1
|
Lu L, Xu J, Huang X, Hu L, Ji K, Jiang C, Wang Y, Qin Y, Zhang Y, Zhang J, Hu J, Qian S, Huang Y, Bai H, Zhang X, Liu F, Gu Z, Wang J. Mussel Foot Protein Membrane-Enclosed Crystalline Drug with Zero-Order Release Kinetics for Long-Acting Therapy. Angew Chem Int Ed Engl 2025; 64:e202502205. [PMID: 40022608 DOI: 10.1002/anie.202502205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Injectable formulations with sustained and steady release capabilities are critically required to treat diseases requiring temporary or lifelong continuous therapy, especially for drugs with a short half-life. Additionally, achieving a sufficiently high drug loading in a single dose remains a persistent challenge. Herein, by mimicking the formation principles of mussel adhesive plaques, we have developed membrane-enclosed crystalline systems of insulin and progesterone as model macro- and small-molecular crystalline drugs. The system exhibits a substantial drug loading capacity (>90 %). It exhibits sustained and zero-order release kinetics, thereby facilitating the establishment of a subcutaneous reservoir containing a substantial drug load, enabling progressive and continuous release of the drug into the body. One single injection of membrane-enclosed insulin crystal can maintain normoglycemia in diabetic mice for up to 7 days. Meanwhile, membrane-coated progesterone crystals can sustain drug release in rats for over 7 days. The protein membrane can be cleared from the injection sites in 35 days. This system can serve as a versatile platform for the sustained release of various crystalline pharmaceuticals and the treatment of distinct diseases.
Collapse
Affiliation(s)
- Leihao Lu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Leyi Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Chuhuan Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yue Qin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yang Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jiahao Hu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenxi Qian
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongzhen Bai
- Department of Chemistry, Hangzhou, 310058, China
| | - Xiangnan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Fuyao Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Hangzhou, 311121, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, 310009, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Mathew F, Saral AM. Designing, Optimising, and Assessing a Novel Emulgel Containing Minoxidil for Controlled Drug Release, Incorporating Marine-based Polymers. Curr Drug Deliv 2025; 22:231-247. [PMID: 38362691 DOI: 10.2174/0115672018271502231226113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 12/17/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE This study aimed to develop an emulgel containing minoxidil as a drug for hair growth promotion in diseases, such as androgenetic alopecia, using gelling agents, such as chitosan and fucoidan. METHODS In this study, gelling agents were selected for the emulgel formulation. By various evaluation tests and through optimization, the chitosan-fucoidan combination was selected as the gelling agent for the preparation of emulgel using various evaluation parameters. RESULTS X2, the best emulgel formulation, contained 2.54 % chitosan and 0.896 % fucoidan. Chitosan prolonged the duration of drug release, and controlled release was obtained. Fucoidan increased the gelling activity, water absorption rate, and stability of the formulation. In this study, the X2 formulation showed the highest percentage of drug release at the 12th hour. It was found to be 99.7%, which followed the zero-order release model. CONCLUSION Owing to the wide range of biological activities of fucoidan, the loaded active substance can be protected, and at the same time, its potency can be improved, resulting in effective treatment. Because fucoidan has diverse properties and potential, it will be widely used in the biomedical and pharmaceutical industries in the future.
Collapse
Affiliation(s)
- Flowerlet Mathew
- School of Advanced Sciences, VIT University, Vellore, India
- Nirmala College of Pharmacy, Ernakulam, Kerala, India
| | - A Mary Saral
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, India
| |
Collapse
|
3
|
Späth F, Soria-Carrera H, Stasi M, Sastre J, Kriebisch BAK, Boekhoven J. Fuel-Driven Dynamic Combinatorial Peptide Libraries. Angew Chem Int Ed Engl 2024; 63:e202407424. [PMID: 39073290 DOI: 10.1002/anie.202407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Dynamic combinatorial chemistry (DCC) creates libraries of molecules that are constantly interchanging in a dynamic combinatorial library. When a library member self-assembles, it can displace the equilibria, leading to emergent phenomena like its selection or even its replication. However, such dynamic combinatorial libraries typically operate in or close to equilibrium. This work introduces a new dynamic combinatorial chemistry fueled by a catalytic reaction cycle that forms transient, out-of-equilibrium peptide-based macrocycles. The products in this library exist out of equilibrium at the expense of fuel and are thus regulated by kinetics and thermodynamics. By creating a chemically fueled dynamic combinatorial library with the vast structural space of amino acids, we explored the liquid-liquid phase separation behavior of the library members. The study advances DCCs by showing that peptide structures can be engineered to control the dynamic library's behavior. The work paves the way for creating novel, tunable material systems that exhibit emergent behavior reminiscent of biological systems. These findings have implications for the development of new materials and for understanding life's chemistry.
Collapse
Affiliation(s)
- Fabian Späth
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Héctor Soria-Carrera
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Judit Sastre
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Brigitte A K Kriebisch
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
4
|
Zhang X, Geng H, Shan C, Cui X, Zhang X, Ashokkumar M, Cui J, Zhang P. Assembly of Emulsion-Based Cascade Vehicles for Combination Oxygen-Chemotherapy in Diabetic Wound Healing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19766-19774. [PMID: 39235374 DOI: 10.1021/acs.langmuir.4c02549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
High blood glucose and insufficient angiogenesis in diabetic wounds prevent healing, often leading to amputation or death. To address this, a multifunctional emulsion loaded with simvastatin and stabilized by enzymes was synthesized using ultrasound-assisted emulsification. This emulsion promotes angiogenesis and reduces blood glucose levels. Glucose oxidase and catalase at the emulsion interface catalyze a glucose cascading response, lowering the glucose concentration at the diabetic wound site and improving the wound microenvironment. Simvastatin in the emulsion further promotes angiogenesis. The emulsion significantly accelerated wound healing in diabetic rats, offering a promising approach to diabetic wound management.
Collapse
Affiliation(s)
- Xunhui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Caiyun Shan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | | | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
5
|
Bagińska ZH, Paczkowska-Walendowska M, Basa A, Rachalewski M, Lendzion K, Cielecka-Piontek J, Szymańska E. Chitosan/Pomegranate Seed Oil Emulgel Composition as a New Strategy for Dermal Delivery of Hydrocortisone. Int J Mol Sci 2024; 25:3765. [PMID: 38612575 PMCID: PMC11012218 DOI: 10.3390/ijms25073765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Multifunctional delivery systems capable of modulating drug release and exerting adjunctive pharmacological activity have attracted particular attention. Chitosan (CS) and pomegranate seed oil (PO) appear to be attractive bioactive components framing the strategy of complex therapy and multifunctional drug carriers. This research is aimed at evaluating the potential of CS in combination with PO in studies on topical emulgels containing hydrocortisone as a model anti-inflammatory agent. Its particular goal was to distinguish alterations in anti-inflammatory action followed with drug dissolution or penetrative behavior between the designed formulations that differ in CS/PO weight ratio. All formulations favored hydrocortisone release with up to a two-fold increase in the drug dissolution rate within first 5 h as compared to conventional topical preparations. The clear effect of CS/PO on the emulgel biological performance was observed, and CS was found to be prerequisite for the modulation of hydrocortisone absorption and accumulation. In turn, a greater amount of PO played the predominant role in the inhibition of hyaluronidase activity and enhanced the anti-inflammatory effect of preparation E-3. Emulgels showed a negligible reduction in mouse fibroblasts' L929 cell viability, confirming their non-irritancy with skin cells. Overall, the designed formulation with a CS/PO ratio of 6:4 appeared to be the most promising topical carrier for the effective treatment of inflammatory skin diseases among the tested subjects.
Collapse
Affiliation(s)
- Zofia Helena Bagińska
- Student Scientific Group, Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland;
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.P.-W.); (J.C.-P.)
| | - Anna Basa
- Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Michał Rachalewski
- Dr Irena Eris, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland; (M.R.); (K.L.)
| | - Karolina Lendzion
- Dr Irena Eris, Centre for Science and Research, Armii Krajowej 12, 05-500 Piaseczno, Poland; (M.R.); (K.L.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznań, Poland; (M.P.-W.); (J.C.-P.)
| | - Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland
| |
Collapse
|
6
|
Lavrentev FV, Shilovskikh VV, Alabusheva VS, Yurova VY, Nikitina AA, Ulasevich SA, Skorb EV. Diffusion-Limited Processes in Hydrogels with Chosen Applications from Drug Delivery to Electronic Components. Molecules 2023; 28:5931. [PMID: 37570901 PMCID: PMC10421015 DOI: 10.3390/molecules28155931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Diffusion is one of the key nature processes which plays an important role in respiration, digestion, and nutrient transport in cells. In this regard, the present article aims to review various diffusion approaches used to fabricate different functional materials based on hydrogels, unique examples of materials that control diffusion. They have found applications in fields such as drug encapsulation and delivery, nutrient delivery in agriculture, developing materials for regenerative medicine, and creating stimuli-responsive materials in soft robotics and microrobotics. In addition, mechanisms of release and drug diffusion kinetics as key tools for material design are discussed.
Collapse
Affiliation(s)
- Filipp V. Lavrentev
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Vladimir V. Shilovskikh
- Laboratory of Polymer and Composite Materials “SmartTextiles”, IRC–X-ray Coherent Optics, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia;
| | - Varvara S. Alabusheva
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Veronika Yu. Yurova
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Anna A. Nikitina
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Sviatlana A. Ulasevich
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| | - Ekaterina V. Skorb
- Infochemistry Scientific Center, ITMO University, 191002 Saint Petersburg, Russia; (V.S.A.); (V.Y.Y.); (A.A.N.); (S.A.U.)
| |
Collapse
|
7
|
Chen X, Würbser MA, Boekhoven J. Chemically Fueled Supramolecular Materials. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:416-426. [PMID: 37256081 PMCID: PMC10226104 DOI: 10.1021/accountsmr.2c00244] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/10/2023] [Indexed: 06/01/2023]
Abstract
In biology, the function of many molecules is regulated through nonequilibrium chemical reaction cycles. The prototypical example is the phosphorylation of an amino acid in an enzyme which induces a functional change, e.g., it folds or unfolds, assembles or disassembles, or binds a substrate. Such phosphorylation does not occur spontaneously but requires a phosphorylating agent with high chemical potential (for example, adenosine triphosphate (ATP)) to be converted into a molecule with lower chemical potential (adenosine diphosphate (ADP)). When this energy is used to regulate an assembly, we speak of chemically fueled assemblies; i.e., the molecule with high potential, the fuel, is used to regulate a self-assembly process. For example, the binding of guanosine triphosphate (GTP) to tubulin induces self-assembly. The bound GTP is hydrolyzed to guanosine diphosphate (GDP) upon assembly, which induces tubulin disassembly. The result is a dynamic assembly endowed with unique characteristics, such as time-dependent behavior and the ability to self-heal. These intriguing, unique properties have inspired supramolecular chemists to create similar chemically fueled molecular assemblies from the bottom up. While examples have been designed, they remain scarce partly because chemically fueled reaction cycles are rare and often complex. Thus, we recently developed a carbodiimide-driven reaction cycle that is versatile and easy to use, quantitatively understood, and does not suffer from side reactions. In the reaction cycle, a carboxylate precursor reacts with a carbodiimide to form an activated species like an anhydride or ester. The activated state reacts with water and thereby reverts to its precursor state; i.e., the activated state is deactivated. Effectively, the precursor catalyzes carbodiimides' conversion into waste and forms a transient activated state. We designed building blocks to regulate a range of assemblies and supramolecular materials at the expense of carbodiimide fuel. The simplicity and versatility of the reaction cycles have democratized and popularized the field of chemically fueled assemblies. In this Account, we describe what we have "learned" on our way. We introduce the field exemplified by biological nonequilibrium self-assembly. We describe the design of the carbodiimide-driven reaction cycle. Using examples from our group and others, we offer design rules for the building block's structure and strategies to create the desired morphology or supramolecular materials. The discussed morphologies include fibers, colloids, crystals, and oil- and coacervate-based droplets. We then demonstrate how these assemblies form supramolecular materials with unique material properties like the ability to self-heal. Besides, we discuss the concept of reciprocal coupling in which the assembly exerts feedback on its reaction cycle and we also offer examples of such feedback mechanisms. Finally, we close the Account with a discussion and an outlook on this field. This Account aims to provide our fundamental understanding and facilitate further progress toward conceptually new supramolecular materials.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Michaela A. Würbser
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| | - Job Boekhoven
- Department
of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching bei München, Germany
| |
Collapse
|
8
|
Geng C, Liu X, Ma J, Ban H, Bian H, Huang G. High strength, controlled release of curcumin-loaded ZIF-8/chitosan/zein film with excellence gas barrier and antibacterial activity for litchi preservation. Carbohydr Polym 2023; 306:120612. [PMID: 36746592 DOI: 10.1016/j.carbpol.2023.120612] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Polysaccharide films containing protein additives have good application prospects in agriculture and food field. However, interfacial incompatibility between hydrophobic proteins and hydrophilic polymers remains a major technical challenge. In this work, the interfacial compatibility between hydrophobic zein and hydrophilic chitosan (CS) is improved by the chemical crosslinking between zinc ions of curcumin-loaded zeolitic imidazolate framework-8 (Cur-ZIF-8) with CS and zein. With the improvement of interface compatibility, the results show that the elongation at break and O2 barrier property of synthesized Cur-ZIF-8/CS/Zein are 9.2 and 1.5 times higher than CS/Zein, respectively. And the Cur-ZIF-8/CS/Zein exhibits superior antibacterial and antioxidant properties as well. Importantly, Cur-ZIF-8/CS/Zein can also be used as an intelligent-responsive release platform for curcumin. As a result, Cur-ZIF-8/CS/Zein can keep the freshness and appearance of litchi at least 8 days longer than that of CS/Zein. Therefore, this study provides a novel method to improve the interfacial compatibility between hydrophobic proteins and hydrophilic polymers, and is expected to expand the application of protein/polymer composites in agriculture and food field.
Collapse
Affiliation(s)
- Chao Geng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xueying Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinlian Ma
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Haina Ban
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Guohuan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
9
|
Chen X, Stasi M, Rodon-Fores J, Großmann PF, Bergmann AM, Dai K, Tena-Solsona M, Rieger B, Boekhoven J. A Carbodiimide-Fueled Reaction Cycle That Forms Transient 5(4 H)-Oxazolones. J Am Chem Soc 2023; 145:6880-6887. [PMID: 36931284 PMCID: PMC10064336 DOI: 10.1021/jacs.3c00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In life, molecular architectures, like the cytoskeletal proteins or the nucleolus, catalyze the conversion of chemical fuels to perform their functions. For example, tubulin catalyzes the hydrolysis of GTP to form a dynamic cytoskeletal network. In contrast, myosin uses the energy obtained by catalyzing the hydrolysis of ATP to exert forces. Artificial examples of such beautiful architectures are scarce partly because synthetic chemically fueled reaction cycles are relatively rare. Here, we introduce a new chemical reaction cycle driven by the hydration of a carbodiimide. Unlike other carbodiimide-fueled reaction cycles, the proposed cycle forms a transient 5(4H)-oxazolone. The reaction cycle is efficient in forming the transient product and is robust to operate under a wide range of fuel inputs, pH, and temperatures. The versatility of the precursors is vast, and we demonstrate several molecular designs that yield chemically fueled droplets, fibers, and crystals. We anticipate that the reaction cycle can offer a range of other assemblies and, due to its versatility, can also be incorporated into molecular motors and machines.
Collapse
Affiliation(s)
- Xiaoyao Chen
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Michele Stasi
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jennifer Rodon-Fores
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Paula F Großmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Alexander M Bergmann
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Kun Dai
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Marta Tena-Solsona
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Bernhard Rieger
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
10
|
Shadmani N, Makvandi P, Parsa M, Azadi A, Nedaei K, Mozafari N, Poursina N, Mattoli V, Tay FR, Maleki A, Hamidi M. Enhancing Methotrexate Delivery in the Brain by Mesoporous Silica Nanoparticles Functionalized with Cell-Penetrating Peptide using in Vivo and ex Vivo Monitoring. Mol Pharm 2023; 20:1531-1548. [PMID: 36763486 DOI: 10.1021/acs.molpharmaceut.2c00755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.
Collapse
Affiliation(s)
- Nasim Shadmani
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, EdinburghEH9 3JL, U.K
| | - Maliheh Parsa
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Keivan Nedaei
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685Shiraz, Iran
| | - Narges Poursina
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Virgilio Mattoli
- Centre for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, Georgia30912, United States
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran.,Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191Zanjan, Iran.,Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184Zanjan, Iran
| |
Collapse
|
11
|
Tai Z, Zheng M, Yang Y, Xie C, Li Z, Xu C. Temperature controlled microcapsule loaded with Perilla essential oil and its application in preservation of peaches. Front Nutr 2023; 10:1087605. [PMID: 36814505 PMCID: PMC9939902 DOI: 10.3389/fnut.2023.1087605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
In this study, Perilla frutescens essential oil (PEO) loaded microcapsules (PEOM) were successfully prepared and their thermal stability, temperature-responsive releasing effect, antioxidant activity, antibacterial activity, and preservation of peach were systematically investigated. PEOM showed excellent encapsulation efficiency (91.5%) with a core-shell ratio of 1.4:1 and exhibited high thermal stability, indicating that PEOM could effectively maintain PEO release rate. In vitro assays indicated that the optimal kinetic model for PEO release fitted well with first order with a diffusion mechanism. A high level of antioxidant and antibacterial activity of PEOM was maintained. In addition, owing to its sustained release, PEOM could prolong the shelf life of peaches significantly. Therefore, PEOM has potential application and development prospects in the field of food preservation.
Collapse
Affiliation(s)
- Zhigang Tai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Minjie Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Cheng Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industry Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
12
|
Li Z, Zheng M, He P, Gong W, Liu Z, Xu C, Tai Z. Citral Essential Oil-Loaded Microcapsules by Simple Coacervation and Its Application on Peach Preservation. ACS OMEGA 2022; 7:42181-42190. [PMID: 36440131 PMCID: PMC9685779 DOI: 10.1021/acsomega.2c04928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 05/22/2023]
Abstract
Citral essential oil (CEO) was encapsulated by the single coalescence method, and its stability, release properties, and ability to maintain freshness were evaluated for the first time. The microshape characteristics of a CEO-loaded microcapsule (CM) were analyzed by inverted microscopy (OM) and scanning electron microscopy (SEM). The encapsulation efficiency, stability, and release behavior of CEO were evaluated using Fourier transform infrared spectroscopy (FTIR), thermogravimetric/differential thermal comprehensive analysis (TG/DSC), and gas chromatography mass spectrometry (GC/MS). Moreover, peaches were used to evaluate the preservation properties of the CEO-loaded microcapsule. The results showed that the microcapsule produced using simple coacervation had better microstructure and the ability to reduce and control the release of citral essential oil. The qualities of peaches, such as appearance changes, hardness, soluble solid content, total acids, and total bacterial counts, were significantly improved in the CM system during storage, in comparison with the control and cold storage groups. Therefore, the CM has potential applications and development prospects in the food, drug, and other industries.
Collapse
Affiliation(s)
- Zhenjie Li
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Minjie Zheng
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming650500, P.R. China
| | - Pei He
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Weimin Gong
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Zhihua Liu
- Yunnan
Key Laboratory of Tobacco Chemistry, R&D
Center of China Tobacco Yunnan Industry Co., Ltd., Kunming650231, P.R. China
| | - Chunping Xu
- College
of Food and Bioengineering, Zhengzhou University
of Light Industry, Zhengzhou450002, P.R. China
| | - Zhigang Tai
- Faculty
of Life Science and Technology, Kunming
University of Science and Technology, Kunming650500, P.R. China
| |
Collapse
|
13
|
Huang G, Huang L, Geng C, Lan T, Huang X, Xu S, Shen Y, Bian H. Green and multifunctional chitosan-based conformal coating as a controlled release platform for fruit preservation. Int J Biol Macromol 2022; 219:767-778. [PMID: 35961553 DOI: 10.1016/j.ijbiomac.2022.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
Food waste caused by the decay of perishable foods is a serious global issue. However, traditional preservative materials don't perform well in preventing food decay. Here, a green and multifunctional conformal coating is prepared by the hydrogen-bonding interactions among chitosan, nano-humic acid and curcumin, which is different from traditional preservative films obtained by solution blending. Thanks to the formation of hydrogen-bonding network, the surface roughness of the coating increased from 9.43 nm to 33.3 nm, which makes it more matches with the micro/nano structure of the fruit surface and obtains a good coating effect for various fruits. Furthermore, this coating shows distinctive mechanical properties (the tensile strength of 31.4 MPa), antioxidant and antibacterial activities (the inhibition zone ≥5 mm), and can be used to control the long-term release (up to 38 days) of natural preservative onto fruit surfaces. Through the demonstration of four perishable fruits, the coating can keep freshness and appearance at least 9 days longer than the uncoated samples, confirming the universal effectiveness of the coating in preventing fruit decay. This coating is easy to produce and use, washable, degradable, and makes from cheap or waste renewable biomaterials, which does not cause additional health and environmental concerns.
Collapse
Affiliation(s)
- Guohuan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| | - Liushan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Chao Geng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Tian Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xiaosun Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Shilong Xu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
14
|
Feng Y, Gu J, Zhu T, Li Z, Gu Z, Xu S, Ban X, Li C. Enzymatic cyclodextrin synthesis-tributyrin inclusion complex: Properties, structural characterization and release behaviors in vitro. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Jiang K, Zhou X, He T. The synthesis of bacterial cellulose-chitosan zwitterionic hydrogels with pH responsiveness for drug release mechanism of the naproxen. Int J Biol Macromol 2022; 209:814-824. [PMID: 35390402 DOI: 10.1016/j.ijbiomac.2022.03.216] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/13/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023]
Abstract
The human digestive and absorption system has a specific pH environment, which makes it difficult to for accurate drug-release. Zwitterionic hydrogel, as a kind of drug carrier, is a feasible response strategy. In this work, a facile method was employed to prepare a series zwitterionic hydrogels composed of BC and chitosan. The composite gels could in-situ formed via Schiff's base reaction between partially oxidated bacterial cellulose and chitosan which exhibited relatively well mechanical properties. Besides, the rich amino and carboxyl groups endowed the hydrogels with excellent pH responsive performance. The minimum swelling rate of the hydrogels appeared at pH 3.5-pH 5.0. In lower or higher pH solutions, the swelling rate was greatly increased. The drug (naproxen) loading of the hydrogels was above 110 mg/g. The release amount of naproxen in the simulated gastric juice was less than intestinal fluid with the sustained release time exceeded 24 h. Through kinetic simulation analysis, the drug release behavior is in accordance with zero-order release model. Such kind of composite hydrogel is suggested to be a potential drug carrier for clinical therapy.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xuesong Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Tong He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
16
|
Schwarz PS, Tena-Solsona M, Dai K, Boekhoven J. Carbodiimide-fueled catalytic reaction cycles to regulate supramolecular processes. Chem Commun (Camb) 2022; 58:1284-1297. [PMID: 35014639 DOI: 10.1039/d1cc06428b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Using molecular self-assembly, supramolecular chemists can create Gigadalton-structures with angstrom precision held together by non-covalent interactions. However, despite relying on the same molecular toolbox for self-assembly, these synthetic structures lack the complexity and sophistication of biological assemblies. Those assemblies are non-equilibrium structures that rely on the constant consumption of energy transduced from the hydrolysis of chemical fuels like ATP and GTP, which endows them with dynamic properties, e.g., temporal and spatial control and self-healing ability. Thus, to synthesize life-like materials, we have to find a reaction cycle that converts chemical energy to regulate self-assembly. We and others recently found that this can be done by a reaction cycle that hydrates carbodiimides. This feature article aims to provide an overview of how the energy transduced from carbodiimide hydration can alter the function of molecules and regulate molecular assemblies. The goal is to offer the reader design considerations for carbodiimide-driven reaction cycles to create a desired morphology or function of the assembly and ultimately to push chemically fueled self-assembly further towards the bottom-up synthesis of life.
Collapse
Affiliation(s)
- Patrick S Schwarz
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Marta Tena-Solsona
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Kun Dai
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748, Garching, Germany
| |
Collapse
|