1
|
Shi Y, Zeng Y, Zuo R, Wu S, Zhang L, Zhang Y, Wang T. Antimicrobial peptide Mt 5 inhibits human hepatocellular carcinoma cell HepG2 proliferation. Biochem Biophys Res Commun 2025; 742:151126. [PMID: 39647456 DOI: 10.1016/j.bbrc.2024.151126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The Mt 5 peptide is an antimicrobial peptide, its effect on hepatocellular carcinoma (HCC) and its underlying mechanism is not understood. Therefore, this study aimed to investigate the effects of the Mt 5 peptide in a human HCC cell line, namely HepG2, in vitro. Notably, Mt 5 markedly reduced the growth of HepG2 cells by disrupting the cell membrane while exhibiting minimal toxicity to healthy liver cells. Furthermore, Mt 5 treatment increased intracellular reactive oxygen species levels and decreased the mitochondria membrane potential, suggesting the induction of mitochondrial damage-mediated apoptosis. Additionally, Mt 5-mediated cytoskeleton disruption suggested the potential inhibition of cell metastasis. Altogether, the findings of this study indicate the potential of the Mt 5 peptide as a drug candidate against HCC.
Collapse
Affiliation(s)
- Yanping Shi
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China.
| | - Ye Zeng
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China
| | - Ruifeng Zuo
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China
| | - Shenghua Wu
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China
| | - Lihua Zhang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China
| | - Yingchun Zhang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Biology, China
| | - Tao Wang
- School of Basic Medical Sciences, Guizhou Medical University, 561113, Anshun, China; Department of Microbiology, China; Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, China.
| |
Collapse
|
2
|
Wang X, Yin X, Li Y, Zhang S, Hu M, Wei M, Li Z. Novel insight and perspectives of nanoparticle-mediated gene delivery and immune-modulating therapies for pancreatic cancer. J Nanobiotechnology 2024; 22:771. [PMID: 39696302 DOI: 10.1186/s12951-024-02975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Current standard-of-care therapies have failed to improve the survival of patients with metastatic pancreatic cancer (PCA). Therefore, exploring novel therapeutic approaches for cancer targeting is of utmost need. During the past few years, many efforts have been made to develop conventional treatment strategies to reduce chemotherapy resistance. However, critical challenges have impeded current cancer management outcomes, and limited clinical responses have been achieved due to unfavorable off-target effects. Advances in nanotechnology-based gene and immune-modulator delivery systems have excellent advantages for improving the therapeutic efficacy of PCA and provide promising avenues for overcoming the immunosuppressive tumor microenvironment and enhancing patient treatment outcomes. This review article provides insight into the challenges, opportunities, and future perspectives of these novel emerging nanoparticles based on lipid, polymer, and inorganic metal carriers to modulate genes and immunotherapy paradigms for PCA anticancer activity.
Collapse
Affiliation(s)
- Xinqiao Wang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, P.R. China
| | - Xue Yin
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Yuxin Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Shuhui Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Meie Hu
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| |
Collapse
|
3
|
Lara P, Quiñonero F, Ortiz R, Prados J, Melguizo C. Nanoparticles Bounded to Interfering RNAs as a Therapy for Pancreatic Cancer: A Systematic Review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2013. [PMID: 39510122 DOI: 10.1002/wnan.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Pancreatic cancer is one of the tumors with poor prognosis and low survival due to late diagnosis, high resistance, and very limited effective therapeutic options. Thus, new pharmacological treatments are necessary to improve the prognosis of patients. In this context, nanoparticles represent an efficient system for transporting and administering therapeutic molecules. Furthermore, siRNA can be used in cancer treatment to selectively inhibit the expression of any target gene. Therefore, nanoparticles associated with siRNA have been tested as a new therapeutic strategy to solve the pancreatic cancer treatment failure in the clinical setting. The current article presents a systematic revision of the literature of the last 10 years in which nanoparticles loading siRNA are used in pancreatic cancer. This research was carried out in three databases (PubMed, Scopus, and Web of Science) obtaining 164 articles from which 37 were selected. Our results show an overall view of the high effectiveness of this new therapy that combines nanoparticles with genetic therapy in pancreatic cancer suggesting that siRNA-based medicines will likely open up a new therapeutic era in the treatment of this type of tumors.
Collapse
Affiliation(s)
- Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
| | - Francisco Quiñonero
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (Ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Luo W, Zhang T. The new era of pancreatic cancer treatment: Application of nanotechnology breaking through bottlenecks. Cancer Lett 2024; 594:216979. [PMID: 38795762 DOI: 10.1016/j.canlet.2024.216979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Since the advent of nanomedicine, physicians have harnessed these approaches for the prophylaxis, detection, and therapy of life-threatening diseases, particularly cancer. Nanoparticles have demonstrated notable efficacy in cancer therapy, showcasing the primary application of nanotechnology in targeted drug delivery. Pancreatic cancer stands out as the most lethal solid tumour in humans. The low survival rate is attributed to its highly aggressive nature, intrinsic resistance to chemotherapeutics, and the lack of successful therapies, compounded by delayed diagnosis due to nonspecific symptoms and the absence of rapid diagnostic strategies. Despite these challenges, nanotechnology-based carrier methods have been successfully employed in imaging and therapy approaches. Overcoming drug resistance in pancreatic cancer necessitates a comprehensive understanding of the microenvironment associated with the disease, paving the way for innovative nanocarriers. Hindered chemotherapy infiltration, attributed to inadequate vascularization and a dense tumour stroma, is a major hurdle that nanotechnology addresses. Intelligent delivery techniques, based on the Enhanced Permeability and Retention effect, form the basis of recently developed anticancer nanocarriers. These advancements aim to enhance drug accumulation in tumour locations, offering a potential solution to the treatment-resistant nature of cancer. Addressing the challenges in pancreatic cancer treatment demands innovative therapies, and the emergence of active nanocarriers presents a promising avenue for enhancing outcomes. This review specifically delves into the latest advancements in nanotechnology for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
5
|
Dai J, Ashrafizadeh M, Aref AR, Sethi G, Ertas YN. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy. Drug Discov Today 2024; 29:103981. [PMID: 38614161 DOI: 10.1016/j.drudis.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/20/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
The combination of peptides and nanoparticles in cancer therapy has shown synergistic results. Nanoparticle functionalization with peptides can increase their targeting ability towards tumor cells. In some cases, the peptides can develop self-assembled nanoparticles, in combination with drugs, for targeted cancer therapy. The peptides can be loaded into nanoparticles and can be delivered by other drugs for synergistic cancer removal. Multifunctional types of peptide-based nanoparticles, including pH- and redox-sensitive classes, have been introduced in cancer therapy. The tumor microenvironment remolds, and the acceleration of immunotherapy and vaccines can be provided by peptide nanoparticles. Moreover, the bioimaging and labeling of cancers can be mediated by peptide nanoparticles. Therefore, peptides can functionalize nanoparticles in targeted cancer therapy.
Collapse
Affiliation(s)
- Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
6
|
Guerra MES, Vieira B, Calazans APCT, Destro GV, Melo K, Rodrigues E, Waz NT, Girardello R, Darrieux M, Converso TR. Recent advances in the therapeutic potential of cathelicidins. Front Microbiol 2024; 15:1405760. [PMID: 38989014 PMCID: PMC11233757 DOI: 10.3389/fmicb.2024.1405760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
The alarming increase in antimicrobial resistance in the last decades has prompted the search for alternatives to control infectious diseases. Antimicrobial peptides (AMPs) represent a heterogeneous class of molecules with ample antibacterial, antiviral, and antifungal effects. They can be found in many organisms, including all classes of vertebrates, providing a valuable source of new antimicrobial agents. The unique properties of AMPs make it harder for microbes develop resistance, while their immunomodulatory properties and target diversity reinforce their translational use in multiple diseases, from autoimmune disorders to different types of cancer. The latest years have witnessed a vast number of studies evaluating the use of AMPs in therapy, with many progressing to clinical trials. The present review explores the recent developments in the medicinal properties of cathelicidins, a vast family of AMPs with potent antimicrobial and immunomodulatory effects. Cathelicidins from several organisms have been tested in disease models of viral and bacterial infections, inflammatory diseases, and tumors, with encouraging results. Combining nanomaterials with active, natural antimicrobial peptides, including LL-37 and synthetic analogs like ceragenins, leads to the creation of innovative nanoagents with significant clinical promise. However, there are still important limitations, such as the toxicity of many cathelicidins to healthy host cells and low stability in vivo. The recent advances in nanomaterials and synthetic biology may help overcome the current limitations, enabling the use of cathelicidins in future therapeutics. Furthermore, a better understanding of the mechanisms of cathelicidin action in vivo and their synergy with other host molecules will contribute to the development of safer, highly effective therapies.
Collapse
|
7
|
Wang X, Lu H, Luo F, Wang D, Wang A, Wang X, Feng W, Wang X, Su J, Liu M, Xia G. Lipid-like gemcitabine diester-loaded liposomes for improved chemotherapy of pancreatic cancer. J Control Release 2024; 365:112-131. [PMID: 37981050 DOI: 10.1016/j.jconrel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Gemcitabine (GEM) is a non-selective chemotherapeutic agent used in the treatment of pancreatic cancer. Its antitumor efficacy is limited by a short plasma half-life and severe adverse reactions. To overcome these shortcomings, four novel lipid-like GEM diesters were synthesized and encapsulated into liposomes. Through optimization, dimyristoyl GEM (dmGEM)-loaded liposomes (LipodmGEM) were successfully obtained with an almost complete encapsulation efficiency. Compared to free GEM, LipodmGEM showed enhanced cellular uptake and cell apoptosis, improved inhibition of cell migration on AsPC-1 cells and a greatly extended half-life (7.22 vs. 1.78 h). LipodmGEM succeeded in enriching the drug in the tumor (5.28 vs. 0.03 μmol/g at 8 h), overcoming a major shortcoming of GEM, showed excellent anticancer efficacy in vivo and negligible systemic toxicity, superior to GEM. Attractive as well, suspensions of LipodmGEM remained stable at 2-10 °C away from light for no <2 years. Our results suggest that LipodmGEM might become of high interest for treating pancreatic cancer while the simple strategy we reported might be explored as well for converting other antitumor drugs with high water-solubility and short plasma half-life into attractive nanomedicines.
Collapse
Affiliation(s)
- Xiaowei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Hongwei Lu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Fang Luo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Dan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Apeng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xuelei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wenkai Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaobo Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jiayi Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guimin Xia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|