1
|
Attarian F, Hatamian G, Nosrati S, Akbari Oryani M, Javid H, Hashemzadeh A, Tarin M. Role of liposomes in chemoimmunotherapy of breast cancer. J Drug Target 2025; 33:887-915. [PMID: 39967479 DOI: 10.1080/1061186x.2025.2467139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
In the dynamic arena of cancer therapeutics, chemoimmunotherapy has shown tremendous promise, especially for aggressive forms of breast cancer like triple-negative breast cancer (TNBC). This review delves into the significant role of liposomes in enhancing the effectiveness of chemoimmunotherapy by leveraging breast cancer-specific mechanisms such as the induction of immunogenic cell death (ICD), reprogramming the tumour microenvironment (TME), and enabling sequential drug release. We examine innovative dual-targeting liposomes that capitalise on tumour heterogeneity, as well as pH-sensitive formulations that offer improved control over drug delivery. Unlike prior analyses, this review directly links advancements in preclinical research-such as PAMAM dendrimer-based nanoplatforms and RGD-decorated liposomes-to clinical trial results, highlighting their potential to revolutionise TNBC treatment strategies. Additionally, we address ongoing challenges related to scalability, toxicity, and regulatory compliance, and propose future directions for personalised, immune-focused nanomedicine. This work not only synthesises the latest research but also offers a framework for translating liposomal chemoimmunotherapy from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Ghazaleh Hatamian
- Department of Microbiology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Liu D, Ling Y, Dong L, Zhang J, Li X, Chen X, Huang H, Deng J, Guo Y. Ultrasound-triggered drug-loaded nanobubbles for enhanced T cell recruitment in cancer chemoimmunotherapy. Biomaterials 2025; 317:123086. [PMID: 39805187 DOI: 10.1016/j.biomaterials.2025.123086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Chemotherapy combined with immunotherapy is a highly promising approach for treating tumors. However, chemotherapeutic drugs often fail to accumulate effectively at the tumor site after systemic administration and they lack sufficient immunogenicity to activate adaptive immunity, making an effective T-cell immune response within the tumor microenvironment difficult to achieve. Here, this work developed drug-loaded nanobubbles (DTX-R837@NBs) that encapsulate the chemotherapy drug docetaxel and the immune adjuvant R837 via a thin-film hydration method. Ultrasound-targeted nanobubble destruction promoted drug accumulation within tumor tissues and damaged tumor cells through the cavitation effect, inducing immunogenic cell death and releasing damage-associated molecular patterns to augment dendritic cell maturation. Notably, DTX-R837@NBs exhibited excellent contrast-enhanced ultrasound imaging capabilities, enabling the seamless integration of diagnosis and treatment. In combination with immune checkpoint blockade targeting programmed cell death protein 1 (PD-1), the generated immunological responses attacked residual tumor cells and ameliorated the immunosuppressive tumor microenvironment, inhibiting distant tumor growth and metastasis. Moreover, this strategy exhibited robust immune memory effects, effectively protecting the host and preventing tumor recurrence upon rechallenge. Overall, ultrasound-mediated DTX-R837@NBs combined with anti-PD-1 immune checkpoint blockade therapy exhibits robust antitumor efficiency, represent a promising strategy for overcoming immunotherapy resistance in cold tumors, and warrant further investigation for clinical translation.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yi Ling
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Li Dong
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun Zhang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xin Li
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xuemei Chen
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Haiyun Huang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Kim EH, Wahl K, Guelfi E, Lee D. Engineering the physical characteristics of biomaterials for innate immune-mediated cancer immunotherapy. J Control Release 2025; 378:814-830. [PMID: 39719214 DOI: 10.1016/j.jconrel.2024.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
It has recently been recognized that the physical characteristics of biomaterials - such as size, structure, shape, charge, mechanical strength, hydrophobicity, and multivalency - regulate immunological functions in innate immune cells. In immuno-oncology applications, biomaterials are engineered with distinct physical properties to achieve desired innate immune responses. In this review, we discuss how physical characteristics influence effector functions and innate immune signaling pathways in distinct innate immune cell subtypes. We highlight how physical properties of biomaterials impact phagocytosis regulation, biodistribution, and innate immune cell targeting. We outline the recent advances in physical engineering of biomaterials that directly or indirectly induce desired innate immune responses for cancer immunotherapy. Lastly, we discuss the challenges in current biomaterial approaches that need to be addressed to improve clinical applicability.
Collapse
Affiliation(s)
- Eun-Hye Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Katelyn Wahl
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Erica Guelfi
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - DaeYong Lee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
4
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
5
|
He A, Li Q, Dang M, Lu W, Li X, Dai Z, Ding M, Zhang Y, Dong H, Teng Z, Mou Y. Extracellular Vesicle-Inspired Minimalist Flexible Nanocapsules Assembled with Whole Active Ingredients for Highly Efficient Enhancement of DC-Mediated Tumor Immunotherapy. Adv Healthc Mater 2024; 13:e2401199. [PMID: 39054675 PMCID: PMC11650550 DOI: 10.1002/adhm.202401199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/23/2024] [Indexed: 07/27/2024]
Abstract
The development of nanovaccines capable of eliciting tumor-specific immune responses holds significant promise for tumor immunotherapy. However, many nanovaccine designs rely heavily on incorporating multiple adjuvants and carriers, increasing the biological hazards associated with these additional components. Here, this work introduces novel flexible nanocapsules (OVAnano) designed to mimic extracellular vesicles, primarily using the ovalbumin antigen and minimal polyethylenimine adjuvant components. These results show that the biomimetic flexible structure of OVAnano facilitates enhanced antigen uptake by dendritic cells (DCs), leading to efficient antigen and adjuvant release into the cytosol via endosomal escape, and ultimately, successful antigen cross-presentation by DCs. Furthermore, OVAnano modulates the intracellular nuclear factor kappa-B (NF-κB) signaling pathway, promoting DC maturation. The highly purified antigens in OVAnano demonstrate remarkable antigen-specific immunogenicity, triggering strong antitumor immune responses mediated by DCs. Therapeutic tumor vaccination studies have also shown that OVAnano administration effectively suppresses tumor growth in mice by inducing immune responses from CD8+ and CD4+ T cells targeting specific antigens, reducing immunosuppression by regulatory T cells, and boosting the populations of effector memory T cells. These findings underscore that the simple yet potent strategy of employing minimal flexible nanocapsules markedly enhances DC-mediated antitumor immunotherapy, offering promising avenues for future clinical applications.
Collapse
Affiliation(s)
- Ao He
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Meng Dang
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Xiaoye Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Zhuo Dai
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for Biosensors, Institute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical SchoolInstitute of StomatologyNanjing University30 Zhongyang RoadNanjingJiangsu210008China
| |
Collapse
|
6
|
Bai Z, Wang X, Liang T, Xu G, Cai J, Xu W, Yang K, Hu L, Pei P. Harnessing Bacterial Membrane Components for Tumor Vaccines: Strategies and Perspectives. Adv Healthc Mater 2024; 13:e2401615. [PMID: 38935934 DOI: 10.1002/adhm.202401615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Tumor vaccines stand at the vanguard of tumor immunotherapy, demonstrating significant potential and promise in recent years. While tumor vaccines have achieved breakthroughs in the treatment of cancer, they still encounter numerous challenges, including improving the immunogenicity of vaccines and expanding the scope of vaccine application. As natural immune activators, bacterial components offer inherent advantages in tumor vaccines. Bacterial membrane components, with their safer profile, easy extraction, purification, and engineering, along with their diverse array of immune components, activate the immune system and improve tumor vaccine efficacy. This review systematically summarizes the mechanism of action and therapeutic effects of bacterial membranes and its derivatives (including bacterial membrane vesicles and hybrid membrane biomaterials) in tumor vaccines. Subsequently, the authors delve into the preparation and advantages of tumor vaccines based on bacterial membranes and hybrid membrane biomaterials. Following this, the immune effects of tumor vaccines based on bacterial outer membrane vesicles are elucidated, and their mechanisms are explained. Moreover, their advantages in tumor combination therapy are analyzed. Last, the challenges and trends in this field are discussed. This comprehensive analysis aims to offer a more informed reference and scientific foundation for the design and implementation of bacterial membrane-based tumor vaccines.
Collapse
Affiliation(s)
- Zhenxin Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuanyu Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Tianming Liang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Guangyu Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinzhou Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
7
|
Wang Z, Miao F, Gu L, Zhang R, Ma Y, Li Y, Zheng J, Lin Z, Gao Y, Huang L, Shen Y, Wu T, Luo F, Li W. Stimulator of Interferon Genes-Activated Biomimetic Dendritic Cell Nanovaccine as a Chemotherapeutic Booster to Enhance Systemic Fibrosarcoma Treatment. ACS NANO 2024; 18:24219-24235. [PMID: 39172516 DOI: 10.1021/acsnano.4c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fibrosarcoma, a malignant mesenchymal tumor, is characterized by aggressive invasiveness and a high recurrence rate, leading to poor prognosis. Anthracycline drugs, such as doxorubicin (DOX), represent the frontline chemotherapy for fibrosarcoma, but often exhibit suboptimal efficacy. Recently, exploiting the stimulator of interferon genes (STING)-mediated innate immunity has emerged as a hopeful strategy for cancer treatment. Integrating chemotherapy with immunomodulators in chemo-immunotherapy has shown potential for enhancing treatment outcomes. Herein, we introduce an advanced dendritic cell (DC) nanovaccine, cGAMP@PLGA@CRTM (GP@CRTM), combined with low-dose DOX to enhance fibrosarcoma chemo-immunotherapy. The nanovaccine consists of poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the STING agonist 2,3-cGAMP (cGAMP@PLGA, GP) as its core, and a calreticulin (CRT) high-expressing fibrosarcoma cell membrane (CRTM) as the shell. Exposing CRT on the vaccine surface aids in recruiting DCs and stimulating uptake, facilitating efficient simultaneous delivery of STING agonists and tumor antigens to DCs. This dual delivery method effectively activates the STING pathway in DCs, triggering sustained immune stimulation. Simultaneously, low-dose DOX reduces chemotherapy-related side effects, directly kills a subset of tumor cells, and increases tumor immunogenicity, thus further amplifying immune therapeutic performance. Hence, these findings demonstrate the potential of DC nanovaccine GP@CRTM as a booster for chemotherapy. Synergistically combining low-dose DOX with the DC nanovaccine emerges as a powerful chemo-immunotherapy strategy, optimizing systemic fibrosarcoma therapy.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Lingwei Gu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ruyi Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ying Li
- Heji Hospital Affiliated with Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yilai Gao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Liyong Huang
- Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350000, Fu Jian, China
| | - Ye Shen
- Shanghai Jiangxia Blood Technology Co., Ltd. Shanghai 200000, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Wengang Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
8
|
Dong Z, Yang W, Zhang Y, Wang B, Wan X, Li M, Chen Y, Zhang N. Biomimetic nanomedicine cocktail enables selective cell targeting to enhance ovarian Cancer chemo- and immunotherapy. J Control Release 2024; 373:172-188. [PMID: 38972639 DOI: 10.1016/j.jconrel.2024.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Ovarian cancer is one of the deadliest cancers, and combined chemo- and immunotherapies are potential strategies to combat it. However, the anti-cancer efficacy of the combined therapies may be limited by the non-selective co-delivery of chemotherapy and immunotherapy. Herein, a combined chemo- and immunotherapy is designed to selectively target ovarian tumor (ID8) cells and dendritic cells (DCs) using ID8 cell membrane (IM) and bacterial outer membrane vesicles (OMVs), respectively. Doxorubicin (DOX) and Ovalbumin (OVA) peptide (OVA257-264) are chosen as model chemotherapy and immunotherapy agents, respectively. A DNA nanocube capable of easily loading DOX or OVA257-264 is chosen as the carrier. Firstly, the DNA nanocube is used to load DOX or OVA257-264 to prepare cube-DOX or cube-OVA. This nanocube was then encapsulated with IM to form IM@Cube-DOX and with OMV to form OMV@Cube-OVA. IM@Cube-DOX can be selectively taken up by ID8 cells, leading to effective cell killing, while OMV@Cube-OVA targets and activates DC2.4 cells in vitro. Both IM@Cube-DOX and OMV@Cube-OVA show increased accumulation at ID8 tumors in C57BL/6 mice. Combined IM@Cube-DOX + OMV@Cube-OVA therapy demonstrates better anti-tumor efficacy than non-selective delivery methods such as OMV@(Cube-DOX + Cube-OVA) or IM@(Cube-DOX + Cube-OVA) in ID8-OVA tumor-bearing mice. In conclusion, this study demonstrates a biomimetic delivery strategy that enables selective drug delivery to tumor cells and DCs, thereby enhancing the anti-tumor efficacy of combined chemo- and immunotherapy through the selective delivery strategy.
Collapse
Affiliation(s)
- Zhuolin Dong
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Wenhui Yang
- Department of Pharmacy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Yuzhen Zhang
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Baojin Wang
- Henan International Joint Laboratory of Ovarian Malignancies, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, PR China
| | - Xiangling Wan
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Mengru Li
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, PR China.
| | - Nan Zhang
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
9
|
Souri M, Golzaryan A, Soltani M. Charge-Switchable nanoparticles to enhance tumor penetration and accumulation. Eur J Pharm Biopharm 2024; 199:114310. [PMID: 38705311 DOI: 10.1016/j.ejpb.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Nanoparticle-based drug delivery systems hold potential in chemotherapy, but their limited accumulation in tumor tissues hinders effective drug concentration for combating tumor growth. Hence, altering the physicochemical properties of nanoparticles, particularly their surface charge, can enhance their performance. This study utilized a computational model to explore a nanoparticle drug delivery system capable of dynamically adjusting its surface charge. In the model, nanoparticles in the bloodstream were assigned a neutral or positive charge, which, upon reaching the tumor microenvironment, switched to a neutral or negative charge, and releasing chemotherapy drugs into the extracellular space. Results revealed that circulating nanoparticles with a positive surface charge, despite having a shorter circulation and high clearance rate compared to their neutral counterparts, could accumulate significantly in the tissue due to their high transvascular rate. After extravasation, neutralized surface-charged nanoparticles tended to accumulate only near blood microvessels due to their low diffusion rate, resulting in substantial released drug drainage back into the bloodstream. On the other hand, nanoparticles with a negative surface charge in the tumor's extracellular space, due to the reduction of nano-bio interactions, were able to penetrate deeper into the tumor, and increasing drug bioavailability by reducing the volume of drained drugs. Furthermore, the analysis suggested that burst drug release yields a higher drug concentration than sustained drug release, however their creation of bioavailability dependent on nanoparticle accumulation in the tissue. The study's findings demonstrate the potential of this delivery system and offer valuable insights for future research in this area.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Aryan Golzaryan
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
10
|
Su M, Yin M, Zhou Y, Xiao S, Yi J, Tang R. Freeze-Thaw Microfluidic System Produces "Themis" Nanocomplex for Cleaning Persisters-Infected Macrophages and Enhancing Uninfected Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311436. [PMID: 38181783 DOI: 10.1002/adma.202311436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Macrophages are the primary effectors against potential pathogen infections. They can be "parasitized" by intracellular bacteria, serving as "accomplices", protecting intracellular bacteria and even switching them to persisters. Here, using a freeze-thaw strategy-based microfluidic chip, a "Themis" nanocomplex (TNC) is created. The TNC consists of Lactobacillus reuteri-derived membrane vesicles, heme, and vancomycin, which cleaned infected macrophages and enhanced uninfected macrophages. In infected macrophages, TNC releases heme that led to the reconstruction of the respiratory chain complexes of intracellular persisters, forcing them to regrow. The revived bacteria produces virulence factors that destroyed host macrophages (accomplices), thereby being externalized and becoming vulnerable to immune responses. In uninfected macrophages, TNC upregulates the TCA cycle and oxidative phosphorylation (OXPHOS), contributing to immunoenhancement. The combined effect of TNC of cleaning the accomplice (infected macrophages) and reinforcing uninfected macrophages provides a promising strategy for intracellular bacterial therapy.
Collapse
Affiliation(s)
- Mingyue Su
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Mengying Yin
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Yifu Zhou
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Shuya Xiao
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Jundan Yi
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Rongbing Tang
- School of stomatology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
11
|
Zhou H, Yu CY, Wei H. Liposome-based nanomedicine for immune checkpoint blocking therapy and combinatory cancer therapy. Int J Pharm 2024; 652:123818. [PMID: 38253269 DOI: 10.1016/j.ijpharm.2024.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The discovery of immune checkpoint (IC) has led to a wave of leap forward in cancer immunotherapy that represents probably the most promising strategy for cancer therapy. However, the clinical use of immune checkpoint block (ICB) therapy is limited by response rates and side effects. A strategy that addresses the limitations of ICB therapies through combination therapies, using nanocarriers as mediators, has been mentioned in numerous research papers. Liposomes have been probably one of the most extensively used nanocarriers for clinical applications, with broad drug delivery and high safety. A timely review on this hot subject of research, i.e., the application of liposomes for ICB, is thus highly desirable for both fundamental and clinical translatable studies, but remains, to our knowledge, unexplored so far. For this purpose, this review is composed to address the dilemma of ICB therapy and the reasons for this dilemma. We later describe how other cancer treatments have broken this dilemma. Finally, we focus on the role of liposomes in various combinatory cancer therapy. This review is believed to serve as a guidance for the rational design and development of liposome for immunotherapy with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Haoyuan Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| |
Collapse
|
12
|
Li XY, Li RH, Cong JZ, Liu WS, Zhang Y, Guan HL, Zhu LL, Chen K, Pang LY, Jin H. Heating tumors with tumor cell-derived nanoparticles to enhance chemoimmunotherapy for colorectal cancer. Nanomedicine (Lond) 2024; 19:561-579. [PMID: 38265008 DOI: 10.2217/nnm-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To investigate the mechanism of doxorubicin (DOX)-induced immunogenic cell death (ICD) and to improve immunotherapy efficacy. Materials & methods: In this study, hybrid vesicles containing DOX (HV-DOX) were prepared by thin-film hydration with extrusion, and the formulated nanoparticles were characterized physically. Furthermore, in vitro experiments and animal models were used to investigate the efficacy and new mechanisms of chemotherapy combined with immunotherapy. Results: DOX improved tumor immunogenicity by alkalinizing lysosomes, inhibiting tumor cell autophagy and inducing ICD. HVs could activate dendritic cell maturation, synergistically enhancing chemotherapeutic immunity. Conclusion: The mechanism of DOX-induced ICD was explored, and antitumor immunity was synergistically activated by HV-DOX to improve chemotherapeutic drug loading and provide relevant antigenic information.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
- Department of Laboratory & Diagnosis, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Rong-Hui Li
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Jun-Zi Cong
- Department of Scientific Research, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Wen-Shang Liu
- Department of Laboratory & Diagnosis, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yang Zhang
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Hui-Lin Guan
- Department of Scientific Research, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Ling-Ling Zhu
- Department of Hematology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Kai Chen
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Li-Ying Pang
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Hong Jin
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| |
Collapse
|
13
|
Chen J, Cui M, He L, Mu Y, Hu N, Guan X. Engineered elastin-like polypeptide-based hydrogel delivering chemotherapeutics and PD-L1 antibodies for potentiated cancer immunotherapy. J Mater Chem B 2023; 11:10355-10361. [PMID: 37817648 DOI: 10.1039/d3tb01974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have effectively eradicated advanced tumors by inducing durable and systematic antitumor immune responses. However, when used as a standalone treatment, ICIs typically exhibit a low response rate in many cancers. In this study, we engineered an in situ-formed gel depot using elastin-like polypeptides (ELPs) to efficiently deliver PD-L1 antibodies (aPD-L1) and gemcitabine (GEM) for enhanced immunotherapy in melanoma. Sustainably released chemotherapeutics from gel depots could kill melanoma cells and promote PD-L1 upregulation in tumor cells. Moreover, aPD-L1/GEM-encapsulated ELP hydrogel promoted a 3.0-fold increase of tumor-infiltrated CD8+ T cells and 60% Tregs depletion compared with PBS group, eliciting a robust antitumor immune response for immunotherapy in melanoma mouse models. This research highlights the promising potential of ELP-based hydrogels in delivering ICIs and chemotherapeutic agents for potentiated cancer immunotherapy.
Collapse
Affiliation(s)
- Jinguang Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou 318001, P. R. China
| | - Meiying Cui
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical College, Jining 272007, China
- Department of Basic Medical Science, Medical School, Taizhou University, Taizhou 318001, P. R. China.
| | - Lianping He
- Department of Basic Medical Science, Medical School, Taizhou University, Taizhou 318001, P. R. China.
| | - Yeteng Mu
- Department of Basic Medical Science, Medical School, Taizhou University, Taizhou 318001, P. R. China.
| | - Nannan Hu
- Department of Basic Medical Science, Medical School, Taizhou University, Taizhou 318001, P. R. China.
| | - Xingang Guan
- Department of Basic Medical Science, Medical School, Taizhou University, Taizhou 318001, P. R. China.
| |
Collapse
|