1
|
Chandler HL, Moradi S, Green SW, Chen P, Madden C, Zhang L, Zhang Z, Park KH, Ma J, Zhu H, Swindle-Reilly KE. Development of an Ophthalmic Hydrogel to Deliver MG53 and Promote Corneal Wound Healing. Pharmaceutics 2025; 17:526. [PMID: 40284520 PMCID: PMC12030682 DOI: 10.3390/pharmaceutics17040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objective: A clinical need exists for more effective therapeutics and sustained drug delivery systems to promote ocular surface healing. This study tested the hypothesis that a novel biodegradable, thermoresponsive hydrogel loaded with the human recombinant (rh)MG53 protein, which we have demonstrated to promote corneal healing without fibrosis, would exhibit safety and biocompatibility in vitro and in vivo. Methods: Hydrogel optimization was performed based on varying concentrations of poloxamer 407, poloxamer 188, and hydroxypropyl methylcellulose. Hydrogels were characterized and potential toxicity was evaluated in vitro in cultured corneal epithelium, fibroblasts, and endothelium. In vivo safety and tolerability were assessed in mice and hydrogels were used to evaluate corneal healing following alkali injury. Results: The optimized hydrogel formulation did not result in any detrimental changes to the corneal cells and released functional rhMG53 protein for at least 24 h. In vivo rhMG53-loaded hydrogels improved re-epithelialization, reduced stromal opacification and vascularization, and promoted corneal nerve density. Mechanistically, rhMG53 reduced vascular endothelial cell migration and tube formation by inhibiting pSTAT3 signaling. Conclusions: Taken together, our poloxamer-based thermoresponsive hydrogel effectively released rhMG53 protein and enhanced multiple corneal healing outcomes.
Collapse
Affiliation(s)
- Heather L. Chandler
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA; (C.M.); (L.Z.)
| | - Sara Moradi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (S.W.G.)
| | - Spencer W. Green
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (S.W.G.)
| | - Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.C.); (Z.Z.); (H.Z.)
| | - Christopher Madden
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA; (C.M.); (L.Z.)
| | - Luxi Zhang
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA; (C.M.); (L.Z.)
| | - Zhentao Zhang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.C.); (Z.Z.); (H.Z.)
| | - Ki Ho Park
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; (K.H.P.); (J.M.)
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; (K.H.P.); (J.M.)
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (P.C.); (Z.Z.); (H.Z.)
| | - Katelyn E. Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (S.W.G.)
| |
Collapse
|
2
|
Abbasi M, Aghamollaei H, Vaez A, Amani AM, Kamyab H, Chelliapan S, Jamalpour S, Zambrano-Dávila R. Bringing ophthalmology into the scientific world: Novel nanoparticle-based strategies for ocular drug delivery. Ocul Surf 2025; 37:140-172. [PMID: 40147816 DOI: 10.1016/j.jtos.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The distinctive benefits and drawbacks of various drug delivery strategies to supply corneal tissue improvement for sense organs have been the attention of studies worldwide in recent decades. Static and dynamic barriers of ocular tissue prevent foreign chemicals from entering and inhibit the active absorption of therapeutic medicines. The distribution of different medications to ocular tissue is one of the most appealing and demanding tasks for investigators in pharmacology, biomaterials, and ophthalmology, and it is critical for cornea wound healing due to the controlled release rate and increased drug bioavailability. It should be mentioned that the transport of various types of medications into the different sections of the eye, particularly the cornea, is exceedingly challenging because of its distinctive structure and various barriers throughout the eye. Nanoparticles are being studied to improve medicine delivery strategies for ocular disease. Repetitive corneal drug delivery using biodegradable nanocarriers allows a medicine to remain in different parts of the cornea for extended periods of time and thus improve administration route effectiveness. In this review, we discussed eye anatomy, ocular delivery barriers, as well as the emphasis on the biodegradable nanomaterials ranging from organic nanostructures, such as nanomicelles, polymers, liposomes, niosomes, nanowafers, nanoemulsions, nanosuspensions, nanocrystals, cubosomes, olaminosomes, hybridized NPs, dendrimers, bilosomes, solid lipid NPs, nanostructured lipid carriers, and nanofiber to organic nanomaterials like silver, gold, and mesoporous silica nanoparticles. In addition, we describe the nanotechnology-based ophthalmic medications that are presently on the market or in clinical studies. Finally, drawing on current trends and therapeutic approaches, we discuss the challenges that innovative optical drug delivery systems confront and propose future research routes. We hope that this review will serve as a source of motivation and inspiration for developing innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Milad Abbasi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Universidad UTE, Quito, 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sajad Jamalpour
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Renato Zambrano-Dávila
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito, 170527, Ecuador
| |
Collapse
|
3
|
Narayana S, Gowda BHJ, Hani U, Ahmed MG, Asiri ZA, Paul K. Smart Poly(N-isopropylacrylamide)-Based Hydrogels: A Tour D'horizon of Biomedical Applications. Gels 2025; 11:207. [PMID: 40136912 PMCID: PMC11942434 DOI: 10.3390/gels11030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Hydrogels are innovative materials characterized by a water-swollen, crosslinked polymeric network capable of retaining substantial amounts of water while maintaining structural integrity. Their unique ability to swell or contract in response to environmental stimuli makes them integral to biomedical applications, including drug delivery, tissue engineering, and wound healing. Among these, "smart" hydrogels, sensitive to stimuli such as pH, temperature, and light, showcase reversible transitions between liquid and semi-solid states. Thermoresponsive hydrogels, exemplified by poly(N-isopropylacrylamide) (PNIPAM), are particularly notable for their sensitivity to temperature changes, transitioning near their lower critical solution temperature (LCST) of approximately 32 °C in water. Structurally, PNIPAM-based hydrogels (PNIPAM-HYDs) are chemically versatile, allowing for modifications that enhance biocompatibility and functional adaptability. These properties enable their application in diverse therapeutic areas such as cancer therapy, phototherapy, wound healing, and tissue engineering. In this review, the unique properties and behavior of smart PNIPAM are explored, with an emphasis on diverse synthesis methods and a brief note on biocompatibility. Furthermore, the structural and functional modifications of PNIPAM-HYDs are detailed, along with their biomedical applications in cancer therapy, phototherapy, wound healing, tissue engineering, skin conditions, ocular diseases, etc. Various delivery routes and patents highlighting therapeutic advancements are also examined. Finally, the future prospects of PNIPAM-HYDs remain promising, with ongoing research focused on enhancing their stability, responsiveness, and clinical applicability. Their continued development is expected to revolutionize biomedical technologies, paving the way for more efficient and targeted therapeutic solutions.
Collapse
Affiliation(s)
- Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - B. H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Zahrah Ali Asiri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (Z.A.A.)
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India;
| |
Collapse
|
4
|
Zhou YG, Li SK, Xue Y, Fan B, Gao QM, Zhan LW, Liu RT, Li YF, Sun RL, Tian YZ. Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects. J Biomater Appl 2025; 39:828-839. [PMID: 39668782 DOI: 10.1177/08853282241306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.
Collapse
Affiliation(s)
- Yi Gui Zhou
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Song Kai Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Xue
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Bo Fan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Qiu Ming Gao
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Long Wen Zhan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Tang Liu
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Fei Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Long Sun
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yong Zheng Tian
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
5
|
Pal P, Sambhakar S, Paliwal S. Revolutionizing Ophthalmic Care: A Review of Ocular Hydrogels from Pathologies to Therapeutic Applications. Curr Eye Res 2025; 50:1-17. [PMID: 39261982 DOI: 10.1080/02713683.2024.2396385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE This comprehensive review is designed to elucidate the transformative role and multifaceted applications of ocular hydrogels in contemporary ophthalmic therapeutic strategies, with a particular emphasis on their capability to revolutionize drug delivery mechanisms and optimize patient outcomes. METHODS A systematic and structured methodology is employed, initiating with a succinct exploration of prevalent ocular pathologies and delineating the corresponding therapeutic agents. This serves as a precursor for an extensive examination of the diverse methodologies and fabrication techniques integral to the design, development, and application of hydrogels specifically tailored for ophthalmic pharmaceutical delivery. The review further scrutinizes the pivotal manufacturing processes that significantly influence hydrogel efficacy and delves into an analysis of the current spectrum of hydrogel-centric ocular formulations. RESULTS The review yields illuminating insights into the escalating prominence of ocular hydrogels within the medical community, substantiated by a plethora of ongoing clinical investigations. It reveals the dynamic and perpetually evolving nature of hydrogel research and underscores the extensive applicability and intricate progression of transposing biologics-loaded hydrogels from theoretical frameworks to practical clinical applications. CONCLUSIONS This review accentuates the immense potential and promising future of ocular hydrogels in the realm of ophthalmic care. It not only serves as a comprehensive guide but also as a catalyst for recognizing the transformative potential of hydrogels in augmenting drug delivery mechanisms and enhancing patient outcomes. Furthermore, it draws attention to the inherent challenges and considerations that necessitate careful navigation by researchers and clinicians in this progressive field.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Vanasthali, India
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, India
| | | | | |
Collapse
|
6
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
7
|
Yeingst TJ, Helton AM, Hayes DJ. Applications of Diels-Alder Chemistry in Biomaterials and Drug Delivery. Macromol Biosci 2024; 24:e2400274. [PMID: 39461893 DOI: 10.1002/mabi.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Recent studies, leveraging click chemistry reactions, have significantly advanced the fields of biomaterials and drug delivery. Of these click reactions, the Diels-Alder cycloaddition is exceptionally valuable for synthetic organic chemistry and biomaterial design, as it occurs under mild reaction conditions and can undergo a retrograde reaction, under physiologically relevant conditions, to yield the initial reactants. In this review, potential applications of the Diels-Alder reaction are explored within the nexus of biomaterials and drug delivery. This includes an emphasis on key platforms such as polymers, nanoparticles, and hydrogels which utilize Diels-Alder for drug delivery, functionalized surfaces, bioconjugation, and other diverse applications. Specifically, this review will focus on the use of Diels-Alder biomaterials in applications of tissue engineering and cancer therapies, while providing a discussion of the advantages, platforms, and applications of Diels-Alder click chemistry.
Collapse
Affiliation(s)
- Tyus J Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Angelica M Helton
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institute of Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N, Sugandhi VV, Paudel KR, Ingle RG. Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery. Pharmaceutics 2024; 16:1398. [PMID: 39598522 PMCID: PMC11597228 DOI: 10.3390/pharmaceutics16111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 11/29/2024] Open
Abstract
Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery. Recent advancements have improved safety and efficacy, offering sustained and controlled drug delivery for conditions like age-related macular degeneration and glaucoma. While promising, challenges such as regulatory barriers and long-term biocompatibility persist. Overcoming these through interdisciplinary research is crucial. Ultimately, microneedle drug delivery presents a revolutionary method with the potential to significantly enhance ocular disease treatment, marking a new era in eye care.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India;
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Sopan N. Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India;
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Vrashabh V. Sugandhi
- College of Pharmacy & Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University)—DMIHER, Wardha 442107, India
| |
Collapse
|
9
|
Singh M, Negi R, Alka, Vinayagam R, Kang SG, Shukla P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1647. [PMID: 39459435 PMCID: PMC11509623 DOI: 10.3390/medicina60101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
The most prevalent reason for vision impairment in aging inhabitants is age-related macular degeneration (AMD), a posterior ocular disease with a poor understanding of the anatomic, genetic, and pathophysiological progression of the disease. Recently, new insights exploring the role of atrophic changes in the retinal pigment epithelium, extracellular drusen deposits, lysosomal lipofuscin, and various genes have been investigated in the progression of AMD. Hence, this review explores the incidence and risk factors for AMD, such as oxidative stress, inflammation, the complement system, and the involvement of bioactive lipids and their role in angiogenesis. In addition to intravitreal anti-vascular endothelial growth factor (VEGF) therapy and other therapeutic interventions such as oral kinase inhibitors, photodynamic, gene, and antioxidant therapy, as well as their benefits and drawbacks as AMD treatment options, strategic drug delivery methods, including drug delivery routes with a focus on intravitreal pharmacokinetics, are investigated. Further, the recent advancements in nanoformulations such as polymeric and lipid nanocarriers, liposomes, etc., intended for ocular drug delivery with pros and cons are too summarized. Therefore, the purpose of this review is to give new researchers an understanding of AMD pathophysiology, with an emphasis on angiogenesis, inflammation, the function of bioactive lipids, and therapy options. Additionally, drug delivery options that focus on the development of drug delivery system(s) via several routes of delivery can aid in the advancement of therapeutic choices.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Riyakshi Negi
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Alka
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| |
Collapse
|
10
|
Cooper RC, Wang J, Yang H. Injectable Dendrimer Hydrogel Delivers Melphalan in Both Conjugated and Free Forms for Retinoblastoma. Biomacromolecules 2024; 25:5928-5937. [PMID: 39189328 PMCID: PMC11443594 DOI: 10.1021/acs.biomac.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report the successful synthesis of an injectable dendrimer hydrogel (DH) carrying melphalan, a clinical drug for retinoblastoma treatment, in both conjugated and free forms. Polyamidoamine (PAMAM) dendrimer generation 5 (G5) is surface-modified with an acid-sensitive acetal-dibenzocyclooctyne linker and then undergoes azide-alkyne cycloaddition with melphalan-PEG-N3 conjugate to form G5-acetal-melphalan. During the DH gelation between G5-acetal-melphalan and PEG-diacrylate, free melphalan is added, resulting in a hydrogel (G5-acetal-melphalan-DH/melphalan) that carries the drug in both conjugated and free forms. Melphalan is slowly released from G5-acetal-melphalan-DH/melphalan, with the conjugated melphalan released more quickly at pH 5.3 due to acid-triggered acetal bond cleavage. The formulation's in vitro safety and efficacy were established on human corneal epithelia (HCE-2) and retinoblastoma cells (Y79). In an in vivo Y79 tumor xenograft model of retinoblastoma, intratumorally injected G5-melphalan-DH formulation prolonged tumor suppression. This injectable, multimodal, pH-responsive formulation shows promise for intravitreal injection to treat retinoblastoma.
Collapse
Affiliation(s)
- Remy C. Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
11
|
Shukla H, Promcharoen P, Poonsawat T, Chakarawet K, Chumkaeo P, Somsook E. Diels-Alder Cycloaddition of 2,5-Bis(hydroxymethyl)furan (BHMF) and N-Phenylmaleimide Derivatives. ACS OMEGA 2024; 9:36380-36388. [PMID: 39220524 PMCID: PMC11359630 DOI: 10.1021/acsomega.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Currently, amidst atmospheric menace where natural calamities such as wildfire and floods are becoming more frequent than ever, biobased derivatives offer a sustainable alternative to conventional ways, for instance, petrochemical commodities. Biobased products, obtained from agricultural waste, including 5-(hydroxymethyl)furfural (HMF), 2,5-bis(hydroxymethyl)furan (BHMF), and 2,5-furandicarboxylic acid (FDCA) are promising chemical platforms in the biorefinery, which is yet to be explored. The Diels-Alder cycloaddition of BHMF and N-phenylmaleimide derivatives under optimal reaction conditions is investigated in this report. First, HMF is reduced to BHMF in the presence of NaBH4, and then the Diels-Alder reaction of BHMF and N-phenylmaleimide derivatives is investigated to produce Diels-Alder adducts. All novel compounds are synthesized in acceptable yields and effectively characterized by employing important techniques such as one-dimensional (1D) NMR spectroscopy (1H, 13C, DEPT-90, and DEPT- 135), two-dimensional (2D) NMR spectroscopy (1H-1H COSY, 1H-13C HSQC, and 1H-13C HMBC), IR spectroscopy, elemental analysis, mass spectrum (QTOF), and single-crystal X-ray diffraction (SC-XRD). Furthermore, this study underlines the necessity of sustainable synthetic methodologies and gives critical insights into the progress of ecologically friendly methodologies, providing a new avenue as a tunable precursor for the challenging functionalized polymer in the future.
Collapse
Affiliation(s)
- Harshit Shukla
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Peerapong Promcharoen
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Thinnaphat Poonsawat
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Khetpakorn Chakarawet
- Department
of Chemistry, Faculty of Science, Mahidol
University, 272 Rama
VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Peerapong Chumkaeo
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| | - Ekasith Somsook
- NANOCAST
Laboratory, Center for Catalysis Science and Technology (CAST), Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Liu S, Yan Z, Huang Z, Yang H, Li J. Smart Nanocarriers for the Treatment of Retinal Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2070-2085. [PMID: 38489843 DOI: 10.1021/acsabm.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Retinal diseases, such as age-related macular degeneration, diabetic retinopathy, and retinoblastoma, stand as the leading causes of irreversible vision impairment and blindness worldwide. Effectively administering drugs for retinal diseases poses a formidable challenge due to the presence of complex ocular barriers and elimination mechanisms. Over time, various approaches have been developed to fabricate drug delivery systems for improving retinal therapy including virus vectors, lipid nanoparticles, and polymers. However, conventional nanocarriers encounter issues related to the controllability, efficiency, and safety in the retina. Therefore, the development of smart nanocarriers for effective or more invasive long-term treatment remains a desirable goal. Recently, approaches have surfaced for the intelligent design of nanocarriers, leveraging specific responses to external or internal triggers and enabling multiple functions for retinal therapy such as topical administration, prolonged drug release, and site-specific drug delivery. This Review provides an overview of prevalent retinal pathologies and related pharmacotherapies to enhance the understanding of retinal diseases. It also surveys recent developments and strategies employed in the intelligent design of nanocarriers for retinal disease. Finally, the challenges of smart nanocarriers in potential clinical retinal therapeutic applications are discussed to inspire the next generation of smart nanocarriers.
Collapse
Affiliation(s)
- Shuya Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhike Yan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
13
|
Zhang C, Wang J, Wu H, Fan W, Li S, Wei D, Song Z, Tao Y. Hydrogel-Based Therapy for Age-Related Macular Degeneration: Current Innovations, Impediments, and Future Perspectives. Gels 2024; 10:158. [PMID: 38534576 DOI: 10.3390/gels10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is an ocular disease that leads to progressive photoreceptor death and visual impairment. Currently, the most common therapeutic strategy is to deliver anti-vascular endothelial growth factor (anti-VEGF) agents into the eyes of patients with wet AMD. However, this treatment method requires repeated injections, which potentially results in surgical complications and unwanted side effects for patients. An effective therapeutic approach for dry AMD also remains elusive. Therefore, there is a surge of enthusiasm for the developing the biodegradable drug delivery systems with sustained release capability and develop a promising therapeutic strategy. Notably, the strides made in hydrogels which possess intricate three-dimensional polymer networks have profoundly facilitated the treatments of AMD. Researchers have established diverse hydrogel-based delivery systems with marvelous biocompatibility and efficacy. Advantageously, these hydrogel-based transplantation therapies provide promising opportunities for vision restoration. Herein, we provide an overview of the properties and potential of hydrogels for ocular delivery. We introduce recent advances in the utilization of hydrogels for the delivery of anti-VEGF and in cell implantation. Further refinements of these findings would lay the basis for developing more rational and curative therapies for AMD.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
15
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|