1
|
Li M, Jia L, Wang X, Kong Q, Wang H, Zhu J, Hu J, Liu X, Zong J, Liu Y, Wang Y, Li N. Study on network cross-linked hydrogel with cationic Bletilla striata polysaccharide/carbopol as a drug delivery system. Int J Biol Macromol 2025; 305:140778. [PMID: 39924033 DOI: 10.1016/j.ijbiomac.2025.140778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
In this study, we developed a novel cationic Bletilla striata polysaccharide (CBSP)/Carbopol ETD 2020 (CP) composite hydrogel matrix (CBSP-CP) for local drug delivery of traditional Chinese medicine formulations and compounds. This approach addresses the shortcomings of the existing commercial gel matrices in delivering complex components. We used molecular dynamics simulations to confirm the feasibility of crosslinking and compounding the polymer components. The structure of the composite was characterized using various traditional methods, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The composite polyelectrolyte hydrogel prepared through electrostatic interactions between CBSP and CP exhibited favorable rheological properties, excellent ion resistance stability, and good skin adaptability. Furthermore, the safety of the gel matrix was validated using cytotoxicity and skin irritation tests. In summary, the CBSP-CP gel matrix not only enhanced ion resistance compared to current commercial gel matrices but also expanded its applicability for the local delivery of complex components, such as traditional Chinese medicine formulations and compounds.
Collapse
Affiliation(s)
- Mengjiao Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Linlin Jia
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Xiaoyu Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; Baotou Mongolian Traditional Chinese Medicine Hospital, Inner Mongolia 014040, China
| | - Qiaoli Kong
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Huanhuan Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Junyang Zhu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jing Hu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Xue Liu
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Jinlong Zong
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; China Resources Jiangzhong Pharmaceutical Group Co., Ltd., Jiangxi 330013, China
| | - Yan Liu
- Tianjin Polytechnic University, Tianjin 300387, China
| | - Yajing Wang
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin 301617, China.
| |
Collapse
|
2
|
Patel M, Jain VK, Popli H, Jain K. Nanoformulations of amphotericin B to resolve challenges in antifungal therapy. Nanomedicine (Lond) 2024; 19:2505-2508. [PMID: 39392086 DOI: 10.1080/17435889.2024.2407281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
- Manisha Patel
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| | - Vineet K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Keerti Jain
- Drug Delivery & Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
3
|
Attar ES, Jayakumar S, Devarajan PV. Oral In-Situ Nanoplatform with Balanced Hydrophobic-Hydrophilic Property for Transport Across Gastrointestinal Mucosa. AAPS PharmSciTech 2024; 25:113. [PMID: 38750336 DOI: 10.1208/s12249-024-02824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/29/2024] [Indexed: 09/05/2024] Open
Abstract
Transport of oral nanocarriers across the GI epithelium necessitates transport across hydrophilic mucus layer and the hydrophobic epithelium. Based on hydrophobic-hydrophilic balance, Curcumin-Lipomer (lipid-polymer hybrid nanoparticles) comprising hydrophobic stearic acid and hydrophilic Gantrez™ AN 119 (Gantrez) were developed, by a radical in-situ approach, to successfully traverse both barriers. A monophasic preconcentrate (Cur-Pre) comprising Cur (Curcumin), stearic acid, Gantrez and stabilizers, prepared by simple solution, was added to an aqueous phase to instantaneously generate Curcumin-Lipomer (Cur-Lipo) of nanosize and high entrapment efficiency (EE). Cur-Lipo size and EE was optimized by Box-Behnken Design. Cur-Lipomers of varying hydrophobic-hydrophilic property obtained by varying the stearic acid: Gantrez ratio exhibited size in the range 200-400 nm, EE > 95% and spherical morphology as seen in the TEM. A decrease in contact angle and in mucus interaction, evident with increase in Gantrez concentration, indicated an inverse corelation with hydrophilicity, while a linear corelation was observed for mucopenetration and hydrophilicity. Cur-SLN (solid lipid nanoparticles) which served as the hydrophobic reference revealed contact angle > 90°, maximum interaction with mucus and minimal mucopenetration. The ex-vivo permeation study through chicken ileum, revealed maximum permeation with Cur-Lipo1 and comparable and significantly lower permeation of Cur-Lipo1-D and Cur-SLN proposing the importance of balancing the hydrophobic-hydrophilic property of the nanoparticles. A 1.78-fold enhancement in flux of hydrophobic Cur-SLN, with no significant change in permeation of the hydrophilic Cur-Lipomers (p > 0.05) following stripping off the mucosal layer was observed. This reiterated the significance of hydrophobic-hydrophilic balance as a promising strategy to design nanoformulations with superior permeation across the GI barrier.
Collapse
Affiliation(s)
- Esha S Attar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology Matunga (E), Mumbai, 400019, India
| | - S Jayakumar
- Radiation Biology and Health Sciences Division, Modular Laboratories, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology Matunga (E), Mumbai, 400019, India.
| |
Collapse
|
4
|
Lokhande AS, Maurya V, Rani K, Parashar P, Gaind R, Tandon V, Devarajan PV. Polydispersity-mediated high efficacy of an in-situ aqueous nanosuspension of PPEF.3HCl in methicillin resistant Staphylococcus aureus sepsis model. Int J Pharm 2024; 655:123982. [PMID: 38460770 DOI: 10.1016/j.ijpharm.2024.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Recently, World Health Organization declared antimicrobial resistance as the third greatest threat to human health. Absence of known cross-resistance, new class, new target, and a new mode of action are few major strategies being undertaken by researches to combat multidrug resistant pathogen. PPEF.3HCl, a bisbenzimidazole was developed as highly potent antibacterial agent against ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens, targeting topoisomerase IA. The present work encompasses a radical on-site generation of In-situ nanosuspension of PPEF.3HCl with enhanced efficacy against methicillin resistant S. aureus in septicemia model. We have generated instantaneously a PPEF.3HCl nanosuspension (IsPPEF.3HCl-NS) by mixing optimized monophasic PPEF.3HCl preconcentrate in propylene glycol into an aqueous medium comprising tween 80 as stabilizer. The IsPPEF.3HCl-NS showed precipitation efficiency of > 90 %, average particle size < 500 nm, retained upto 5 h, a negative zeta potential and bi/trimodal particle size distribution. Differential scanning calorimetry, X-ray diffraction confirmed partial amorphization and transmission electron microscopy revealed spherical particles. IsPPEF.3HCl-NS was non-hemolytic and exhibited good stability in serum. More significantly, it exhibited a ∼ 1.6-fold increase in macrophage uptake compared to free PPEF.3HCl in the RAW 264.7 macrophage cell line. Confocal microscopy revealed accumulation of IsPPEF.3HCl-NS within the lysosomal compartment and cell cytosol, proposing high efficacy. In terms of antimicrobial efficacy, IsPPEF.3HCl-NS outperforms free PPEF.3HCl against clinical methicillin sensitive and resistant S. aureus strains. In a pivotal experiment, IsPPEF.3HCl-NS exhibited over 83 % survival at 8 mg/kg.bw and an impressive reduction of ∼ 4-5 log-fold in bacterial load, primarily in the kidney, liver and spleen of septicemia mice. IsPPEF.3HCl-NS prepared by the In-situ approach, coupled with enhanced intramacrophage delivery and superior efficacy, positions IsPPEF.3HCl-NS as a pioneering and highly promising formulation in the battle against antimicrobial resistance.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Vikas Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Komal Rani
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajni Gaind
- Vardhaman Medical College Hospital, Safdarjung Hospital, New Delhi 110029, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032, India.
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
5
|
Jain VK, Jain K, Popli H. Conjugates of amphotericin B to resolve challenges associated with its delivery. Expert Opin Drug Deliv 2024; 21:187-210. [PMID: 38243810 DOI: 10.1080/17425247.2024.2308073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Amphotericin B (AmB), a promising antifungal and antileishmanial drug, acts on the membrane of microorganisms. The clinical use of AmB is limited due to issues associated with its delivery including poor solubility and bioavailability, instability in acidic media, poor intestinal permeability, dose and aggregation state dependent toxicity, parenteral administration, and requirement of cold chain for transport and storage, etc. AREAS COVERED Scientists have formulated and explored various covalent conjugates of AmB to reduce its toxicity with increase in solubility, oral bioavailability, and payload or loading of AmB by using various polymers, lipids, carbon-based nanocarriers, metallic nanoparticles, and vesicular carriers, etc. In this article, we have reviewed various conjugates of AmB with polymers and nanomaterials explored for its delivery to give a deep insight regarding further exploration in future. EXPERT OPINION Covalent conjugates of AmB have been investigated by scientists, and preliminary in vitro and animal investigations have given successful results, which are required to be validated further with systematic investigation on safety and therapeutic efficacy in animals followed by clinical trials.
Collapse
Affiliation(s)
- Vineet Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Harvinder Popli
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
6
|
Chen L, Wang Y. Interdisciplinary advances reshape the delivery tools for effective NASH treatment. Mol Metab 2023; 73:101730. [PMID: 37142161 DOI: 10.1016/j.molmet.2023.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe systemic and inflammatory subtype of nonalcoholic fatty liver disease, eventually develops into cirrhosis and hepatocellular carcinoma with few options for effective treatment. Currently potent small molecules identified in preclinical studies are confronted with adverse effects and long-term ineffectiveness in clinical trials. Nevertheless, highly specific delivery tools designed from interdisciplinary concepts may address the significant challenges by either effectively increasing the concentrations of drugs in target cell types, or selectively manipulating the gene expression in liver to resolve NASH. SCOPE OF REVIEW We focus on dissecting the detailed principles of the latest interdisciplinary advances and concepts that direct the design of future delivery tools to enhance the efficacy. Recent advances have indicated that cell and organelle-specific vehicles, non-coding RNA research (e.g. saRNA, hybrid miRNA) improve the specificity, while small extracellular vesicles and coacervates increase the cellular uptake of therapeutics. Moreover, strategies based on interdisciplinary advances drastically elevate drug loading capacity and delivery efficiency and ameliorate NASH and other liver diseases. MAJOR CONCLUSIONS The latest concepts and advances in chemistry, biochemistry and machine learning technology provide the framework and strategies for the design of more effective tools to treat NASH, other pivotal liver diseases and metabolic disorders.
Collapse
Affiliation(s)
- Linshan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health.
| |
Collapse
|
7
|
Ji X, Shi C, Guo D, Yang X, Suo L, Luo J. Engineering Telodendrimer Nanocarriers for Monomeric Amphotericin B Delivery. Mol Pharm 2023; 20:2138-2149. [PMID: 36877183 DOI: 10.1021/acs.molpharmaceut.2c01087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Systemic fungal infections are an increasingly prevalent health problem. Amphotericin B (AmB), a hydrophobic polyene antibiotic, remains the drug of choice for life-threatening invasive fungal infections. However, it has dose-limiting side effects, including nephrotoxicity. The efficacy and toxicity of AmB are directly related to its aggregation state. Here, we report the preparation of a series of telodendrimer (TD) nanocarriers with the freely engineered core structures for AmB encapsulation to fine-tune AmB aggregation status. The reduced aggregation status correlates well with the optimized antifungal activity, attenuated hemolytic properties, and reduced cytotoxicity to mammalian cells. The optimized TD nanocarrier for monomeric AmB encapsulation significantly increases the therapeutic index, reduces the in vivo toxicity, and enhances antifungal effects in mouse models with Candida albicans infection in comparison to two common clinical formulations, i.e., Fungizone and AmBisome.
Collapse
Affiliation(s)
- Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Xiguang Yang
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| | - Juntao Luo
- Department of Pharmacology, Department of Surgery, Department of Microbiology and Immunology, Upstate Cancer Center, Upstate Sepsis Interdisciplinary Research Center, State University of New York Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
8
|
Mansur-Alves I, Lima BLF, Santos TT, Araújo NF, Frézard F, Islam A, de Barros AL, Dos Santos DC, Fernandes C, Ferreira LA, Aguiar MM. Cholesterol improves stability of amphotericin B nanoemulsion: promising use in the treatment of cutaneous leishmaniasis. Nanomedicine (Lond) 2022; 17:1237-1251. [PMID: 36189757 DOI: 10.2217/nnm-2021-0489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Amphotericin B (AmB) is an antileishmanial drug with high toxicity; however, this drawback might overcome by decreasing the AmB self-aggregation state. This work aimed at evaluating the influence of cholesterol on the aggregation state of AmB loaded in a nanoemulsion (NE-AmB) for the treatment of cutaneous leishmaniasis. NE-AmB (1, 4 and 8 mg/kg/day) was administered intravenously to animals infected by Leishmania major every 2 days for a total of five injections. Results: Ultraviolet-visible spectroscopy and circular dichroism studies demonstrated that cholesterol reduced AmB aggregation state in NE. NE-AmB was stable after 180 days, and its hemolytic toxicity was lower than that observed for the conventional AmB. NE-AmB administered intravenously into animals infected by Leishmania major at 8 mg/kg was capable of stabilizing the lesion size and reducing the parasitic load. Conclusion: These findings support the NE potential as a stable nanocarrier for AmB in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Izabela Mansur-Alves
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Brenda Lorrayne Furtado Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Thais Tunes Santos
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Naialy F Araújo
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Frédéric Frézard
- Department of Physiology & Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Arshad Islam
- Department of Pathology, Government Lady Reading Hospital, Medical Teaching Institution, Peshawar, 25100, Pakistan
| | - André Lb de Barros
- Department of Clinical & Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Délia Cm Dos Santos
- Department of Pharmacy & Nutrition, Center for Exact, Natural & Health Sciences, Federal University of Espírito Santo, Alto Universitario, Alegre, Espírito Santo, 29500-000, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Lucas Am Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Marta Mg Aguiar
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| |
Collapse
|