing to vascular damage and abnormal cardiac function. Meanwhile, these three novel forms of cellular dysfunction are closely related to mitochondrial homeostasis. Mitochondria are the main organelles that supply energy and maintain cellular homeostasis. Mitochondrial stability is maintained through a series of regulatory pathways, such as mitochondrial fission, mitochondrial fusion and mitophagy. Studies have shown that mitochondrial dysfunction (e.g., impaired mitochondrial dynamics and mitophagy) promotes ROS production, leading to oxidative stress, which induces cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage M1 phenotypic polarisation. Therefore, an in-depth knowledge of the dynamic regulation of mitochondria during cellular pyroptosis, ferroptosis, necroptosis, cuproptosis, disulfidptosis and macrophage polarisation is necessary to understand cardiovascular disease development. This paper systematically summarises the impact of changes in mitochondrial dynamics and mitophagy on regulating novel cellular dysfunctions and macrophage polarisation to promote an in-depth understanding of the pathogenesis of cardiovascular diseases and provide corresponding theoretical references for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Dandan Liu
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Hewei Qin
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China; Department of Rehabilitation Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450002, China.
| | - Yang Gao
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Mengyan Sun
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Mengnan Wang
- School of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
8
|
Tang L, Yin Y, Zhang Z, Fu C, Cao Y, Liu H, Feng J, Gao J, Shang J, Wang W. Size-switchable and dual-targeting nanomedicine for cancer chemoimmunotherapy by potentiating deep tumor penetration and antitumor immunity. CHEMICAL ENGINEERING JOURNAL 2024; 493:152590. [DOI: 10.1016/j.cej.2024.152590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Zhang Y, Chen X, Hu B, Zou B, Xu Y. Advancements in nanomedicine delivery systems: unraveling immune regulation strategies for tumor immunotherapy. Nanomedicine (Lond) 2024; 19:1821-1840. [PMID: 39011582 PMCID: PMC11418288 DOI: 10.1080/17435889.2024.2374230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
This review highlights the significant role of nanodrug delivery systems (NDDS) in enhancing the efficacy of tumor immunotherapy. Focusing on the integration of NDDS with immune regulation strategies, it explores their transformative impacts on the tumor microenvironment and immune response dynamics. Key advancements include the optimization of drug delivery through NDDS, targeting mechanisms like immune checkpoint blockade and modulating the immunosuppressive tumor environment. Despite the progress, challenges such as limited clinical efficacy and complex manufacturing processes persist. The review emphasizes the need for further research to optimize these systems, potentially revolutionizing cancer treatment by improving delivery efficiency, reducing toxicity and overcoming immune resistance.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Binbin Hu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu610041, P.R. China
| |
Collapse
|
10
|
Elzoghby AO, Samir O, Emam HE, Soliman A, Abdelgalil RM, Elmorshedy YM, Elkhodairy KA, Nasr ML. Engineering nanomedicines for immunogenic eradication of cancer cells: Recent trends and synergistic approaches. Acta Pharm Sin B 2024; 14:2475-2504. [PMID: 38828160 PMCID: PMC11143780 DOI: 10.1016/j.apsb.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/07/2024] [Accepted: 03/09/2024] [Indexed: 06/05/2024] Open
Abstract
Resistance to cancer immunotherapy is mainly attributed to poor tumor immunogenicity as well as the immunosuppressive tumor microenvironment (TME) leading to failure of immune response. Numerous therapeutic strategies including chemotherapy, radiotherapy, photodynamic, photothermal, magnetic, chemodynamic, sonodynamic and oncolytic therapy, have been developed to induce immunogenic cell death (ICD) of cancer cells and thereby elicit immunogenicity and boost the antitumor immune response. However, many challenges hamper the clinical application of ICD inducers resulting in modest immunogenic response. Here, we outline the current state of using nanomedicines for boosting ICD of cancer cells. Moreover, synergistic approaches used in combination with ICD inducing nanomedicines for remodeling the TME via targeting immune checkpoints, phagocytosis, macrophage polarization, tumor hypoxia, autophagy and stromal modulation to enhance immunogenicity of dying cancer cells were analyzed. We further highlight the emerging trends of using nanomaterials for triggering amplified ICD-mediated antitumor immune responses. Endoplasmic reticulum localized ICD, focused ultrasound hyperthermia, cell membrane camouflaged nanomedicines, amplified reactive oxygen species (ROS) generation, metallo-immunotherapy, ion modulators and engineered bacteria are among the most innovative approaches. Various challenges, merits and demerits of ICD inducer nanomedicines were also discussed with shedding light on the future role of this technology in improving the outcomes of cancer immunotherapy.
Collapse
Affiliation(s)
- Ahmed O. Elzoghby
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Omar Samir
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Ahmed Soliman
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Riham M. Abdelgalil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Yomna M. Elmorshedy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kadria A. Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mahmoud L. Nasr
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| |
Collapse
|
11
|
Sau S, Dey A, Pal P, Das B, Maity KK, Dash SK, Tamili DK, Das B. Immunomodulatory and immune-toxicological role of nanoparticles: Potential therapeutic applications. Int Immunopharmacol 2024; 135:112251. [PMID: 38781608 DOI: 10.1016/j.intimp.2024.112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nowadays, Nanoparticle-based immunotherapeutic research has invoked global interest due to their unique properties. The immune system is a shielding structure that defends living things from external threats. Before the use of any materials in drug design, it is essential to study the immunological response to avoid triggering undesirable immune responses in the body. This review tries to summarize the properties, various applications, and immunotherapeutic aspects of NP-induced immunomodulation relating to therapeutic development and toxicity in human health. The role of NPs in the immune system and their modulatory functions, resulting in immunosuppression or immunostimulation, exerts benefits or dangers depending on their compositions, sizes, surface chemistry, and so forth. After NPs enter into the body, they can interact with body fluid exposing, them to different body proteins to form protein corona particles and other bio-molecules (DNA, RNA, sugars, etc.), which may alter their bioactivity. Phagocytes are the first immune cells that can interact with foreign materials including nanoparticles. Immunostimulation and immunosuppression operate in two distinct manners. Overall, functionalized nanocarriers optimized various therapeutic implications by stimulating the host immune system and regulating the tranquility of the host immune system. Among others, toxicity and bio-clearance of nanomaterials are always prime concerns at the preclinical and clinical stages before final approval. The interaction of nanoparticles with immune cells causes direct cell damage via apoptosis and necroses as well as immune signaling pathways also become influenced.
Collapse
Affiliation(s)
- Somnath Sau
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Nutrition and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Alo Dey
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Pritam Pal
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Bishal Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India; Department of Physiology, Debra Thana Sahid Kshudiram Smriti Mahavidyalaya, Debra-721124, Paschim Medinipur, West Bengal, India
| | - Kankan Kumar Maity
- Department of Chemistry and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Dipak Kumar Tamili
- Department of Zoology and Coastal Environmental Studies, Egra S.S.B. College Research Centre, Affiliated from Vidyasagar University, Egra-721429, Purba Medinipur, West Bengal, India
| | - Balaram Das
- Department of Physiology and Natural Science Research Center of Belda College Affiliated from Vidyasagar University, Belda College, Belda-721424, Paschim Medinipur, West Bengal, India.
| |
Collapse
|
12
|
Tiwari P, Shukla RP, Yadav K, Panwar D, Agarwal N, Kumar A, Singh N, Bakshi AK, Marwaha D, Gautam S, Rai N, Mishra PR. Exploring nanocarriers as innovative materials for advanced drug delivery strategies in onco-immunotherapies. J Mol Graph Model 2024; 128:108702. [PMID: 38219505 DOI: 10.1016/j.jmgm.2024.108702] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
In recent years, Onco-immunotherapies (OIMTs) have been shown to be a potential therapy option for cancer. Several immunotherapies have received regulatory approval, while many others are now undergoing clinical testing or are in the early stages of development. Despite this progress, a large number of challenges to the broad use of immunotherapies to treat cancer persists. To make immunotherapy more useful as a treatment while reducing its potentially harmful side effects, we need to know more about how to improve response rates to different types of immunotherapies. Nanocarriers (NCs) have the potential to harness immunotherapies efficiently, enhance the efficiency of these treatments, and reduce the severe adverse reactions that are associated with them. This article discusses the necessity to incorporate nanomedicines in OIMTs and the challenges we confront with current anti-OIMT approaches. In addition, it examines the most important considerations for building nanomedicines for OIMT, which may improve upon current immunotherapy methods. Finally, it highlights the applications and future scenarios of using nanotechnology.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Jawaharlal Nehru University, New Delhi, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Dilip Panwar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Neha Agarwal
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Ankit Kumar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Neha Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Nikhil Rai
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
13
|
Li C, Wang L, Li Z, Li Z, Zhang K, Cao L, Wang Z, Shen C, Chen L. Repolarizing Tumor-Associated Macrophages and inducing immunogenic cell Death: A targeted liposomal strategy to boost cancer immunotherapy. Int J Pharm 2024; 651:123729. [PMID: 38142016 DOI: 10.1016/j.ijpharm.2023.123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
Cancer immunotherapy has shown promise in treating various malignancies. However, the presence of an immunosuppressive tumor microenvironment (TME) triggered by M2 tumor-associated macrophages (TAMs) and the limited tumor cell antigenicity have hindered its broader application. To address these challenges, we developed DOX/R837@ManL, a liposome loaded with imiquimod (R837) and doxorubicin (DOX), modified with mannose-polyethylene glycol (Man-PEG). DOX/R837@ManL employed a mannose receptor (MRC1)-mediated targeting strategy, allowing it to accumulate selectively at M2 Tumor associated macrophages (TAMs) and tumor sites. R837, an immune adjuvant, promoted the conversion of immunosuppressive M2 TAMs into immunostimulatory M1 TAMs, and reshaped the immunosuppressive TME. Simultaneously, DOX release induced immunogenic cell death (ICD) in tumor cells and enhanced tumor cell antigenicity by promoting dendritic cells (DCs) maturation. Through targeted delivery, the synergistic action of R837 and DOX activated innate immunity and coordinated adaptive immunity, enhancing immunotherapy efficacy. In vivo experiments have demonstrated that DOX/R837@ManL effectively eliminated primary tumors and lung metastases, while also preventing tumor recurrence post-surgery. These findings highlighted the potential of DOX/R837@ManL as a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lianrui Cao
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Chao Shen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
14
|
Su P, Sun W, Wang G, Xu H, Bao B, Wang L. Size transformable organic nanotheranostic agents for NIR-II imaging-guided oncotherapy. J Colloid Interface Sci 2024; 654:740-752. [PMID: 37866046 DOI: 10.1016/j.jcis.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Nanotheranostic agents combined the second near-infrared (NIR-II, 1000-1700 nm) fluorescence imaging with phototherapy strategy have attracted tremendous interest. However, the actual efficacy of NIR-II probes could be weakened by their limited accumulation and penetration in tumor tissues. Herein, a size-transformable NIR-II nanotheranostic agent (BBT-HASS@FPMPL NPs) is employed for simultaneously enhanced penetration and retention in deep tumor tissue to realize precise image and effective PTT therapy. BBT-HASS@FPMPL NPs were first formed by using hyaluronic acid (HA) chains and disulfide bonds as stimuli-responsive "lock" to efficiently load conjugated oligomer (BBTN+), and then folic acid (FA) modified polylysine (FPMPL) shell was stacked at the surface by electrostatic interaction. Dual targeting with HA and FA is expected to lead to more selective targeting and better accumulation of BBT-HASS@FPMPL NPs in tumor sites. Simultaneously, obvious particle size reduction and charge reversal can be triggered in acidic tumor microenvironment to achieve deep intratumor filtration through transcytosis. Following tumor penetration, size change was further initiated by overexpressed hyaluronidase and GSH in tumor. Free BBTN+ can be subsequently released from nanoparticles to promote specific intratumor retention, which synergistically enhance photothermal therapeutic efficacy. Owing to sufficient tumor accumulation and deep penetration, the NIR-II emission of BBTN+ could further be used for precise monitoring of subcutaneous tumor progression in mice for 6 days with just one dose injection. We expect that such nanotheranostic platform that combined the high resolution of NIR-II fluorescence with deep tumor penetration and long intratumor retention could be useful for real-time monitoring of tumor process, precise diagnosis, and enhanced phototherapy.
Collapse
Affiliation(s)
- Peng Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenjun Sun
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guoqin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongpan Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Biqing Bao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
15
|
Xu W, Liu W, Yang J, Lu J, Zhang H, Ye D. Stimuli-responsive nanodelivery systems for amplifying immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:181-198. [PMID: 37403660 DOI: 10.1111/imr.13237] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Immunogenic cell death (ICD) is a special pattern of tumor cell death, enabling to elicit tumor-specific immune response via the release of damage-associated molecular patterns and tumor-associated antigens in the tumor microenvironment. ICD-induced immunotherapy holds the promise for completely eliminating tumors and long-term protective antitumor immune response. Increasing ICD inducers have been discovered for boosting antitumor immunity via evoking ICD. Nonetheless, the utilization of ICD inducers remains insufficient owing to serious toxic reactions, low localization efficiency within the tumor microenvironmental niche, etc. For overcoming such limitations, stimuli-responsive multifunctional nanoparticles or nanocomposites with ICD inducers have been developed for improving immunotherapeutic efficiency via lowering toxicity, which represent a prospective scheme for fostering the utilization of ICD inducers in immunotherapy. This review outlines the advances in near-infrared (NIR)-, pH-, redox-, pH- and redox-, or NIR- and tumor microenvironment-responsive nanodelivery systems for ICD induction. Furthermore, we discuss their clinical translational potential. The progress of stimuli-responsive nanoparticles in clinical settings depends upon the development of biologically safer drugs tailored to patient needs. Moreover, an in-depth comprehending of ICD biomarkers, immunosuppressive microenvironment, and ICD inducers may accelerate the advance in smarter multifunctional nanodelivery systems to further amplify ICD.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Wangrui Liu
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Yang
- Department of Surgery, ShangNan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiahe Lu
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| |
Collapse
|
16
|
Chen W, Zhang M, Wang C, Zhang Q. PEI-Based Nanoparticles for Tumor Immunotherapy via In Situ Antigen-Capture Triggered by Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55433-55446. [PMID: 37976376 DOI: 10.1021/acsami.3c13405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Activating a tumor antigen-specific immune response is key to the success of tumor immunotherapy and the development of personalized antitumor therapy. Nanocarriers can capture, enrich, and protect in situ produced tumor antigens due to immunogenic cell death (ICD), thus enhancing the tumor-specific immune response. Developing multifunctional nanocarriers that combine multiple antigen capturing mechanisms is crucial to the activation of tumor-specific immune responses. In this study, polyethylenimine (PEI) was employed as a main building block to construct a series of multifunctional indocyanine green (ICG)-loaded nanoparticles to capture antigens via multiple mechanisms: electrostatic interactions with PEI, hydrophobic interactions with the thermosensitive segment (POEGMA300), and covalent bonding with the pyridyl disulfide (PDS) groups, respectively. Their capacity of ICD induction, tumor antigen-capture, and antitumor immune responses were evaluated. Both the intrinsic toxicity of PEI and the ICG-mediated photothermal effect were responsible for inducing ICD. The positively charged PEI segment exhibited the best antigen-capturing ability via electrostatic interactions, promoted bone marrow-derived dendritic cell maturation and CD8+ T cell proliferation, and elicited antitumor immune responses in vivo. PDS groups bonded antigens covalently and significantly contributed to the suppression of distant tumor growth. Although the thermosensitive hydrophobic polymer segment did not contribute positively to antigen capture or tumor growth inhibition, NPs containing all of the functional modules prolonged the survival of tumor-bearing mice more than other treatments. This study provides more chemical insights into the design of polymer-based in situ nanovaccines against cancer.
Collapse
Affiliation(s)
- Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chun Wang
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
17
|
Zhou H, Chen DS, Hu CJ, Hong X, Shi J, Xiao Y. Stimuli-Responsive Nanotechnology for RNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303597. [PMID: 37915127 PMCID: PMC10754096 DOI: 10.1002/advs.202303597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/30/2023] [Indexed: 11/03/2023]
Abstract
Ribonucleic acid (RNA) drugs have shown promising therapeutic effects for various diseases in clinical and preclinical studies, owing to their capability to regulate the expression of genes of interest or control protein synthesis. Different strategies, such as chemical modification, ligand conjugation, and nanotechnology, have contributed to the successful clinical translation of RNA medicine, including small interfering RNA (siRNA) for gene silencing and messenger RNA (mRNA) for vaccine development. Among these, nanotechnology can protect RNAs from enzymatic degradation, increase cellular uptake and cytosolic transportation, prolong systemic circulation, and improve tissue/cell targeting. Here, a focused overview of stimuli-responsive nanotechnologies for RNA delivery, which have shown unique benefits in promoting RNA bioactivity and cell/organ selectivity, is provided. Many tissue/cell-specific microenvironmental features, such as pH, enzyme, hypoxia, and redox, are utilized in designing internal stimuli-responsive RNA nanoparticles (NPs). In addition, external stimuli, such as light, magnetic field, and ultrasound, have also been used for controlling RNA release and transportation. This review summarizes a wide range of stimuli-responsive NP systems for RNA delivery, which may facilitate the development of next-generation RNA medicines.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)Nanjing University of Posts & Telecommunications210023NanjingChina
| | - Dean Shuailin Chen
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Caleb J. Hu
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xuechuan Hong
- Department of Cardiology, Clinical Trial CenterZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan University430071WuhanChina
| | - Jinjun Shi
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Yuling Xiao
- Center for Nanomedicine and Department of AnesthesiologyPerioperative and Pain MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
18
|
Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: State-of-the-art in bone and associated tissue regeneration. Bioact Mater 2023; 28:284-310. [PMID: 37303852 PMCID: PMC10248805 DOI: 10.1016/j.bioactmat.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
Macrophage-assisted immunomodulation is an alternative strategy in tissue engineering, wherein the interplay between pro-inflammatory and anti-inflammatory macrophage cells and body cells determines the fate of healing or inflammation. Although several reports have demonstrated that tissue regeneration depends on spatial and temporal regulation of the biophysical or biochemical microenvironment of the biomaterial, the underlying molecular mechanism behind immunomodulation is still under consideration for developing immunomodulatory scaffolds. Currently, most fabricated immunomodulatory platforms reported in the literature show regenerative capabilities of a particular tissue, for example, endogenous tissue (e.g., bone, muscle, heart, kidney, and lungs) or exogenous tissue (e.g., skin and eye). In this review, we briefly introduced the necessity of the 3D immunomodulatory scaffolds and nanomaterials, focusing on material properties and their interaction with macrophages for general readers. This review also provides a comprehensive summary of macrophage origin and taxonomy, their diverse functions, and various signal transduction pathways during biomaterial-macrophage interaction, which is particularly helpful for material scientists and clinicians for developing next-generation immunomodulatory scaffolds. From a clinical standpoint, we briefly discussed the role of 3D biomaterial scaffolds and/or nanomaterial composites for macrophage-assisted tissue engineering with a special focus on bone and associated tissues. Finally, a summary with expert opinion is presented to address the challenges and future necessity of 3D bioprinted immunomodulatory materials for tissue engineering.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
19
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
20
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
21
|
Tong F, Hu H, Xu Y, Zhou Y, Xie R, Lei T, Du Y, Yang W, He S, Huang Y, Gong T, Gao H. Hollow copper sulfide nanoparticles carrying ISRIB for the sensitized photothermal therapy of breast cancer and brain metastases through inhibiting stress granule formation and reprogramming tumor-associated macrophages. Acta Pharm Sin B 2023; 13:3471-3488. [PMID: 37655313 PMCID: PMC10465875 DOI: 10.1016/j.apsb.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
As known, the benefits of photothermal therapy (PTT) are greatly limited by the heat tolerance of cancer cells resulting from overexpressed heat shock proteins (HSPs). Then HSPs further trigger the formation of stress granules (SGs) that regulate protein expression and cell viability under various stress conditions. Inhibition of SG formation can sensitize tumor cells to PTT. Herein, we developed PEGylated pH (low) insertion peptide (PEG-pHLIP)-modified hollow copper sulfide nanoparticles (HCuS NPs) encapsulating the SG inhibitor ISRIB, with the phase-change material lauric acid (LA) as a gate-keeper, to construct a pH-driven and NIR photo-responsive controlled smart drug delivery system (IL@H-PP). The nanomedicine could specifically target slightly acidic tumor sites. Upon irradiation, IL@H-PP realized PTT, and the light-controlled release of ISRIB could effectively inhibit the formation of PTT-induced SG to sensitize tumor cells to PTT, thereby increasing the antitumor effect and inducing potent immunogenic cell death (ICD). Moreover, IL@H-PP could promote the production of reactive oxygen species (ROS) by tumor-associated macrophages (TAMs), repolarizing them towards the M1 phenotype and remodeling the immunosuppressive microenvironment. In vitro/vivo results revealed the potential of PTT combined with SG inhibitors, which provides a new paradigm for antitumor and anti-metastases.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haili Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rou Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Li L, Zou Y, Wang L, Yang L, Li Y, Liao A, Chen Z, Yu Z, Guo J, Han S. Nanodelivery of scutellarin induces immunogenic cell death for treating hepatocellular carcinoma. Int J Pharm 2023:123114. [PMID: 37301243 DOI: 10.1016/j.ijpharm.2023.123114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Hepatocellular carcinoma (HCC) causes the immunosuppressive tumor microenvironment (TME) resistant to current immunotherapy. The immunogenic apoptosis (currently termed immunogenic cell death, ICD) of cancer cells may induce the adaptive immunity against tumors, thereby providing great potential for treating HCC. In this study, we have confirmed the potential of scutellarin (SCU, a flavonoid found in Erigeron breviscapus) for triggering ICD in HCC cells. To facilitate in vivo application of SCU for HCC immunotherapy, an aminoethyl anisamide-targeted polyethylene glycol-modified poly(lactide-co-glycolide) (PLGA-PEG-AEAA) was produced to facilitate SCU delivery in this study. The resultant nanoformulation (PLGA-PEG-AEAA.SCU) remarkably promoted blood circulation and tumor delivery in the orthotopic HCC mouse model. Consequently, PLGA-PEG-AEAA.SCU reversed the immune suppressive TME and achieved the immunotherapeutic efficacy, resulting in significantly longer survival of mice, without inducing toxicity. These findings uncover the ICD potential of SCU and provide a promising strategy for HCC immunotherapy.
Collapse
Affiliation(s)
- Linlin Li
- Center for Prenatal Diagnosis and Reproductive Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Lingzhi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Anqi Liao
- Center for Prenatal Diagnosis and Reproductive Medicine, The First Hospital of Jilin University, Changchun 130021, China; School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
23
|
Bahreyni A, Liu H, Mohamud Y, Xue YC, Fan YM, Zhang YL, Luo H. A combination of genetically engineered oncolytic virus and melittin-CpG for cancer viro-chemo-immunotherapy. BMC Med 2023; 21:193. [PMID: 37226233 DOI: 10.1186/s12916-023-02901-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Immunotherapy has emerged as an efficient therapeutic approach for cancer management. However, stimulation of host immune system against cancer cells often fails to achieve promising clinical outcomes mainly owing to the immunosuppressive characteristics of the tumor microenvironment (TME). Combination therapeutics that can trigger sustained immunogenic cell death (ICD) have provided new opportunities for cancer treatment. METHODS In this study, we designed and applied an ICD inducer regimen, including a genetically engineered oncolytic virus (miRNA-modified coxsackieviruses B3, miR-CVB3), a pore-forming lytic peptide (melittin, found in bee venom), and a synthetic toll-like receptor 9 ligand (CpG oligodeoxynucleotides), for breast cancer and melanoma treatment. We compared the anti-tumor efficacy of miR-CVB3 and CpG-melittin (CpGMel) alone and in combination (miR-CVB3 + CpGMel) and investigated possible mechanisms involved. RESULTS We demonstrated that miR-CVB3 + CpGMel had no major impact on viral growth, while enhancing the cellular uptake of CpGMel in vitro. We further showed that combination therapy led to significant increases in tumor cell death and release of damage-associated molecular patterns compared with individual treatment. In vivo studies in 4T1 tumor-bearing Balb/c mice revealed that both primary and distant tumors were significantly suppressed, and the survival rate was significantly prolonged after administration of miR-CVB3 + CpGMel compared with single treatment. This anti-tumor effect was accompanied by increased ICD and immune cell infiltration into the TME. Safety analysis showed no significant pathological abnormalities in Balb/c mice. Furthermore, the developed therapeutic regimen also demonstrated a great anti-tumor activity in B16F10 melanoma tumor-bearing C57BL/6 J mice. CONCLUSIONS Overall, our findings indicate that although single treatment using miR-CVB3 or CpGMel can efficiently delay tumor growth, combining oncolytic virus-based therapy can generate even stronger anti-tumor immunity, leading to a greater reduction in tumor size.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Huitao Liu
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yuan Chao Xue
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada
| | - Yiyun Michelle Fan
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Endowment Lands, Canada
| | - Yizhuo Lyanne Zhang
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Endowment Lands, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
- Department of Pathology and Laboratory of Medicine, University of British Columbia, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
24
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
25
|
Li ZZ, He JY, Wu Q, Liu B, Bu LL. Recent advances in targeting myeloid-derived suppressor cells and their applications to radiotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:233-264. [PMID: 37438019 DOI: 10.1016/bs.ircmb.2023.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of heterogenous immature myeloid cells with potent immune suppressive properties that not only constrain anti-tumor immune activation and functions, promote tumor progression, but also contribute to treatment resistance and tumor relapse. Targeting MDSCs may be a promising new cancer treatment method, but there is still a problem of low treatment efficiency. Combined application with radiotherapy may be a potential method to solve this problem. Drug delivery systems (DDSs) provide more efficient targeted drug delivery capability and can reduce the toxicity and side effects of drugs. Recent advance in DDSs targeting development, recruitment, differentiation, and elimination of MDSCs have shown promising effect in reversing immune inhibition and in overcoming radiotherapy resistance. In this review, we systematically summarized DDSs applied to target MDSCs for the first time, and classified and discussed it according to its different mechanisms of action. In addition, this paper also reviewed the biological characteristics of MDSCs and their role in the initiation, progression, and metastasis of cancer. Moreover, this review also summarizes the role of DDSs targeting MDSCs in radiosensitization. Finally, the future development of DDSs targeting MDSCs is also prospected.
Collapse
Affiliation(s)
- Zi-Zhan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jing-Yu He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Engineering nanoparticles boost TNBC therapy by CD24 blockade and mitochondrial dynamics regulation. J Control Release 2023; 355:211-227. [PMID: 36736908 DOI: 10.1016/j.jconrel.2023.01.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Although cancer immunotherapy has achieved remarkable progress, the clinical treatment of triple-negative breast cancer (TNBC) is still tough to make a breakthrough. The unsatisfactory therapeutic effect may be attributed to the lack of tumor immunogenicity and the strong immunosuppressive tumor microenvironment (ITM). In order to overcome the above shortcomings, engineering nanoparticles (P-aCD24/CEL + P/shMFN1) was designed to deliver anti-CD24 monoclonal antibody (aCD24), celastrol (CEL) and mitofusin 1 shRNA (shMFN1) for synergistic tumor cells-targeted treatment and tumor-associated macrophages (TAMs)-targeted immunomodulation. CD24, highly expressed on tumor cells, interacts with Siglec10 on TAMs to protect tumor cells from phagocytosis by macrophages, and thus has become a novel and dominant immune checkpoint in TNBC. P-aCD24/CEL achieved the release of aCD24 based on the dual response of carrier to pH and MMP2 in tumor microenvironment. Moreover, CEL increased "eat me" signal CRT and induced the immunogenic cell death (ICD) of tumor cells, together with decreased "don't eat me" signal CD24, reactivated macrophage phagocytosis of tumor cells, and ultimately improves the macrophage-based immunotherapy. On the other hand, P/shMFN1 could target TAMs for mitochondrial dynamics regulation via durable MFN1 silencing in TAMs, thereby reversing the phenotype of M2-TAMs. P-aCD24/CEL and P/shMFN1 could synergistically elicit evident antitumor immune responses and long-term immune memory to significantly inhibit tumor progress and postoperative recurrence. Based on remodeling the ITM and increasing antitumor immune response, this combination immunotherapy strategy showed great potential for TNBC treatment.
Collapse
|
27
|
Wang D, Li H, Wang D, Hao Y, Gui H, Liu J, Zhang Y, Liu J, Yang C. Supramolecular Coassembled Peptide Hydrogels for Efficient Anticancer Therapy by RNS-Based PDT and Immune Microenvironment Regulation. Macromol Biosci 2022; 22:e2200359. [PMID: 36208072 DOI: 10.1002/mabi.202200359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) has attracted much attention in cancer treatment due to its tumor selectivity and noninvasive nature. Recent studies have demonstrated that PDT mediated reactive oxygen species (ROS) generation in tumor microenvironment (TME) synergistically improves the efficacy of immune checkpoint blockade (ICB) therapy. However, the instability and short half-life of the ROS generated by PDT limit its clinical applications. Herein, a coassembled peptide hydrogel comprising two short peptides that contained the same assembly unit, Ce6-KKFKFEFEF (KEF-Ce6) and RRRRRRRR-KFKFEFEF (KEF-R8) is developed. When exposed to 635 nm laser irradiation, KEF-Ce6 released ROS, while KEF-R8 plays as nitric oxide (NO) donor. Subsequently, ROS reacts with NO to produce reactive nitrogen species (RNS). Both in vitro and in vivo experiments prove that converting ROS into more cytotoxic RNS caused intense cell death. Importantly, it is observed that tumor-associated macrophages (TAMs) are polarized to proinflammatory types (M1-type) by the RNS-based PDT. The increase of M1 macrophages relieves the immunosuppressive situation in TME. Thus, when combined with αPD-L1 treatment, the survival time of tumor-bearing mice is prolonged. Overall, a simple yet efficient coassembled hydrogel that can cascade release ROS/NO/RNS and strengthen antitumor T cell responses to boost cancer immunotherapy by reprogramming TAMs is provided.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hui Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yusen Hao
- Lab of Functional and Biomedical Nanomaterials College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Han Gui
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
28
|
Pandey A, Mishra AK. Immunomodulation, Toxicity, and Therapeutic Potential of Nanoparticles. BIOTECH 2022; 11:42. [PMID: 36134916 PMCID: PMC9497228 DOI: 10.3390/biotech11030042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Altered immune responses associated with human disease conditions, such as inflammatory and infectious diseases, cancers, and autoimmune diseases, are among the primary causes of morbidity across the world. A wealth of studies has demonstrated the efficiency of nanoparticles (NPs)-based immunotherapy strategies in different laboratory model systems. Nanoscale dimensions (<100 nm) enable NPs to have increased surface area to volume ratio, surface charge, and reactivity. Physicochemical properties along with the shapes, sizes, and elasticity influence the immunomodulatory response induced by NPs. In recent years, NPs-based immunotherapy strategies have attained significant focus in the context of cancers and autoimmune diseases. This rapidly growing field of nanomedicine has already introduced ~50 nanotherapeutics in clinical practices. Parallel to wide industrial applications of NPs, studies have raised concerns about their potential threat to the environment and human health. In past decades, a wealth of in vivo and in vitro studies has demonstrated the immunotoxicity potential of various NPs. Given that the number of engineered/designed NPs in biomedical applications is continuing to increase, it is pertinent to establish the toxicity profile for their safe and intelligent use in biomedical applications. The review is intended to summarize the NPs-induced immunomodulation pertaining to toxicity and therapeutic development in human health.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhinava K. Mishra
- Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
29
|
Mannose modified co-loaded zoledronic liposomes deplete M2-tumor-associated macrophages to enhance anti-tumor effect of doxorubicin on TNBC. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Yu L, Jin Y, Song M, Zhao Y, Zhang H. When Natural Compounds Meet Nanotechnology: Nature-Inspired Nanomedicines for Cancer Immunotherapy. Pharmaceutics 2022; 14:1589. [PMID: 36015215 PMCID: PMC9412684 DOI: 10.3390/pharmaceutics14081589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Recent significant strides of natural compounds in immunomodulation have highlighted their great potential against cancer. Despite many attempts being made for cancer immunotherapy, the biomedical application of natural compounds encounters a bottleneck because of their unclear mechanisms, low solubility and bioavailability, and limited efficacy. Herein, we summarize the immune regulatory mechanisms of different natural compounds at each step of the cancer-immunity cycle and highlight their anti-tumor potential and current limitations. We then propose and present various drug delivery strategies based on nanotechnology, including traditional nanoparticles (NPs)-based delivery strategies (lipid-based NPs, micelles, and polysaccharide/peptide/protein-based NPs) and novel delivery strategies (cell-derived NPs and carrier-free NPs), thus providing solutions to break through existing bottlenecks. Furthermore, representative applications of nature-inspired nanomedicines are also emphasized in detail with the advantages and disadvantages discussed. Finally, the challenges and prospects of natural compounds for cancer immunotherapy are provided, hopefully, to facilitate their far-reaching development toward clinical translation.
Collapse
Affiliation(s)
- Linna Yu
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Mingjie Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Yu Zhao
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| |
Collapse
|
31
|
Non-cytotoxic Nanoparticles Re-educating Macrophages Achieving both Innate and Adaptive Immune Responses for Tumor Therapy. Asian J Pharm Sci 2022; 17:557-570. [PMID: 36101893 PMCID: PMC9459000 DOI: 10.1016/j.ajps.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/07/2022] Open
Abstract
Macrophages are important antigen-presenting cells to combat tumor via both innate and adaptive immunity, while they are programmed to M2 phenotype in established tumors and instead promote cancer development and metastasis. Here, we develop a nanomedicine that can re-educate M2 polarized macrophages to restore their anti-tumor activities. The nanomedicine has a core-shell structure to co-load IPI549, a PI3Kγ inhibitor, and CpG, a Toll-like receptor 9 agonist. Specifically, the hydrophobic IPI549 is self-assembled into a pure drug nano-core, while MOF shell layer is coated for CpG encapsulation, achieving extra-high total drugs loading of 44%. Such nanosystem could facilitate intracellular delivery of the payloads but without any cytotoxicity, displaying excellent biocompatibility. After entering macrophages, the released IPI549 and CpG exert a synergistic effect to switch macrophages from M2 to M1 phenotype, which enables anti-tumor activities via directly engulfing tumor cells or excreting tumor killing cytokines. Moreover, tumor antigens released from the dying tumor cells could be effectively presented by the re-educated macrophages owing to the up-regulation of various antigen presenting mediators, resulting in infiltration and activation of cytotoxic T lymphocytes. As a result, the nanosystem triggers a robust anti-tumor immune response in combination with PD-L1 antibody to inhibit tumor growth and metastasis. This work provides a non-cytotoxic nanomedicine to modulate tumor immune microenvironment by reprograming macrophages.
Collapse
|
32
|
Yin W, Tian L, Wang S, Zhang D, Guo S, Lang M. Co-delivery systems of paclitaxel prodrug for targeted synergistic therapy of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|