1
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
2
|
Carey ST, Bridgeman C, Jewell CM. Biomaterial Strategies for Selective Immune Tolerance: Advances and Gaps. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205105. [PMID: 36638260 PMCID: PMC10015875 DOI: 10.1002/advs.202205105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Indexed: 05/03/2023]
Abstract
Autoimmunity and allergies affect a large number of people across the globe. Current approaches to these diseases target cell types and pathways that drive disease, but these approaches are not cures and cannot differentiate between healthy cells and disease-causing cells. New immunotherapies that induce potent and selective antigen-specific tolerance is a transformative goal of emerging treatments for autoimmunity and serious allergies. These approaches offer the potential of halting-or even reversing-disease, without immunosuppressive side effects. However, translating successful induction of tolerance to patients is unsuccessful. Biomaterials offer strategies to direct and maximize immunological mechanisms of tolerance through unique capabilities such as codelivery of small molecules or signaling molecules, controlling signal density in key immune tissues, and targeting. While a growing body of work in this area demonstrates success in preclinical animal models, these therapies are only recently being evaluated in human trials. This review will highlight the most recent advances in the use of materials to achieve antigen-specific tolerance and provide commentary on the current state of the clinical development of these technologies.
Collapse
Affiliation(s)
- Sean T. Carey
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher Bridgeman
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Christopher M. Jewell
- University of Maryland Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- US Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
- Robert E. Fischell Institute for Biomedical DevicesCollege ParkMD20742USA
- Department of Microbiology and ImmunologyUniversity of Maryland Medical SchoolBaltimoreMD21201USA
- Marlene and Stewart Greenebaum Cancer CenterBaltimoreMD21201USA
| |
Collapse
|
3
|
Hu Z, Han S, Nie N, Wang J, Hu J, Reheman A. Preparation and drug release behavior of amphiphilic polyamino acids nanomicelles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Umeshappa CS, Solé P, Yamanouchi J, Mohapatra S, Surewaard BGJ, Garnica J, Singha S, Mondal D, Cortés-Vicente E, D’Mello C, Mason A, Kubes P, Serra P, Yang Y, Santamaria P. Re-programming mouse liver-resident invariant natural killer T cells for suppressing hepatic and diabetogenic autoimmunity. Nat Commun 2022; 13:3279. [PMID: 35672409 PMCID: PMC9174212 DOI: 10.1038/s41467-022-30759-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractInvariant NKT (iNKT) cells comprise a heterogeneous group of non-circulating, tissue-resident T lymphocytes that recognize glycolipids, including alpha-galactosylceramide (αGalCer), in the context of CD1d, but whether peripheral iNKT cell subsets are terminally differentiated remains unclear. Here we show that mouse and human liver-resident αGalCer/CD1d-binding iNKTs largely correspond to a novel Zbtb16+Tbx21+Gata3+MaflowRorc– subset that exhibits profound transcriptional, phenotypic and functional plasticity. Repetitive in vivo encounters of these liver iNKT (LiNKT) cells with intravenously delivered αGalCer/CD1d-coated nanoparticles (NP) trigger their differentiation into immunoregulatory, IL-10+IL-21-producing Zbtb16highMafhighTbx21+Gata3+Rorc– cells, termed LiNKTR1, expressing a T regulatory type 1 (TR1)-like transcriptional signature. This response is LiNKT-specific, since neither lung nor splenic tissue-resident iNKT cells from αGalCer/CD1d-NP-treated mice produce IL-10 or IL-21. Additionally, these LiNKTR1 cells suppress autoantigen presentation, and recognize CD1d expressed on conventional B cells to induce IL-10+IL-35-producing regulatory B (Breg) cells, leading to the suppression of liver and pancreas autoimmunity. Our results thus suggest that LiNKT cells are plastic for further functional diversification, with such plasticity potentially targetable for suppressing tissue-specific inflammatory phenomena.
Collapse
|
5
|
Farshbaf M, Valizadeh H, Panahi Y, Fatahi Y, Chen M, Zarebkohan A, Gao H. The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm 2022; 614:121458. [PMID: 35017025 DOI: 10.1016/j.ijpharm.2022.121458] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Abstract
For successful translation of targeting nanomedicines from bench to bedside, it is vital to address their most common drawbacks namely rapid clearance and off-target accumulation. These complications evidently originate from a phenomenon called "protein corona (PC) formation" around the surface of targeting nanoparticles (NPs) which happens once they encounter the bloodstream and interact with plasma proteins with high collision frequency. This phenomenon endows the targeting nanomedicines with a different biological behavior followed by an unexpected fate, which is usually very different from what we commonly observe in vitro. In addition to the inherent physiochemical properties of NPs, the targeting ligands could also remarkably dictate the amount and type of adsorbed PC. As very limited studies have focused their attention on this particular factor, the present review is tasked to discuss the best simulated environment and latest characterization techniques applied to PC analysis. The effect of PC on the biological behavior of targeting NPs engineered with different targeting moieties is further discussed. Ultimately, the recent progresses in manipulation of nano-bio interfaces to achieve the most favorite therapeutic outcome are highlighted.
Collapse
Affiliation(s)
- Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Sichuan 610041, China.
| |
Collapse
|
6
|
Yang Y, Santamaria P. Antigen-specific nanomedicines for the treatment of autoimmune disease: target cell types, mechanisms and outcomes. Curr Opin Biotechnol 2022; 74:285-292. [PMID: 35007990 DOI: 10.1016/j.copbio.2021.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Nanoparticle (NP)-based delivery of autoantigenic ligands represents a promising approach to modulate autoimmune responses in vivo. Over the last 15 years, a growing number of compounds have been tested in animal models of various experimental and/or spontaneous autoimmune diseases. Based on the underlying design principles and mechanistic underpinnings, these compounds can be categorized into three broad groups: NPs (or microparticles, MPs) as vehicles for targeted delivery of antigens to tolerogenic antigen-presenting cells (APCs); NPs as scaffolds for targeted delivery of both antigen and immunomodulatory molecules to professional APCs; and NPs as multimerization platforms for direct cognate T-cell targeting via recombinant peptide-major histocompatibility complex molecules (pMHCs). These various compounds operate through different mechanisms of action, eliciting pharmacodynamic effects that range from antigen-specific clonal deletion to induction of comprehensive, yet disease-specific, bystander immunoregulation. Here, we review the outcomes of the various approaches tested to date and discuss their translational significance in the context of mode of action vis-à-vis immunologically complex human autoimmune diseases.
Collapse
Affiliation(s)
- Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada.
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain.
| |
Collapse
|
7
|
Zhu J, Chen W, Sun Y, Huang X, Chu R, Wang R, Zhou D, Ye S. Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. MATERIALS ADVANCES 2022; 3:7687-7708. [DOI: 10.1039/d2ma00814a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
As one of the current research hotspots, drug release nanoplatforms have great potential in the treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Jing Zhu
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Weihong Chen
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Yuansong Sun
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Xiaoyi Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ruixi Chu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deqing Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Sheng Ye
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|