1
|
Xie X, Li T, Ma L, Wu J, Qi Y, Yang B, Li Z, Yang Z, Zhang K, Chu Z, Ngai T, Xia J, Wang Y, Zhao P, Bian L. A designer minimalistic model parallels the phase-separation-mediated assembly and biophysical cues of extracellular matrix. Nat Chem 2025:10.1038/s41557-025-01837-5. [PMID: 40490569 DOI: 10.1038/s41557-025-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 04/22/2025] [Indexed: 06/11/2025]
Abstract
The propensity for controlled liquid-liquid phase separation and subsequent directed phase transition are crucial for the coacervation-mediated assembly of extracellular matrix (ECM). This spatiotemporally controlled ECM assembly can be used to develop coacervate-based polymer assembly strategies to generate biomimetic materials that can emulate the complex structures and biophysical cues of the ECM. Inspired by the tropoelastin structure, here we develop a designer minimalistic model consisting of alternating hydrophobic moieties and covalent crosslinking domains. By increasing the valence and enhancing the interaction strength of the hydrophobic moieties, we can control the degree of the assembly to enhance the propensity for phase separation and thus emulate the extracellular coacervation process of tropoelastin, including droplet formation, coalescence and maturation. The subsequent covalent-bonding-triggered coacervate-hydrogel transition with enhanced assembly order stabilizes the phase-separated structure in the form of a heterogeneous hydrogel, thereby mimicking covalent crosslinking-derived elastin fibrillation. Furthermore, the heterogeneous hydrogel network establishes a biomimetic matrix that can effectively promote the mechanosensing of adherent stem cells.
Collapse
Affiliation(s)
- Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, P.R. China
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Tianjie Li
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, P.R. China
| | - Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Yajing Qi
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Zhinan Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P.R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, P.R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Yi Wang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, P.R. China.
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P.R. China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P.R. China.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, P.R. China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, P.R. China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, P.R. China.
| |
Collapse
|
2
|
Hsu CY, Jasim SA, Saleh EAM, Firoz KH, Jyothi SR, Shit D, Nayak PP, Chauhan AS, Obaida DS, Hashemzadeh A. Hyaluronic acid and ZIF-8 nanocomposites for wound care. Int J Biol Macromol 2025; 315:144475. [PMID: 40414391 DOI: 10.1016/j.ijbiomac.2025.144475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Wound healing remains a critical challenge in clinical settings, particularly for infected, diabetic, or burn-related injuries. Recent advancements in nanotechnology and biomaterials have highlighted the potential of hyaluronic acid (HA) and zeolitic imidazolate framework-8 (ZIF-8) as synergistic components in innovative wound care solutions. This review consolidates recent studies on HA/ZIF-8 nanocomposites, emphasizing their roles in pH-responsive drug delivery, antibacterial action, and tissue regeneration. HA, a biocompatible polysaccharide, enhances wound hydration and fibroblast activity, while ZIF-8, a metal-organic framework, enables controlled release of therapeutic agents (e.g., zinc ions, curcumin, fucoidan) in response to acidic microenvironments. Microneedle arrays integrated with these nanocomposites further improve transdermal delivery efficiency, enabling targeted treatment of deep tissue infections. Key findings demonstrate that HA/ZIF-8 systems effectively combat multidrug-resistant bacteria, promote angiogenesis via HIF-1α or VEGF pathways, and regulate inflammatory responses. In vivo studies validate accelerated epithelialization, reduced scarring, and enhanced neovascularization in burn, diabetic, and infected wound models. Challenges such as scalability, long-term biocompatibility, and clinical translation are discussed, alongside emerging trends like cold atmospheric plasma integration and macrophage phenotype modulation. This review underscores the transformative potential of HA/ZIF-8 nanocomposites in advancing personalized and multifunctional wound therapies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University, Tempe Campus, Phoenix, AZ 85004, USA.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Kakul Hussin Firoz
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha-751003, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Dalya S Obaida
- Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq.
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Xiong J, Liu L, Yu W, Li M, Zhou L, Dai L, Ning N, Liang X, Ye X. Efficiently scaled-up production of recombinant human elastin-like polypeptides using multiple optimization strategies. J Biotechnol 2025; 401:32-47. [PMID: 39986544 DOI: 10.1016/j.jbiotec.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Elastin-like polypeptides (ELPs) are biopolymers with repetitive amino acid sequences and are known for their biocompatibility and inverse transition cycling (ITC) properties; thus, they are ideal for biomedical applications. Owing to their low yield and tedious purification process with multiple rounds of ITC, no acceptable scaled-up production process has been developed. Here, for the first time, an efficient, low-cost process for the preparation of recombinant human elastin-like polypeptide (rhELP) is reported. This process leverages high-cell-density fermentation and hollow fibre membrane (HFM) filtration technology. First, we constructed an engineered strain of Escherichia coli (E. coli) with high expression of the rhELP protein, and a yield of 0.99 ± 0.03 g/L was achieved in shaker flasks by optimizing the induction temperature, induction OD600, and inducer concentration via response surface methodology. Further optimization in 5 L, 200 L, and 500 L automated fermenters increased the yield to over 5.00 g/L, which meets the demands of industrial production. The efficient purification process included high-pressure homogenization, flocculation, salting out, HFM filtration, ion-exchange chromatography (IEC), and ultrafiltration and resulted in 99.83 % pure rhELP analyzed by size exclusion-high-performance liquid chromatography (SEC-HPLC), with a recovery rate of 80.40 %. The prepared protein was noncytotoxic and exhibited marked wound healing promotion both in vivo and in vitro. Thus, this study provides a universal paradigm for the industrial production of ELPs and other similar recombinant proteins, significantly advancing the commercialization of promising ELPs.
Collapse
Affiliation(s)
- Jianwei Xiong
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Longyin Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Wei Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Min Li
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Luping Zhou
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Longhua Dai
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Nuoyi Ning
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Zhongshan Road 457, Dalian 116023, China.
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
4
|
Cai L, Zheng J, Liu L, Zhang G, Lin Y. Elastin-like polypeptide: A novel titanification biomacromolecule for green and ultrafast synthesis of biotitania nanoparticles via biomimetic mineralization. Int J Biol Macromol 2025; 306:141449. [PMID: 40015400 DOI: 10.1016/j.ijbiomac.2025.141449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Elastin-like polypeptides (ELPs), a temperature-responsive biological macromolecule, is used to develop a novel and eco-friendly strategy for biotitania synthesis. Three ELPs (V9F, KV8F, and K5V4F) are designed and overexpressed in E. coli. Then these recombinant ELPs are purified with high yields by using phase transition-based green ITC method. ELPs present the capabilities of ultrafast formation of biotitania within seconds. The specific activity of ELPs is significantly influenced by the number of lysine residues. K5V4F is the one with the highest specific activity of 56.90, which is 26.34 times higher than that of R5 peptide. Moreover, ELPs-mediated biomimetic titania mineralization can perform in a broad pH range (2.2 ≤ pH ≤ 10.8) at ambient temperatures, however, the optimum condition is near-neutral pH. The biotitania nanoparticles are evidenced to be as solid, spherical, and amorphous by SEM, TEM, and SAED analysis. Based on the unique temperature-responsiveness of ELPs and their excellent biomimetic mineralization abilities, this method may have great potentials to prepare smart biotitania nanomaterials for various application fields, such as biomedical engineering, biomanufacturing, and environmental remediation.
Collapse
Affiliation(s)
- Lixi Cai
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Jinlin Zheng
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Lixing Liu
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China.
| | - Yuanqing Lin
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China; College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, PR China.
| |
Collapse
|
5
|
Zare M, Colomina Alfaro L, Bandiera A, Mutlu EC, Grossin D, Albericio F, Kuehne SA, Ahmed Z, Stamboulis A. Immobilization of KR-12 on a Titanium Alloy Surface Using Linking Arms Improves Antimicrobial Activity and Supports Osteoblast Cytocompatibility. ACS APPLIED BIO MATERIALS 2025; 8:2899-2915. [PMID: 40152675 PMCID: PMC12015957 DOI: 10.1021/acsabm.4c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Implant-associated infections pose significant challenges due to bacterial resistance to antibiotics. Recent research highlights the potential of immobilizing antimicrobial peptides (AMPs) onto implants as an alternative to conventional antibiotics for the prevention of bacterial infection. While various AMP immobilization methodologies have been investigated, they lack responsiveness to biological cues. This study proposes an enzyme-responsive antimicrobial coating for orthopedic devices using KR-12, an AMP derived from Cathelicidin LL-37, coupled with the Human Elastin-Like Polypeptide (HELP) as a biomimetic and stimuli-responsive linker, while mimicking the extracellular matrix (ECM). During implantation, these customized interfaces encounter the innate immune response triggering elastase release, which degrades HELP biopolymers, enabling the controlled release of KR-12. After coupling KR-12 with HELP to titanium surfaces, the antimicrobial activity against four pathogenic bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa) was assessed, revealing an inhibition ratio of bacterial adhesion and colonization exceeding 92% for all tested strains, compared with surfaces functionalized with KR-12 only. It is thought that the enhanced antimicrobial activity was due to the improved mobility of KR-12 when coupled with HELP. Furthermore, the prepared coatings boosted the adhesion and proliferation of human osteoblasts, confirming the cytocompatibility. These findings suggest the potential for smart coatings that combine the antimicrobial functions of AMPs with HELP's biological properties for use in a variety of settings, including medical devices.
Collapse
Affiliation(s)
- Mohadeseh Zare
- Biomaterials
Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.
| | - Laura Colomina Alfaro
- Department
of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - Antonella Bandiera
- Department
of Life Sciences, University of Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - Esra Cansever Mutlu
- Biomaterials
Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.
| | - David Grossin
- CIRIMAT,
Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 4 Allée Emile Monso, BP44362, 31030 Toulouse, Cedex 4, France
| | - Fernando Albericio
- School
of Chemistry and Physics, University of
KwaZulu-Natal, Durban 4000, South Africa
| | - Sarah A. Kuehne
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, U.K.
| | - Zubair Ahmed
- Neuroscience
and Ophthalmology, Department of Inflammation and Ageing, School of
Infection, Inflammation and Ageing, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Artemis Stamboulis
- Biomaterials
Research Group, School of Metallurgy and Materials, University of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K.
| |
Collapse
|
6
|
Li Y, Xu Y, Su W, Xu J, Ye Z, Wang Z, Liu Q, Chen F. Exploring the immuno-nano nexus: A paradigm shift in tumor vaccines. Biomed Pharmacother 2025; 184:117897. [PMID: 39921945 DOI: 10.1016/j.biopha.2025.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tumor vaccines have become a crucial strategy in cancer immunotherapy. Challenges of traditional tumor vaccines include inadequate immune activation and low efficacy of antigen delivery. Nanoparticles, with their tunable properties and versatile functionalities, have redefined the landscape of tumor vaccine design. In this review, we outline the multifaceted roles of nanoparticles in tumor vaccines, ranging from their capacity as delivery vehicles to their function as immunomodulatory adjuvants capable of stimulating anti-tumor immunity. We discuss how this innovative approach significantly boosts antigen presentation by leveraging tailored nanoparticles that facilitate efficient uptake by antigen-presenting cells. These nanoparticles have been meticulously designed to overcome biological barriers, ensuring optimal delivery to lymph nodes and effective interaction with the immune system. Overall, this review highlights the transformative power of nanotechnology in redefining the principles of tumor vaccines. The intent is to inform more efficacious and precise cancer immunotherapies. The integration of these advanced nanotechnological strategies should unlock new frontiers in tumor vaccine development, enhancing their potential to elicit robust and durable anti-tumor immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yike Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenwen Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jia Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zifei Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuoyi Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
7
|
Brandis D, Kadeřávek P, Kurzbach D. The Internal Structural Dynamics of Elastin-Like Polypeptide Assemblies by 13C-Direct Detected NMR Spectroscopy. Anal Chem 2025; 97:3937-3944. [PMID: 39957268 PMCID: PMC11866286 DOI: 10.1021/acs.analchem.4c05163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Elastin-like polypeptides (ELPs) are biocompatible polymers exhibiting lower critical solution temperature (LCST) behavior, making them valuable in various applications, including drug delivery and tissue engineering. This study addresses the atomistic-level understanding of ELP self-assembly, focusing on their internal structural dynamics. Conventional proton-detected nuclear magnetic resonance (NMR) spectroscopy faces limitations in studying ELP aggregates due to accelerated proton exchange processes, which cause significant resonance broadening. Herein, we show how to overcome this hurdle by using carbon-13-detected NMR. This method mitigates issues related to amide proton exchange, allowing for a residue-resolved view of the internal configuration of ELP aggregates. With this method, we record residue-resolved 15N relaxation rates, revealing three features. (i) Proline residues within the PGXGV pentapeptide repeats (X being any amino acid except proline) of ELP become motional restricted upon aggregation, indicating their role as interchain contacts. (ii) Pentapeptides with alanine guest residue X display particularly significantly reduced motional freedom upon aggregation. (iii) Even within large ELP aggregates, fast internal dynamics characterize the peptide chains in a way that is reminiscent of condensed liquid phases. The presented study is the first proof of concept that 13C-direct detection is a viable tool to delineate the internal structural dynamics of condensed ELP phases by NMR. It might, thus, help to foster new investigations of their aggregation mechanisms.
Collapse
Affiliation(s)
- Dörte Brandis
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Pavel Kadeřávek
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Central
European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- National
Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dennis Kurzbach
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
8
|
Kang D, Zhang Y, Yu DG, Kim I, Song W. Integrating synthetic polypeptides with innovative material forming techniques for advanced biomedical applications. J Nanobiotechnology 2025; 23:101. [PMID: 39939886 PMCID: PMC11823111 DOI: 10.1186/s12951-025-03166-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/25/2025] [Indexed: 02/14/2025] Open
Abstract
Polypeptides are highly valued in biomedical science for their biocompatibility and biodegradability, making them valuable in drug delivery, tissue engineering, and antibacterial dressing. The diverse design of polymer chains and self-assembly techniques allow different side chains and secondary structures, enhancing their biomedical potential. However, the traditional solid powder form of polypeptides presents challenges in skin applications, shipping, and recycling, limiting their practical utility. Recent advancements in material forming methods and polypeptide synthesis have produced biomaterials with uniform, distinct shapes, improving usability. This review outlines the progress in polypeptide synthesis and material-forming methods over the past decade. The main synthesis techniques include solid-phase synthesis and ring-opening polymerization of N-carboxyanhydrides while forming methods like electrospinning, 3D printing, and coating are explored. Integrating structural design with these methods is emphasized, leading to diverse polypeptide materials with unique shapes. The review also identifies research hotspots using VOSviewer software, which are visually presented in circular packing images. It further discusses emerging applications such as drug delivery, wound healing, and tissue engineering, emphasizing the crucial role of material shape in enhancing performance. The review concludes by exploring future trends in developing distinct polypeptide shapes for advanced biomedical applications, encouraging further research.
Collapse
Affiliation(s)
- Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China.
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China.
| |
Collapse
|
9
|
Acosta S, Rodríguez‐Alonso P, Chaskovska V, Fernández‐Fernández J, Rodríguez‐Cabello JC. Spontaneous Self-Organized Order Emerging From Intrinsically Disordered Protein Polymers. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70003. [PMID: 39950263 PMCID: PMC11826379 DOI: 10.1002/wnan.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that, despite lacking a defined 3D structure, are capable of adopting dynamic conformations. This structural adaptability allows them to play not only essential roles in crucial cellular processes, such as subcellular organization or transcriptional control, but also in coordinating the assembly of macromolecules during different stages of development. Thus, in order to artificially replicate the complex processes of morphogenesis and their dynamics, it is crucial to have materials that recapitulate the structural plasticity of IDPs. In this regard, intrinsically disordered protein polymers (IDPPs) emerge as promising materials for engineering synthetic condensates and creating hierarchically self-assembled materials. IDPPs exhibit remarkable properties for their use in biofabrication, such as functional versatility, tunable sequence order-disorder, and the ability to undergo liquid-liquid phase separation (LLPS). Recent research has focused on harnessing the intrinsic disorder of IDPPs to design complex protein architectures with tailored properties. Taking advantage of their stimuli-responsiveness and degree of disorder, researchers have developed innovative strategies to control the self-assembly of IDPPs, resulting in the creation of hierarchically organized structures and intricate morphologies. In this review, we aim to provide an overview of the latest advances in the design and application of IDPP-based materials, shedding light on the fundamental principles that control their supramolecular assembly, and discussing their application in the biomedical and nanobiotechnological fields.
Collapse
Affiliation(s)
- Sergio Acosta
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - Pablo Rodríguez‐Alonso
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
- Technical Proteins Nanobiotechnology S.L.ValladolidSpain
| | - Viktoriya Chaskovska
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - Julio Fernández‐Fernández
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| | - José Carlos Rodríguez‐Cabello
- Bioforge Lab (Group for Advanced Materials and Nanobiotechnology), Laboratory for Disruptive Interdisciplinary Science (LaDIS), CIBER‐BBN, Edificio LUCIA, Universidad de ValladolidValladolidSpain
| |
Collapse
|
10
|
Yamaguchi J, Nishida K, Kobatake E, Mie M. Functional decoration of elastin-like polypeptides-based nanoparticles with a modular assembly via isopeptide bond formation. Biotechnol Lett 2024; 47:6. [PMID: 39609315 DOI: 10.1007/s10529-024-03549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 11/30/2024]
Abstract
Temperature-responsive elastin-like polypeptides (ELPs) exhibit a low critical solution temperature-type phase transition and offer potential as useful materials for the construction of nanoparticles. Herein, we developed a novel decoration method for ELP-based nanoparticles via isopeptide bond formation with the SnoopTag/SnoopCatcher system that is not affected by the heating process required for particle formation. A mixture of a fusion protein of ELP and poly(aspartic acid) (poly(D)), known as ELP-poly(D), and ELP-poly(D) fused with SnoopCatcher (ELP-poly(D)-SnC) formed protein nanoparticles as a result of the temperature responsiveness of ELP, with the resultant nanoparticles displaying the SnoopCatcher binding domain on their surfaces. In the present study, two model proteins fused to SnoopTag were displayed on the surfaces of protein nanoparticles constructed from ELP-poly(D)-SnC and ELP-poly(D). The model proteins are enhanced green fluorescent protein (EGFP) and Renilla luciferace (Rluc), which exhibits luminescent capability and weak thermostability, respectively. EGFP on the particle surface was found to retain 48.7% activity, while Rluc exhibited almost full activity, as calculated from the binding efficiency and nanoparticle activities recovered after purification. ELP-based nanoparticles containing the SnoopTag/SnoopCatcher system offer the opportunity for particle decoration with a wide range of functional proteins via isopeptide bond formation.
Collapse
Affiliation(s)
- Jun Yamaguchi
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
11
|
Ji P, Xu Q, Li J, Wang Z, Mao W, Yan P. Advances in nanoparticle-based therapeutics for ischemic stroke: Enhancing drug delivery and efficacy. Biomed Pharmacother 2024; 180:117564. [PMID: 39405899 DOI: 10.1016/j.biopha.2024.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Ischemic stroke, characterized by vascular occlusion, has recently emerged as one of the primary causes of mortality and disability worldwide. Conventional treatment modalities, such as thrombolytic and neuroprotective therapies, face numerous challenges, including limited bioavailability, significant neurotoxicity, suboptimal targeting, short half-life, and poor blood-brain barrier (BBB) penetration. Nanoparticle-based drug delivery systems present distinct advantages, such as small size, enhanced lipophilicity, and modifiability, which can potentially address these limitations. Utilizing nanoparticles for drug delivery in ischemic stroke therapy offers improved drug bioavailability, reduced neurotoxicity, enhanced targeted delivery, prolonged drug half-life, and better dissolution kinetics. This review aims to provide a comprehensive overview of current strategies in preclinical studies for managing or preventing ischemic stroke from a nanomaterial perspective, highlighting the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Qingqing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Jiahui Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Zihan Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Wanyi Mao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Peng Yan
- Taizhou Second People's Hospital Affiliated to Yangzhou University, Taizhou 225300, China.
| |
Collapse
|
12
|
Krymchenko R, Coşar Kutluoğlu G, van Hout N, Manikowski D, Doberenz C, van Kuppevelt TH, Daamen WF. Elastogenesis in Focus: Navigating Elastic Fibers Synthesis for Advanced Dermal Biomaterial Formulation. Adv Healthc Mater 2024; 13:e2400484. [PMID: 38989717 DOI: 10.1002/adhm.202400484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Elastin, a fibrous extracellular matrix (ECM) protein, is the main component of elastic fibers that are involved in tissues' elasticity and resilience, enabling them to undergo reversible extensibility and to endure repetitive mechanical stress. After wounding, it is challenging to regenerate elastic fibers and biomaterials developed thus far have struggled to induce its biosynthesis. This review provides a comprehensive summary of elastic fibers synthesis at the cellular level and its implications for biomaterial formulation, with a particular focus on dermal substitutes. The review delves into the intricate process of elastogenesis by cells and investigates potential triggers for elastogenesis encompassing elastin-related compounds, ECM components, and other molecules for their potential role in inducing elastin formation. Understanding of the elastogenic processes is essential for developing biomaterials that trigger not only the synthesis of the elastin protein, but also the formation of a functional and branched elastic fiber network.
Collapse
Affiliation(s)
- Roman Krymchenko
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Gizem Coşar Kutluoğlu
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
- MedSkin Solutions Dr. Suwelack AG, 48727, Billerbeck, Germany
| | - Noor van Hout
- Department of Dermatology, Radboud university medical center, Nijmegen, 6525 GA, The Netherlands
| | | | | | - Toin H van Kuppevelt
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Willeke F Daamen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud university medical center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
13
|
Fan Z, Iqbal H, Ni J, Khan NU, Irshad S, Razzaq A, Alfaifi MY, Elbehairi SEI, Shati AA, Zhou J, Cheng H. Rationalized landscape on protein-based cancer nanomedicine: Recent progress and challenges. Int J Pharm X 2024; 7:100238. [PMID: 38511068 PMCID: PMC10951516 DOI: 10.1016/j.ijpx.2024.100238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical advancement of protein-based nanomedicine has revolutionized medical professionals' perspectives on cancer therapy. Protein-based nanoparticles have been exploited as attractive vehicles for cancer nanomedicine due to their unique properties derived from naturally biomacromolecules with superior biocompatibility and pharmaceutical features. Furthermore, the successful translation of Abraxane™ (paclitaxel-based albumin nanoparticles) into clinical application opened a new avenue for protein-based cancer nanomedicine. In this mini-review article, we demonstrate the rational design and recent progress of protein-based nanoparticles along with their applications in cancer diagnosis and therapy from recent literature. The current challenges and hurdles that hinder clinical application of protein-based nanoparticles are highlighted. Finally, future perspectives for translating protein-based nanoparticles into clinic are identified.
Collapse
Affiliation(s)
- Zhechen Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jiang Ni
- Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Naveed Ullah Khan
- Department of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Shahla Irshad
- Department of Allied Health Sciences, Faculty of Health and Medical Sciences, Mirpur University of Science and Technology (MUST), Mirpur, Azad Jammu and Kashmir 10250, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mohammad Y. Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | | | - Ali A. Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
15
|
van Strien J, Makurat M, Zeng Y, Olsthoorn R, Schneider GF, Slütter B, MacKay JA, Jiskoot W, Kros A. Noncovalent Conjugation of OVA323 to ELP Micelles Increases Immune Response. Biomacromolecules 2024; 25:1027-1037. [PMID: 38166400 PMCID: PMC10865353 DOI: 10.1021/acs.biomac.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
Subunit vaccines would benefit from a safe particle-based adjuvant. Elastin-like polypeptide (ELP)-based micelles are interesting candidate adjuvants due to their well-defined size and easy modification with protein-based cargo. Coiled coils can facilitate noncovalent modifications, while potentially enhancing antigen delivery through interaction with cell membranes. ELP micelles comprise ELP diblock copolymers that self-assemble above a critical micelle temperature. In this study, an amphiphilic ELP was conjugated to peptide "K", which forms a heterodimeric coiled-coil complex with peptide "E". Self-assembled "covalent" micelles containing ELP-OVA323 (i.e., model antigen OVA323 conjugated to ELP), "coiled-coil" micelles containing ELP-K/E-OVA323 and "hybrid" micelles containing ELP-K and ELP-OVA323 were shown to be monodisperse and spherical. Dendritic cells (DCs) were exposed to all micelle compositions, and T-cell proliferation was investigated. The presence of ELP-K enhanced micelle uptake and subsequent DC maturation, resulting in enhanced CD4+ T-cell proliferation, which makes ELPs with coiled coil-associated antigens a promising vaccine platform.
Collapse
Affiliation(s)
- Jolinde van Strien
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Max Makurat
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ye Zeng
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - René Olsthoorn
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gregory F. Schneider
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bram Slütter
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - J. Andrew MacKay
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089-9121, United States
| | - Wim Jiskoot
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Feng Z, Wang S, Huang W, Bai W. A potential bilayer skin substitute based on electrospun silk-elastin-like protein nanofiber membrane covered with bacterial cellulose. Colloids Surf B Biointerfaces 2024; 234:113677. [PMID: 38043505 DOI: 10.1016/j.colsurfb.2023.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Skin substitutes are designed to promote wound healing by replacing extracellular matrix. Silk-elastin-like protein is a renewable extracellular matrix-like material that integrated the advantages of silk and elastin-like protein. In this study, electrospun silk-elastin-like protein (SELP) nanofiber membrane covered with bacterial cellulose (BC) was created as a potential skin substitute to mimic gradient structure of epidermis and dermis of skin. The two layers were glued together using adhesive SELP containing 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine by tyrosinase. Skin topical drugs commonly used in clinical practice can penetrate through the SELP/BC barrier, and the rate of penetration is proportional to drug concentration. BC with dense fibrous structure can act as a barrier to preserve the inner SELP layer and prevent bacterial invasion, with a blocking permeation efficiency over 99% against four species of bacteria. Cell experiments demonstrated that the reticular fibers of SELP could provide an appropriate growth environment for skin cells proliferation and adhesion, which is considered to promote tissue repair and regeneration. The promising results support this strategy to fabricate a silk-elastin-like protein-based biomaterial for skin substitutes in the clinical treatment of full skin injuries and ulcers.
Collapse
Affiliation(s)
- Zhaoxuan Feng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Sijia Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenxin Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenqin Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
17
|
Darji S, Aayush A, Estes KM, Strock JD, Thompson DH. Unravelling the Mechanism of Elastin-like Polypeptide-Enzyme Fusion Stabilization in Organic Solvents. Biomacromolecules 2024; 25:272-281. [PMID: 38118170 DOI: 10.1021/acs.biomac.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Elastin-like polypeptides (ELP) are a class of materials that are widely used as purification tags and in potential therapeutic applications. We have used the hydrophobic nature of ELP to extract them into organic solvents and precipitate them to obtain highly pure materials. Although many different types of ELP have been rapidly purified in this manner, the underlying mechanism for this process and its ability to retain functional proteins within organic phase-rich media has been unclear. A cleavable ELP-Intein construct fused with the enzyme chorismate mutase (ELP-I-Cm2) was used to better understand the organic solvent extraction process for ELP and the factors impacting the retention of enzyme activity. Our extraction studies indicated that a cell lysis step was essential to stabilize the ELP-I-Cm2 in the organic phase, prevent intein cleavage, and extract the fusion protein with high efficiency and retained activity. Circular dichroism and infrared spectroscopic characterization of ELP-I-Cm2 in organic solvents and aqueous solutions of the extracted and precipitated material indicated that the ELP secondary structure was retained in both environments. Atomic force microscopy and negative stain transmission electron microscopy imaging of ELP-I-Cm2 in organic solvents revealed highly regular circular features that were ∼50 nm in diameter, in contrast to larger (>100 nm) irregular features found in aqueous solutions. Since reverse micelles have often been used in catalytic processes, we evaluated the enzymatic activity of the ELP-I-Cm2 reversed micelles in different organic solvent mixtures and found that Cm2-mediated reactions in organic media were of comparable rate and efficiency to those in aqueous media. Based on these findings, we report an exciting new opportunity for ELP-enzyme fusion applications by exploiting their ability to form catalytically active reverse micelles in organic media.
Collapse
Affiliation(s)
- Saloni Darji
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aayush Aayush
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kiera M Estes
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jocie D Strock
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Bhardwaj R, Mishra P. Multiresponsive Nanoscale Self-Assembly of Azurin-Elastin-like Polypeptide Fusion Protein for Enhanced Prostate Cancer Therapy. Biomacromolecules 2024; 25:508-521. [PMID: 38047916 DOI: 10.1021/acs.biomac.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A fusion protein composed of a bacterial protein, azurin, having antineoplastic properties and a thermally responsive structural cationic elastin-like protein (ELP), is designed, cloned, expressed, and purified. A simple method of inverse transition cycle (ITC) is employed to purify the fusion protein azurin-ELP diblock copolymer (d-bc). The molecular weight of the azurin-ELP fusion protein is ∼32 kDa. Further, its self-assembly properties are investigated. Interestingly, the engineered azurin-ELP d-bc in response to increasing temperature shows a dual-step phase separation into biofunctional nanostructures. Around the physiological temperature, azurin-ELP d-bc forms stable coacervates, which is dependent on the concentration and time of incubation. These coacervates are formed below the lower critical solubility temperature (LCST) of the ELP block at physiological temperature. Above LCST, i.e., 50-55°C, micelles of size ranging from 25 to 30 nm are formed. The cytotoxicity of azurin-ELP d-bc depends on the size of the coacervates formed and their cellular uptake at physiological temperature. Further, MTT assay of azurin-ELP d-bc in the cross-linked micelles prepared ex situ shows > six times higher killing of LNCaP cells than the unimeric form of azurin-ELP at 5 μM concentration. The flow cytometric results of these micelles at 20 μM concentration show ∼97% LNCaP cells in the apoptotic phase. Thus, azurin-ELP cross-linked micelles have enhanced potential for anticancer therapy due to their higher avidity.
Collapse
Affiliation(s)
- Ritu Bhardwaj
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
19
|
Attia SA, Truong AT, Phan A, Lee SJ, Abanmai M, Markanovic M, Avila H, Luo H, Ali A, Sreekumar PG, Kannan R, MacKay JA. αB-Crystallin Peptide Fused with Elastin-like Polypeptide: Intracellular Activity in Retinal Pigment Epithelial Cells Challenged with Oxidative Stress. Antioxidants (Basel) 2023; 12:1817. [PMID: 37891896 PMCID: PMC10604459 DOI: 10.3390/antiox12101817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Oxidative stress-induced retinal degeneration is among the main contributing factors of serious ocular pathologies that can lead to irreversible blindness. αB-crystallin (cry) is an abundant component of the visual pathway in the vitreous humor, which modulates protein and cellular homeostasis. Within this protein exists a 20 amino acid fragment (mini-cry) with both chaperone and antiapoptotic activity. This study fuses this mini-cry peptide to two temperature-sensitive elastin-like polypeptides (ELP) with the goal of prolonging its activity in the retina. METHODS The biophysical properties and chaperone activity of cry-ELPs were confirmed by mass spectrometry, cloud-point determination, and dynamic light scattering 'DLS'. For the first time, this work compares a simpler ELP architecture, cry-V96, with a previously reported ELP diblock copolymer, cry-SI. Their relative mechanisms of cellular uptake and antiapoptotic potential were tested using retinal pigment epithelial cells (ARPE-19). Oxidative stress was induced with H2O2 and comparative internalization of both cry-ELPs was made using 2D and 3D culture models. We also explored the role of lysosomal membrane permeabilization by confocal microscopy. RESULTS The results indicated successful ELP fusion, cellular association with both 2D and 3D cultures, which were enhanced by oxidative stress. Both constructs suppressed apoptotic signaling (cleaved caspase-3); however, cry-V96 exhibited greater lysosomal escape. CONCLUSIONS ELP architecture is a critical factor to optimize delivery of therapeutic peptides, such as the anti-apoptotic mini-cry peptide; furthermore, the protection of mini-cry via ELPs is enhanced by lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Anh Tan Truong
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Shin-Jae Lee
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Manal Abanmai
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Marinella Markanovic
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Haozhong Luo
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Atham Ali
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | | | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA; (P.G.S.); (R.K.)
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023; 15:polym15040836. [PMID: 36850121 PMCID: PMC9964340 DOI: 10.3390/polym15040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.
Collapse
|