1
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Marcos M, Salete-Granado D, Chacón-Arnaude M, Pérez-Nieto MÁ, Kemmerling U, Concepción JL, Michels PAM, Quiñones W. Exploring glycolytic enzymes in disease: potential biomarkers and therapeutic targets in neurodegeneration, cancer and parasitic infections. Open Biol 2025; 15:240239. [PMID: 39904372 PMCID: PMC11793985 DOI: 10.1098/rsob.240239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Glycolysis, present in most organisms, is evolutionarily one of the oldest metabolic pathways. It has great relevance at a physiological level because it is responsible for generating ATP in the cell through the conversion of glucose into pyruvate and reducing nicotinamide adenine dinucleotide (NADH) (that may be fed into the electron chain in the mitochondria to produce additional ATP by oxidative phosphorylation), as well as for producing intermediates that can serve as substrates for other metabolic processes. Glycolysis takes place through 10 consecutive chemical reactions, each of which is catalysed by a specific enzyme. Although energy transduction by glucose metabolism is the main function of this pathway, involvement in virulence, growth, pathogen-host interactions, immunomodulation and adaptation to environmental conditions are other functions attributed to this metabolic pathway. In humans, where glycolysis occurs mainly in the cytosol, the mislocalization of some glycolytic enzymes in various other subcellular locations, as well as alterations in their expression and regulation, has been associated with the development and progression of various diseases. In this review, we describe the role of glycolytic enzymes in the pathogenesis of diseases of clinical interest. In addition, the potential role of these enzymes as targets for drug development and their potential for use as diagnostic and prognostic markers of some pathologies are also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso2373223, Chile
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Servicio de Medicina Interna, Hospital Universitario de Salamanca, Salamanca37007, Spain
| | - Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca37007, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
| | - Marirene Chacón-Arnaude
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - María Á. Pérez-Nieto
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, Salamanca37007, Spain
- Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León, Soria42002, Spain
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile8380453, Chile
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| | - Paul A. M. Michels
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, EdinburghEH9 3FL, UK
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida5101, Venezuela
| |
Collapse
|
2
|
Medeiros TS, Bezerra de Lima LE, Alves-Pereira EL, Alves-Silva MF, Dourado D, Fernandes-Pedrosa MDF, Figueiredo RCBQD, da Silva-Junior AA. Cationic and anionic PLGA-cholesterol hybrid nanoparticles as promising platforms to enhance the trypanocidal efficacy of benznidazole and drug delivery in Trypanosoma cruzi-infected cells. Biomed Pharmacother 2025; 183:117782. [PMID: 39755025 DOI: 10.1016/j.biopha.2024.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase. Additionally, cases of parasite resistance to treatment and low efficacy in in chronic disease phase have been reported. In this context, nanotechnology formulations for intracellular drug delivery have emerged as a promising alternative to improve the pharmacological properties of BNZ. In this study, we developed and evaluated cationic and anionic PLGA-cholesterol hybrid nanoparticles (HNPs) as innovative drug delivery systems for BNZ. These HNPs, functionalized with polyethyleneimine, were synthesized using a composition-dependent self-assembly method, yielding stable nanosystems with tuneable physicochemical properties. Furthermore, four release kinetic models were applied and Peppas-Sahlin demonstrated the best fit. In vitro assays confirmed the biocompatibility of HNPs with cardiomyoblasts at tested concentrations and revealed significantly enhanced trypanocidal activity against intracellular amastigotes compared to free BNZ. Transmission electron microscopy and fluorescence microscopy analyses highlighted effective nanoparticle internalization, with superior performance trypanocidal observed in anionic HNPs, which can be attributed to the residence of cationic in endo/lysosomal vesicles. Taken together, our results demonstrate the successful development of HNPs, underscoring their potential as a promising platform for the intracellular delivery of therapeutic agents.
Collapse
Affiliation(s)
- Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil; Laboratory of Cellular Biology of Pathogens, Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Lucas Eduardo Bezerra de Lima
- Laboratory of Cellular Biology of Pathogens, Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Eron Lincoln Alves-Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | - Douglas Dourado
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | | | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil.
| |
Collapse
|
3
|
Sorouri N, Soleymani N, Sadr S, Rahdar A, Ebrahimzadeh E, Borji H. Investigating the therapeutic effects of curcumin nanocapsules in hydatid cyst-infected mice. Exp Parasitol 2024; 267:108860. [PMID: 39528001 DOI: 10.1016/j.exppara.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND/OBJECTIVE The primary treatment for cysts is surgery, including removing the cyst and administering the appropriate chemical drugs. Herbal remedies have gained popularity as a viable and secure alternative to conventional pharmaceuticals. It may be advantageous to use nanocapsules to overcome the bioavailability challenges associated with herbal remedies like curcumin. The present study aims to provide insights into the effectiveness of curcumin nanocapsules in treating hydatid infections. METHODS Curcumin-loaded oil-in-water surfactant-based biocompatible nanomicelles were developed from dissolving Curcumin in 1% (w/w) solutions of ethyl butyrate oil by dissolving an amount of fatty acid sodium caprylate (SC, 0.09 g) and F127 (0.009 g), phosphate-buffered saline (PBS at pH 7.4) under vigorous stirring at a fixed ethyl butyrate-to-surfactant molar ratio of 10 and final total volume of 50 mL. The excess of free PHT was eliminated by dialysis for 24 h. Following five months after infection, 45 mice were divided into six groups. Groups 1, 2, and 3 were treated daily with curcumin nanocapsules (0.5, 0.25, 0.125 mg/ml) for one month. Group 4 was treated with curcumin (0.5 mg/ml), group 5 was treated with albendazole (150 mg/kg), and group 6 was the negative control group without treatments (only received saline). A detailed analysis of the cysts' physical characteristics, including their size and weight, has been conducted. RESULTS The mean zeta potential spectrum of the nanocapsules was -33.96 mV. Regarding the total cyst numbers, all three nanocapsule groups had significantly lower total cyst numbers than the curcumin, albendazole, and negative control groups. Regarding the total cyst weight, all three nanocapsule groups had a significantly lower total cyst weight than the curcumin and negative control groups. Regarding the cyst with the maximum size, nanocapsules groups 1 and 2 had a significantly smaller size than the curcumin, albendazole, and negative control groups. CONCLUSION The current study found that encapsulation positively affects curcumin efficacy as a superior alternative to chemical drugs, offering both biological advantages and environmental benefits.
Collapse
Affiliation(s)
- Negar Sorouri
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Elahe Ebrahimzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
4
|
Kuna A, Olszański R, Szostakowska B, Kulawiak N, Kant R, Grzybek M. Unusual Unsatisfactory Treatment in Two Patients with Imported Cutaneous Leishmaniasis. Trop Med Infect Dis 2024; 9:227. [PMID: 39453254 PMCID: PMC11510901 DOI: 10.3390/tropicalmed9100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Cutaneous leishmaniasis is one of the most commonly diagnosed dermatological condition in travel medicine after diarrhoeal diseases and febrile status. The disease is transmitted by Phlebotomus and Lutzomyia sandflies. It appears in various clinical forms, the most common of which is a painless ulcer with raised edges, usually present on exposed parts of the body on the side where the insect bite occurred. Annually, over a million new cutaneous leishmaniasis (CL) cases are reported globally. We present two cases of affliction, the first occurring in Patient 1, who attempted treatment through the Kambo cleanse in South America, which is considered a toxic, even life-threatening, procedure. It involves the subcutaneous application of a substance dangerous to humans derived from the surface mucus of a frog. Patient 2 applied caustic ointments, a fruitarian diet, and hyperbaric oxygen therapy in a private setting. After initial therapeutic failures caused by the patients' unconventional treatment ideas, the causal treatment effect was satisfactory, demonstrating the efficacy of these treatments in resolving the infection when applied appropriately. Despite the typical CL presentation in both patients, their self-treatment course was unusual. It is worth noting that alternative, sometimes harmful, self-treatment initiatives by patients may be surprising and ineffective. Promoting knowledge about tropical diseases among travellers and medical staff is crucial to improving treatment outcomes.
Collapse
Affiliation(s)
- Anna Kuna
- Department of Tropical and Parasitic Diseases, Faculty of Health Science, Medical University of Gdansk, 81-519 Gdansk, Poland; (N.K.); (R.K.)
| | | | - Beata Szostakowska
- Department of Tropical Parasitology, Faculty of Health Science, Medical University of Gdansk, 81-519 Gdansk, Poland; (B.S.); (M.G.)
| | - Natalia Kulawiak
- Department of Tropical and Parasitic Diseases, Faculty of Health Science, Medical University of Gdansk, 81-519 Gdansk, Poland; (N.K.); (R.K.)
| | - Ravi Kant
- Department of Tropical and Parasitic Diseases, Faculty of Health Science, Medical University of Gdansk, 81-519 Gdansk, Poland; (N.K.); (R.K.)
- Department of Virology, Helsinki University, 00290 Helsinki, Finland
| | - Maciej Grzybek
- Department of Tropical Parasitology, Faculty of Health Science, Medical University of Gdansk, 81-519 Gdansk, Poland; (B.S.); (M.G.)
| |
Collapse
|
5
|
Mohapatra D, Donela VVM, Kumari Y, Singh I. Future Roadmaps for the Treatment of Guinea Worm Disease: Progress in Synthetic and Green Approaches. Chem Biodivers 2024; 21:e202400592. [PMID: 38877685 DOI: 10.1002/cbdv.202400592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
For decades, guinea worm disease, caused by the parasitic worm Dracunculus medinensis, has been a major public health concern, impacting vulnerable populations in Africa and Asia. This review gives an in-depth examination of the various therapeutic approaches used to combat guinea worm disease. This study seeks to provide a current and evidence-based summary of available treatment techniques by conducting an exhaustive examination of peer-reviewed literature, medical databases, and official health organisation publications. The current review intends to contribute to the knowledge base and influence plans for guinea worm disease control and eradication by critically evaluating the success and obstacles associated with various treatment approaches through standard heterocyclic medications, herbal sources, phytochemicals, and nanomedicines. The importance of integrating community engagement and collaboration among national and international stakeholders is emphasised to foster sustainable solutions and ensure a collective effort towards a guinea worm-free world.
Collapse
Affiliation(s)
- Debasish Mohapatra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - V V Mounika Donela
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Yogita Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Kimta N, Majdalawieh AF, Nasrallah GK, Puri S, Nepovimova E, Jomova K, Kuča K. Leprosy: Comprehensive insights into pathology, immunology, and cutting-edge treatment strategies, integrating nanoparticles and ethnomedicinal plants. Front Pharmacol 2024; 15:1361641. [PMID: 38818380 PMCID: PMC11137175 DOI: 10.3389/fphar.2024.1361641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/19/2024] [Indexed: 06/01/2024] Open
Abstract
Mycobacterium leprae is the causative agent responsible for the chronic disease known as leprosy. This condition is characterized by dermal involvement, often leading to peripheral nerve damage, sensory-motor loss, and related abnormalities. Both innate and acquired immunological responses play a role in the disease, and even in individuals with lepromatous leprosy, there can be a transient increase in T cell immunity during lepromatous reactions. Diagnosing of early-stage leprosy poses significant challenges. In this context, nanoparticles have emerged as a promising avenue for addressing various crucial issues related to leprosy. These include combatting drug resistance, mitigating adverse effects of conventional medications, and enhancing targeted drug delivery. This review serves as a comprehensive compilation, encompassing aspects of pathology, immunology, and adverse effects of multidrug delivery systems in the context of leprosy treatment. Furthermore, the review underscores the significance of ethnomedicinal plants, bioactive secondary metabolites, and nanotherapeutics in the management of leprosy. It emphasizes the potential to bridge the gap between existing literature and ongoing research efforts, with a profound scope for validating traditional claims, developing herbal medicines, and formulating nanoscale drug delivery systems that are safe, effective, and widely accepted.
Collapse
Affiliation(s)
- Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Amin F. Majdalawieh
- Department of Biology, Chemsitry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | | | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
7
|
Alavi SE, Alharthi S, Alavi SF, Alavi SZ, Zahra GE, Raza A, Ebrahimi Shahmabadi H. Microfluidics for personalized drug delivery. Drug Discov Today 2024; 29:103936. [PMID: 38428803 DOI: 10.1016/j.drudis.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting. The integration of microfluidics with sensor technologies and artificial intelligence facilitates real-time feedback and autonomous adaptation in drug delivery systems. Key challenges, such as droplet polydispersity and fluidic handling, along with future directions focusing on scalability and reliability, are essential considerations in advancing microfluidics for personalized drug delivery.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia.
| | - Sitah Alharthi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Seyedeh Fatemeh Alavi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, PR China
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Gull E Zahra
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Aun Raza
- School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran.
| |
Collapse
|
8
|
Oliveira LVF, Camilo FF, Soares MG, Cajas RA, Cirino ME, de Moraes J, Lago JHG. In Situ Preparation of Dehydrodieugenol-Loaded Silver Nanoparticles and their Antischistosomal Activity. Chem Biodivers 2024; 21:e202301929. [PMID: 38278761 DOI: 10.1002/cbdv.202301929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Schistosomiasis is a major neglected disease that imposes a substantial worldwide health burden, affecting approximately 250 million people globally. As praziquantel is the only available drug to treat schistosomiasis, there is a critical need to identify new anthelmintic compounds, particularly from natural sources. To enhance the activity of different natural products, one potential avenue involves its combination with silver nanoparticles (AgNP). Based on this approach, a one-step green method for the in situ preparation of dehydrodieugenol (DHDG) by oxidation coupling reaction using silver and natural eugenol is presented. AgNP formation was confirmed by UV-Vis spectroscopy due to the appearance of the surface plasmon resonance (SPR) band at 430 nm which is characteristic of silver nanoparticles. The nanoparticles were spherical with sizes in the range of 40 to 50 nm. Bioassays demonstrated that the silver nanoparticles loaded with DHDG exhibited significant anthelmintic activity against Schistosoma mansoni adult worms without toxicity to mammalian cells and an in vivo animal model (Caenorhabditis elegans), contributing to the development of new prototypes based on natural products for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Larissa V F Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, SP-09210-580, Santo Andre, Brazil
| | - Fernanda F Camilo
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, SP-09913-030, Diadema, Brazil
| | - Marisi G Soares
- Institute of Chemistry, Federal University of Alfenas, MG-37130-001, Alfenas, Brazil
| | - Rayssa A Cajas
- Research Center for Neglected Diseases, Guarulhos University, SP-07030-010, Guarulhos, Brazil
| | - Maria E Cirino
- Research Center for Neglected Diseases, Guarulhos University, SP-07030-010, Guarulhos, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, SP-07030-010, Guarulhos, Brazil
| | - João Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, SP-09210-580, Santo Andre, Brazil
| |
Collapse
|
9
|
Gomes MC, Padilha EKA, Diniz GRA, Gomes EC, da Silva Santos-Júnior PF, Zhan P, da Siva-Júnior EF. Multi-target Compounds against Trypanosomatid Parasites and Mycobacterium tuberculosis. Curr Drug Targets 2024; 25:602-619. [PMID: 38910467 DOI: 10.2174/0113894501306843240606114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
Multi-target drug treatment has become popular as a substitute for traditional monotherapy. Monotherapy can lead to resistance and side effects. Multi-target drug discovery is gaining importance as data on bioactivity becomes more abundant. The design of multi-target drugs is expected to be an important development in the pharmaceutical industry in the near future. This review presents multi-target compounds against trypanosomatid parasites (Trypanosoma cruzi, T. brucei, and Leishmania sp.) and tuberculosis (Mycobacterium tuberculosis), which mainly affect populations in socioeconomically unfavorable conditions. The article analyzes the studies, including their chemical structures, viral strains, and molecular docking studies, when available. The objective of this review is to establish a foundation for designing new multi-target inhibitors for these diseases.
Collapse
Affiliation(s)
- Midiane Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Emanuelly Karla Araújo Padilha
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Gustavo Rafael Angelo Diniz
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Edilma Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Paulo Fernando da Silva Santos-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Peng Zhan
- Department of Medicinal - Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Edeildo Ferreira da Siva-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| |
Collapse
|
10
|
de Sousa NF, de Sousa GR, de Lima NTR, de Assis EB, Aragão MC, de Moura ÉP, Gopalsamy RG, Scotti MT, Scotti L. Multitarget Compounds for Neglected Diseases: A Review. Curr Drug Targets 2024; 25:577-601. [PMID: 38967077 DOI: 10.2174/0113894501298864240627060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
Neglected diseases are a group of infectious diseases, many of them parasitic, that mainly affect the poorest populations with limited access to health services, especially those living in remote rural areas and slums. According to the World Health Organization (WHO), neglected diseases put the lives of more than 200 million people at risk, and treatment is made difficult by the occurrence of resistance to existing medications, as well as the high level of toxicity. In this way, the potential of multitarget compounds is highlighted, defined as compounds designed to modulate multiple targets of relevance to disease, with the overall goal of enhancing efficacy and/or improving safety. Thus, the objective of our study is to evaluate existing multitarget compound approaches for neglected diseases, with an emphasis on Leishmaniasis, Chagas Disease, and Arboviruses. A literature review was performed by searching the database "Web of Sciences". In relation to the diseases covered in this work, Leishmaniasis, individually, was the one that presented the largest number of articles (11) that dealt with the topic, which can be justified by the high prevalence of this disease in the world, the second most common disease was Dengue, followed by Chagas disease, Chikungunya virus, and Zika virus. Furthermore, the multitarget potential of phenolic compounds was observed in all diseases under study, with the mechanisms related to the nucleus and transcription being the most reported mechanisms. From this perspective, it is worth highlighting the effectiveness of approaches related to multitarget drugs in discovering new therapeutic agents for neglected diseases.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Gabriela Ribeiro de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Natanael Teles Ramos de Lima
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Edileuza Bezerra de Assis
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Mariana Costa Aragão
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Érika Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
- Postgraduate Program in Natural and Bioactive Synthetic Products, Hospital Universitário Lauro Wanderley, João Pessoa-PB, Brazil
| | - Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India
| | - Marcus Tullius Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
11
|
Sadr S, Lotfalizadeh N, Abbasi AM, Soleymani N, Hajjafari A, Roohbaksh Amooli Moghadam E, Borji H. Challenges and Prospective of Enhancing Hydatid Cyst Chemotherapy by Nanotechnology and the Future of Nanobiosensors for Diagnosis. Trop Med Infect Dis 2023; 8:494. [PMID: 37999613 PMCID: PMC10674171 DOI: 10.3390/tropicalmed8110494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Hydatid cysts have been widely recognized for decades as a common medical problem that affects millions of people. A revolution in medical treatment may be on the prospect of nanotechnology enhancing chemotherapy against hydatid cysts. An overview of nanotechnology's impact on chemotherapeutics is presented in the current review. It discusses some of the challenges as well as some of the opportunities. The application of nanotechnology to enhance chemotherapy against hydatid cysts is what this review will explore. Nanotechnology is a critical component of delivering therapeutic agents with greater precision and efficiency and targeting hydatid cysts with better efficacy, and minimizing interference with surrounding tissue. However, there are biodistribution challenges, toxicity, and resistance problems associated with nanotherapeutics. Additionally, nanobiosensors are being investigated to enable the early diagnosis of hydatid cysts. A nanobiosensor can detect hydatid cysts by catching them early, non-invasively, rapidly, and accurately. The sensitivity and specificity of diagnostic tests can be enhanced with nanobiosensors because they take advantage of the unique properties of nanomaterials. By providing more precise and customized treatment options for hydatid cysts, nanotechnology may improve therapeutic options and strategies for diagnosing the disease. In conclusion, treatment with nanotechnology to treat hydatid cysts is potentially effective but presents many obstacles. Furthermore, nanobiosensors are being integrated into diagnostic techniques, as well as helping to diagnose patients earlier and more accurately.
Collapse
Affiliation(s)
- Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Amir Mohammad Abbasi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | | | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 917794897, Iran; (S.S.)
| |
Collapse
|
12
|
Gomes DC, Medeiros TS, Alves Pereira EL, da Silva JFO, de Freitas Oliveira JW, Fernandes-Pedrosa MDF, de Sousa da Silva M, da Silva-Júnior AA. From Benznidazole to New Drugs: Nanotechnology Contribution in Chagas Disease. Int J Mol Sci 2023; 24:13778. [PMID: 37762080 PMCID: PMC10530915 DOI: 10.3390/ijms241813778] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Benznidazole and nifurtimox are the two approved drugs for their treatment, but both drugs present side effects and efficacy problems, especially in the chronic phase of this disease. Therefore, new molecules have been tested with promising results aiming for strategic targeting action against T. cruzi. Several studies involve in vitro screening, but a considerable number of in vivo studies describe drug bioavailability increment, drug stability, toxicity assessment, and mainly the efficacy of new drugs and formulations. In this context, new drug delivery systems, such as nanotechnology systems, have been developed for these purposes. Some nanocarriers are able to interact with the immune system of the vertebrate host, modulating the immune response to the elimination of pathogenic microorganisms. In this overview of nanotechnology-based delivery strategies for established and new antichagasic agents, different strategies, and limitations of a wide class of nanocarriers are explored, as new perspectives in the treatment and monitoring of Chagas disease.
Collapse
Affiliation(s)
- Daniele Cavalcante Gomes
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Eron Lincoln Alves Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - João Felipe Oliveira da Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Johny W. de Freitas Oliveira
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| | - Marcelo de Sousa da Silva
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Centre of Health Sciences, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (J.W.d.F.O.); (M.d.S.d.S.)
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal 59012-570, Brazil; (D.C.G.); (T.S.M.); (E.L.A.P.); (J.F.O.d.S.); (M.d.F.F.-P.)
| |
Collapse
|
13
|
Cardador CM, Muehlmann LA, Coelho CM, Silva LP, Garay AV, Carvalho AMDS, Bastos IMD, Longo JPF. Nucleotides Entrapped in Liposome Nanovesicles as Tools for Therapeutic and Diagnostic Use in Biomedical Applications. Pharmaceutics 2023; 15:873. [PMID: 36986734 PMCID: PMC10056227 DOI: 10.3390/pharmaceutics15030873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
The use of nucleotides for biomedical applications is an old desire in the scientific community. As we will present here, there are references published over the past 40 years with this intended use. The main problem is that, as unstable molecules, nucleotides require some additional protection to extend their shelf life in the biological environment. Among the different nucleotide carriers, the nano-sized liposomes proved to be an effective strategic tool to overcome all these drawbacks related to the nucleotide high instability. Moreover, due to their low immunogenicity and easy preparation, the liposomes were selected as the main strategy for delivery of the mRNA developed for COVID-19 immunization. For sure this is the most important and relevant example of nucleotide application for human biomedical conditions. In addition, the use of mRNA vaccines for COVID-19 has increased interest in the application of this type of technology to other health conditions. For this review article, we will present some of these examples, especially focused on the use of liposomes to protect and deliver nucleotides for cancer therapy, immunostimulatory activities, enzymatic diagnostic applications, some examples for veterinarian use, and the treatment of neglected tropical disease.
Collapse
Affiliation(s)
- Camila Magalhães Cardador
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| | | | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| | - Luciano Paulino Silva
- Laboratório de Nanobiotecnologia (LNANO), Embrapa Recursos Genéticos e Biotecnologia, Brasilia 70770-917, DF, Brazil
| | - Aisel Valle Garay
- Molecular Biophysics Laboratory, Department of Cell Biology, Institute of Biological Science, University of Brasília (UnB), Brasília 70910-900, DF, Brazil
| | | | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil
| | - João Paulo Figueiró Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil
| |
Collapse
|
14
|
Mengarda AC, Iles B, Longo JPF, de Moraes J. Recent approaches in nanocarrier-based therapies for neglected tropical diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1852. [PMID: 36161523 DOI: 10.1002/wnan.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Neglected tropical diseases (NTDs) remain major public health problems in developing countries. Reducing the burden of NTDs requires sustained collaborative drug discovery efforts to achieve the goals of the new NTDs roadmap launched by the World Health Organization. Oral drugs are the most convenient choice and usually the safest and least expensive. However, the oral use of some drugs for NTDs treatment has many drawbacks, including toxicity, adverse reactions, drug resistance, drug low solubility, and bioavailability. Since there is an imperative need for novel and more effective drugs to treat the various NTDs, in recent years, several compound-loaded nanoparticles have been prepared with the objective of evaluating their application as an oral drug delivery system for the treatment of NTDs. This review focuses on the various types of nanoparticle drug delivery systems that have been recently used against the major NTDs caused by parasites such as leishmaniasis, Chagas disease, and schistosomiasis. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Bruno Iles
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - João Paulo F Longo
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, Guarulhos University, Guarulhos, São Paulo, Brazil
| |
Collapse
|
15
|
Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43:232435. [PMID: 36630532 PMCID: PMC9905792 DOI: 10.1042/bsr20220324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology is an interdisciplinary domain of science, technology and engineering that deals with nano-sized materials/particles. Usually, the size of nanoparticles lies between 1 and 100 nm. Due to their small size and large surface area-to-volume ratio, nanoparticles exhibit high reactivity, greater stability and adsorption capacity. These important physicochemical properties attract scientific community to utilize them in biomedical field. Various types of nanoparticles (inorganic and organic) have broad applications in medical field ranging from imaging to gene therapy. These are also effective drug carriers. In recent times, nanoparticles are utilized to circumvent different treatment limitations. For example, the ability of nanoparticles to cross the blood-brain barrier and having a certain degree of specificity towards amyloid deposits makes themselves important candidates for the treatment of Alzheimer's disease. Furthermore, nanotechnology has been used extensively to overcome several pertinent issues like drug-resistance phenomenon, side effects of conventional drugs and targeted drug delivery issue in leprosy, tuberculosis and cancer. Thus, in this review, the application of different nanoparticles for the treatment of these four important diseases (Alzheimer's disease, tuberculosis, leprosy and cancer) as well as for the effective delivery of drugs used in these diseases has been presented systematically. Although nanoformulations have many advantages over traditional therapeutics for treating these diseases, nanotoxicity is a major concern that has been discussed subsequently. Lastly, we have presented the promising future prospective of nanoparticles as alternative therapeutics. In that section, we have discussed about the futuristic approach(es) that could provide promising candidate(s) for the treatment of these four diseases.
Collapse
|
16
|
El-Shobokshy SA, Abo-Samaha MI, Sahwan FM, El-Rheem SMA, Emam M, Khafaga AF. Implication of apoptosis and oxidative stress in mitigation of ivermectin long-term hazards by zinc nanoparticles in male rabbits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26982-26997. [PMID: 36372859 PMCID: PMC9995419 DOI: 10.1007/s11356-022-24095-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Ivermectin is the medication of choice for treating human onchocerciasis and is used in veterinary medicine to treat a variety of ectoparasites and endoparasites. This study was designed to investigate the effects of zinc nanoparticles (ZnNPs) on the fertility of male rabbits exposed to experimental ivermectin (IVM) intoxication. A total of 72 mature male rabbits were equally divided into 4 groups (n = 18). The first group (CTR) served as control; the second group (IVM) received subcutaneous injection of IVM (0.2 mg/kg body weight); the third group (ZnNPs) fed on zinc nanoparticles (60 mg/kg diet); and the fourth group (ZnNPs + IVM) were administered IVM and zinc nanoparticles at the same doses. The experiment lasted for 9 weeks. Results revealed that IVM-intoxicated rabbits showed impaired growth performance parameters, including body weight, total body weight gain (TBWG), total feed intake (TFI), and feed conversion ratio (FCR). Moreover, carcass characteristic and fertility parameters (including semen quality parameters and testosterone levels) were also impaired after IVM administration. Additionally, testicular malondialdehyde (MDA) and antioxidant (reduced glutathione, superoxide dismutase, catalase) levels as well as the histopathology and immunohistochemical expression of caspase 3 and PCNA in the testes and epididymis were detrimentally affected. On the contrary, ZnNP administration efficiently improved most of these parameters in IVM-intoxicated rabbits. In conclusion, ZnNPs exhibited promising ability for improving the growth and fertility status of rabbits and reducing the deleterious effects of IVM possibly through the suppression of apoptotic and oxidative pathways.
Collapse
Affiliation(s)
- Set A El-Shobokshy
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Magda I Abo-Samaha
- Poultry Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ferial M Sahwan
- Animal Breeding and Production, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samia M Abd El-Rheem
- Department of Theriogenology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, P. O. Box, Edfina, 22758, Alexandria, Egypt.
| |
Collapse
|
17
|
Boniface PK, Ferreira EI. Therapeutic potential of flavonoid derivatives for certain neglected tropical diseases. Curr Drug Targets 2022; 23:680-682. [PMID: 35264087 DOI: 10.2174/1389450123666220309093827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neglected tropical diseases (NTDs) are infectious diseases that mostly affect people living in tropical and subtropical regions, especially in impoverished areas. Ubiquitously found in plants, flavonoids are a group of compounds which have been reported to exhibit a wide range of biological activities against parasites (Leishmania sp., Trypanosoma cruzi, Trypanosoma brucei, Brugia malayi, etc.) that cause certain NTDs. AIM OF THE STUDY The present study aims to highlight and discuss our recent reports on the implication of flavonoids in drug development for NTDs, such as leishmaniasis, Chagas disease, African trypanosomiasis, filariasis, among others. RESULTS Today, studies show that flavonoids exhibit in vitro antileishmanial, anti-trypanosomiasis, antifilarial activities, among others. Furthermore, the molecular hybridization of flavonoids with the triazole groups has led to the development of compounds with improved biological activity. The incorporation of chemical groups, such as NO2, F, and Cl groups during the process of design and synthesis lead to the enhancement of the pharmacological activity. CONCLUSION Flavonoids are useful metabolites which can be prospected as potential leads for the development of new agents against certain NTDs. However, research opportunities, including cytotoxicity and in vivo studies, mechanisms of action, bioavailability of these compounds remain to be investigated in future.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|