1
|
Li M, Chu K, Zhou Q, Wang H, Zhang W, Zhang Y, Lv J, Zhou H, An J, Wu Z, Li S. Dual-drug loaded hyaluronic acid conjugates coated polydopamine nanodrugs for synergistic chemo-photothermal therapy in triple negative breast cancer. Int J Biol Macromol 2025; 308:142559. [PMID: 40154698 DOI: 10.1016/j.ijbiomac.2025.142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Although combination of chemotherapy and photothermal therapy (PTT) holds significant promise for treating triple-negative breast cancer, the existing delivery systems for achieving synergistic antitumor activity remains unsatisfactory. Herein, we developed of dual-drug loaded hyaluronic acid (HA) nanodrugs, which exhibited pH, glutathione (GSH), and thermal triple-responsiveness and CD44-targeting capabilities for chemo-PTT synergistic therapy in breast cancer. Gemcitabine (GCB) and metformin (MET) were conjugated to HA via amide and disulfide bonds to form dual-drug loaded prodrugs (HSGM), which were then coated onto the surface of polydopamine nanoparticles (PDA NPs) to self-assemble into HSGM/PDA NPs. These NPs selectively accumulated at the tumor site through HA receptors and released GCB and MET in response to low pH and high GSH concentrations. The NPs demonstrated excellent photothermal performance, with heat generated from near-infrared (NIR)-laser irradiation accelerating drug release within tumor. Additionally, MET inhibited the production of heat shock protein 70 (HSP 70), mitigating thermotolerance induced by PTT, thereby enhancing the PTT effect. The combination of chemotherapy and PTT synergistically improved anti-tumor efficacy (tumor inhibition ratio: 99.11 %) while showing negligible systemic toxicity, effectively preventing tumor metastasis and recurrence. This integrated approach offers valuable insights for the clinical treatment of breast cancer and other malignant tumors.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Kaile Chu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Qin Zhou
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Hongliang Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning Province, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, Liaoning Province, PR China
| | - Yaqiong Zhang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Junping Lv
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Haitao Zhou
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
2
|
Bargakshatriya R, Pramanik SK. Leading prodrug strategies for targeted and specific release. Future Med Chem 2025; 17:865-868. [PMID: 40085509 DOI: 10.1080/17568919.2025.2479412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Affiliation(s)
- Rupa Bargakshatriya
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Pramanik
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Yang B, Yang Y, Chen Y, Wu S, Zhang W, Zhu M, Li S, Jia X, Gai L, Feng L. Mannose functionalized small molecule nanodrug self-assembled from amphiphilic prodrug connected by disulfide bonds for synergistic cancer chemotherapy and photodynamic/photothermal therapy. Int J Pharm 2025; 671:125238. [PMID: 39842745 DOI: 10.1016/j.ijpharm.2025.125238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Compared to conventional nanocarrier-based drug delivery technology, small-molecule-assembled nanomaterials provide various advantages, including higher drug loading efficiency, lower excipient-related toxicity, and a simpler formulation process. Our research constructed a mannonse-modified small-molecule-assembled nanodrug for synergistic photodynamic/chemotherapy against A549 cancer cells. The hydrophobic hypoxic-activated agent tirapazamine (TPZ) and a hydrophilic fluorescence probe Cyanine 3 (Cy3) constitute this amphiphilic prodrug via a glutathione (GSH)-responsive linkage, which could self-assemble into stable nanoparticles (NPs) and encapsulate a newly synthesized photosensitizer (SeBDP). To enhance the tumor targeting capability, we introduced a tumor-targeted nanodrug SeBDP@TPZ-S-S-Cy/Man NPs by co-assembling mannose-modified lipid (DSPE-PEG-Man). The GSH-responsive linkage of TPZ-S-S-Cy can be rapidly cleaved by GSH to release the therapeutic agents and fluorescent molecule. The released SeBDP generate reactive oxygen species (ROS) to specifically kill cancer cells and elevate hypoxia, thereby enhancing the cytotoxicity of TPZ. SeBDP@TPZ-S-S-Cy/Man NPs exhibited high selectivity and efficiency for in vivo combination therapy without adverse effects to normal tissues. Our findings demonstrate that SeBDP@TPZ-S-S-Cy/Man NPs have great potential for enhancing cancer treatment both in vitro and in vivo by combining an oxygen depletion prodrug with a hypoxia-activated antitumor agent. Thus, the GSH-sensitive self-assembled nanodrug from an amphiphilic hypoxia-activated prodrug, could serve as a potential drug carrier in targeted synergistic cancer therapy.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yaping Chen
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shengmei Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Weiye Zhang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shixin Li
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Lizhi Gai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
4
|
Zhao S, Yu N, Han H, Guo S, Murthy N. Advances in acid-degradable and enzyme-cleavable linkers for drug delivery. Curr Opin Chem Biol 2025; 84:102552. [PMID: 39642424 PMCID: PMC11788058 DOI: 10.1016/j.cbpa.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
Drug delivery vectors have the potential to improve the efficacy of therapeutics, including small molecules and nucleic acid-based drugs. However, challenges remain in developing linkages that enable the precise and efficient release of therapeutic cargo in response to mildly acidic environments or lysosomal enzymes. This review highlights recent advances in acid-degradable acetal/ketal and enzyme-cleavable linkages for endolysosomal release. These innovations include the developments of azido-acetal linkers with improved stability and hydrolysis kinetics, organocatalytic trans-isopropenylation for synthesizing asymmetric ketals and their applications in drug delivery, and enzyme-cleavable linkers activated by cathepsin B or β-galactosidase.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Bioengineering and Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, USA
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hesong Han
- Department of Bioengineering and Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, USA
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Niren Murthy
- Department of Bioengineering and Innovative Genomics Institute, University of California Berkeley, 2151 Berkeley Way, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Yang C, Liu P. Regulating Drug Release Performance of Acid-Triggered Dimeric Prodrug-Based Drug Self-Delivery System by Altering Its Aggregation Structure. Molecules 2024; 29:3619. [PMID: 39125024 PMCID: PMC11313937 DOI: 10.3390/molecules29153619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Dimeric prodrugs have been investigated intensely as carrier-free drug self-delivery systems (DSDSs) in recent decades, and their stimuli-responsive drug release has usually been controlled by the conjugations between the drug molecules, including the stimuli (pH or redox) and responsive sensitivity. Here, an acid-triggered dimeric prodrug of doxorubicin (DOX) was synthesized by conjugating two DOX molecules with an acid-labile ketal linker. It possessed high drug content near the pure drug, while the premature drug leakage in blood circulation was efficiently suppressed. Furthermore, its aggregation structures were controlled by fabricating nanomedicines via different approaches, such as fast precipitation and slow self-assembly, to regulate the drug release performance. Such findings are expected to enable better anti-tumor efficacy with the desired drug release rate, beyond the molecular structure of the dimeric prodrug.
Collapse
Affiliation(s)
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
6
|
Shayegh F, Türk Z, Armani A, Zarghami N. New insights into polysaccharide-based nanostructured delivery systems in breast cancer: Possible application of antisense oligonucleotides in breast cancer therapy. Int J Biol Macromol 2024; 272:132890. [PMID: 38848829 DOI: 10.1016/j.ijbiomac.2024.132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 05/27/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
The lack of more effective therapies for breast cancer has enhanced mortality among breast cancer patients. Recent efforts have established efficient treatments to reduce breast cancer-related deaths. The ever-increasing attraction to employing biocompatible polysaccharide-based nanostructures as delivery systems has created interest in various disease therapies, especially breast cancer treatment. A wide range of therapeutic cargo comprising bioactive or chemical drugs, oligonucleotides, peptides, and targeted biomarkers have been considered to comprehend their anti-cancer effects against breast cancer. Some limitations of naked agents or undesired constructs, such as no or low bioavailability, enzymatic digestion, short-range stability, low-cellular uptake, poor solubility, and low surface area, have lessened their effectiveness. However, nanoscale formulations of therapeutic ingredients have provided a promising platform to address the mentioned concerns. For instance, some capable polysaccharides, including cellulose, pectin, chitosan, alginate, and dextran, were developed as breast cancer therapeutics with great nanoparticle structures. This review carefully examines the characteristics of beneficial polysaccharides that are utilized in the formation of nanoparticles (NPs). It also highlights the applications of antisense oligonucleotides (ASOs), and NPs made from polysaccharides in the treatment of breast cancer and suggests ways to enhance these particles for future research.
Collapse
Affiliation(s)
- Fahimeh Shayegh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynep Türk
- Department of Analytical Chemistry, Faculty of Pharmacy, İstanbul Aydin University, İstanbul, Türkiye
| | - Arta Armani
- Department of Medical Biology and Genetics, Faculty of Medicine, İstanbul Aydin University, İstanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, İstanbul Aydin University, İstanbul, Türkiye.
| |
Collapse
|
7
|
Li X, Zhong H, Zheng S, Mu J, Yu N, Guo S. Tumor-penetrating iRGD facilitates penetration of poly(floxuridine-ketal)-based nanomedicine for enhanced pancreatic cancer therapy. J Control Release 2024; 369:444-457. [PMID: 38575076 DOI: 10.1016/j.jconrel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Efficient intratumoral penetration is essential for nanomedicine to eradicate pancreatic tumors. Although nanomedicine can enter the perivascular space of pancreatic tumors, their access to distal tumor cells, aloof from the vessels, remains a formidable challenge. Here, we synthesized an acid-activatable macromolecular prodrug of floxuridine (FUDR)-poly(FUDR-ketal), engineered a micellar nanomedicine of FUDR, and intravenously co-administered the nanomedicine with the tumor-penetrating peptide iRGD for enhanced treatment of pancreatic tumor. A FUDR-derived mono-isopropenyl ether was synthesized and underwent self-addition polymerization to afford the hydrophobic poly(FUDR-ketal), which was subsequently co-assembled with amphiphilic DSPE-mPEG into the micellar nanomedicine with size of 12 nm and drug content of 56.8 wt% using nanoprecipitation technique. The acetone-based ketal-linked poly(FUDR-ketal) was triggered by acid to release FUDR to inhibit cell proliferation. In an orthotopic pancreatic tumor model derived from KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre) cells that overexpress neuropilin-1 (NRP-1) receptor, iRGD improved penetration of FUDR nanomedicine into tumor parenchyma and potentiated the therapeutic efficacy. Our nanoplatform, along with iRGD, thus appears to be promising for efficient penetration and activation of acid-responsive nanomedicines for enhanced pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shujing Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingqing Mu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Aier Eye Hospital, Tianjin 300190, China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Jingjinji National Center of Technology Innovation, Beijing 100094, China.
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Gao X, Zhang N, Xie W. Advancements in the Cultivation, Active Components, and Pharmacological Activities of Taxus mairei. Molecules 2024; 29:1128. [PMID: 38474640 DOI: 10.3390/molecules29051128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Taxus mairei (Lemée and H.Lév.) S.Y.Hu, indigenous to the southern regions of China, is an evergreen tree belonging to the genus Taxus of the Taxaceae family. Owing to its content of various bioactive compounds, it exhibits multiple pharmacological activities and has been widely applied in clinical medicine. This article comprehensively discusses the current state of cultivation, chemical constituents, applications in the pharmaceutical field, and the challenges faced by T. mairei. The paper begins by detailing the ecological distribution of T. mairei, aiming to provide an in-depth understanding of its origin and cultivation overview. In terms of chemical composition, the article thoroughly summarizes the extracts and monomeric components of T. mairei, unveiling their pharmacological activities and elucidating the mechanisms of action based on the latest scientific research, as well as their potential as lead compounds in new drug development. The article also addresses the challenges in the T. mairei research, such as the difficulties in extracting and synthesizing active components and the need for sustainable utilization strategies. In summary, T. mairei is a rare species important for biodiversity conservation and demonstrates significant research and application potential in drug development and disease treatment.
Collapse
Affiliation(s)
- Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ni Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
9
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|