1
|
Wu H, Fu H, Xia F, Wu J, Wang P, Cao L, Xu RA, Shi L. Effect of ponatinib on the metabolism of cariprazine in vitro and in vivo and the underlying mechanism. Toxicol Appl Pharmacol 2025; 499:117353. [PMID: 40286877 DOI: 10.1016/j.taap.2025.117353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Cariprazine is an antipsychotic medication that has been approved for the treatment of schizophrenia and manic or mixed episodes. Patients with tumors frequently develop psychiatric disorders, necessitating the combination of antitumor and antipsychotic drugs. The objective of the present study was to examine the inhibitory impacts of three antitumor drugs (olmutinib, napabucasin and ponatinib) on the metabolism of cariprazine, and the molecular docking of cariprazine and ponatinib in relation to CYP3A4 was also evaluated. As the results, the half-maximal inhibitory concentration (IC50) values of ponatinib and olmutinib in vitro were < 10 μM, whereas napabucasin was >20 μM. Among these, ponatinib exhibited the smallest IC50 value. The metabolic stability of cariprazine was observed in the presence or absence of ponatinib in rat liver microsomes (RLM). The IC50 shift experiments demonstrated that the inhibition of cariprazine by ponatinib was non-time-dependent. In addition, ponatinib was shown to inhibit cariprazine in a mixed manner (RLM) and a competitive manner (HLM), respectively. In the in vivo study, the co-administration of ponatinib resulted in a significant 0.35-fold increase in both AUC(0-t) and AUC(0-∞) for cariprazine, accompanied by a significant 0.25-fold decrease in the CLz/F. Furthermore, the metabolites desmethyl-cariprazine (DCAR) and didesmethyl-cariprazine (DDCAR) exhibited disparate increases in both AUC(0-t) and AUC(0-∞). Molecular docking studies had demonstrated that both cariprazine and ponatinib could engage in hydrophobic interactions with residue PHE-304 on CYP3A4. Consequently, when ponatinib is employed in conjunction with cariprazine in a clinical setting, it is imperative to assess the efficacy and adverse effects, and adjust the dosage to attain the optimal efficacy.
Collapse
Affiliation(s)
- Hualu Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoxin Fu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyuan Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Jun Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Cao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Lu Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Li S, Duan F, Qiu Z, Nan Z, Cao X, Yang C, Li W, Shen B. Polymer-Conjugated SOD-Pt⁰ Micelles Enhance ROS Cascade Scavenging to Alleviate Ischemia-Reperfusion Injury During Kidney Transplantation. Adv Healthc Mater 2025:e2500696. [PMID: 40394947 DOI: 10.1002/adhm.202500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Ischemia-reperfusion injury (IRI) during kidney transplantation is linked to oxidative stress induced by excessive reactive oxygen species (ROS), which causes the injury of transplanted kidney, leading to further intensified organ shortages. Protein-based antioxidants have been developed for ROS scavenging via cascade biocatalyst. The in situ growth of metal nanozymes on proteins effectively decreases the steric hindrance between active sites, improving the efficiency of cascade biocatalysts. However, the poor stability of protein during the process of preparation and intracellular delivery leads to low therapeutic effects. In this study, three different functional polymers are conjugated to SOD for the formation of micelles. Surprisingly, it is found that the conjugated ultra-acid sensitive polymer efficiently preserves the enzymatic activity of SOD, due to great endo/lysosomal escape capacity. Subsequently, SOD micelles (SOE) are used as a template to prepare SOE-Pt0 (SOEP) through in situ growth of Pt0 with vicinal enzymatic active sites. The preparation process minimally impacts on the activity of SOD, owing to improved stability. The system exhibits effective cascade ROS scavenging, significantly reducing kidney damage and inflammation caused by IRI. The research offers a novel approach for addressing IRI challenges in organ transplantation and provides a promising strategy to mitigate organ shortages.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Fei Duan
- Department of Nanomedicine, Translational Medicine Research Center, & Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Naval Medical University, Shanghai, 200433, China
| | - Zhiwen Qiu
- Department of Nanomedicine, Translational Medicine Research Center, & Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Naval Medical University, Shanghai, 200433, China
| | - Zhuofan Nan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Wei Li
- Department of Nanomedicine, Translational Medicine Research Center, & Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Naval Medical University, Shanghai, 200433, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
- Department of Urology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, China
| |
Collapse
|
3
|
Shi D, Tao J, Man S, Zhang N, Ma L, Guo L, Huang L, Gao W. Structure, function, signaling pathways and clinical therapeutics: The translational potential of STAT3 as a target for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189207. [PMID: 39500413 DOI: 10.1016/j.bbcan.2024.189207] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024]
Abstract
Cancer remains one of the most difficult human diseases to overcome because of its complexity and diversity. Signal transducers and transcriptional activators 3 (STAT3) protein has been found to be overexpressed in a wide range of cancer types. Hyperactivation of STAT3 is particularly associated with low survival in cancer patients. This review summarizes the specific molecular mechanisms of STAT3 in cancer development. STAT3 is activated by extracellular signals in the cytoplasm, interacts with different enzymes in the nucleus, mitochondria or endoplasmic reticulum, and subsequently participates in cancer development. The phosphorylated STAT3 at tyrosine 705 site (YP-STAT3) enters the nucleus and regulates a number of tumor-related biological processes such as angiogenesis, migration invasion, cell proliferation and cancer cell stemness. In contrast, the phosphorylated STAT3 at serine 727 site (SP-STAT3) is found on the mitochondria, affects electron respiration transport chain activity and thereby prevents tumor cell apoptosis. SP-STAT3 also appears on the mitochondria-associated endoplasmic reticulum membrane, influences the flow of Ca2+, and affects tumor progression. In addition, we summarize the direct and indirect inhibitors of STAT3 which are currently undergoing clinical studies. Some of them such as TTI101 and BBI608 have been approved by the FDA for the treatment of certain cancers. All in all, STAT3 plays an important role in cancer progression and becomes a potential target for cancer treatment.
Collapse
Affiliation(s)
- Dandan Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiejing Tao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Ning Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
4
|
Dessai A, Nayak UY, Nayak Y. Precision nanomedicine to treat non-small cell lung cancer. Life Sci 2024; 346:122614. [PMID: 38604287 DOI: 10.1016/j.lfs.2024.122614] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Lung cancer is a major cause of death worldwide, being often detected at a later stage due to the non-appearance of early symptoms. Therefore, specificity of the treatment is of utmost importance for its effective treatment. Precision medicine is a personalized therapy based on the genomics of the patient to design a suitable drug approach. Genetic mutations render the tumor resistant to specific mutations and the therapy is in vain even though correct medications are prescribed. Therefore, Precision medicine needs to be explored for the treatment of Non-small cell lung cancer (NSCLC). Nanoparticles are widely explored to give personalized interventions to treat lung cancer due to their various advantages like the ability to reach cancer cells, enhanced permeation through tissues, specificity, increased bioavailability, etc. Various nanoparticles (NPs) including gold nanoparticles, carbon nanotubes, aptamer-based NPs etc. were conjugated with biomarkers/diagnostic agents specific to cancer type and were delivered. Various biomarker genes have been identified through precision techniques for the diagnosis and treatment of NSCLC like EGFR, RET, KRAS, ALK, ROS-1, NTRK-1, etc. By incorporating of drug with the nanoparticle through bioconjugation, the specificity of the treatment can be enhanced with this revolutionary treatment. Additionally, integration of theranostic cargos in the nanoparticle would allow diagnosis as well as treatment by targeting the site of disease progression. Therefore, to target NSCLC effectively precision nanomedicine has been adopted in recent times. Here, we present different nanoparticles that are used as precision nanomedicine and their effectiveness against NSCLC disease.
Collapse
Affiliation(s)
- Akanksha Dessai
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Usha Yogendra Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
5
|
Amin H, Ibrahim IM, Hassanein EHM. Weaponizing chitosan and its derivatives in the battle against lung cancer. Int J Biol Macromol 2024; 272:132888. [PMID: 38844273 DOI: 10.1016/j.ijbiomac.2024.132888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Lung cancer (LC) is a crisis of catastrophic proportions. It is a global problem and urgently requires a solution. The classic chemo drugs are lagging behind as they lack selectivity, where their side effects are spilled all over the body, and these adverse effects would be terribly tragic for LC patients. Therefore, they could make a bad situation worse, inflict damage on normal cells, and inflict pain on patients. Since our confidence in classic drugs is eroding, chitosan can offer a major leap forward in LC therapy. It can provide the backbone and the vehicle that enable chemo drugs to penetrate the hard shell of LC. It could be functionalized in a variety of ways to deliver a deadly payload of toxins to kill the bad guys. It is implemented in formulation of polymeric NPs, lipidic NPs, nanocomposites, multiwalled carbon nanotubes, and phototherapeutic agents. This review is a pretty clear proof of chitosan's utility as a weapon in battling LC. Chitosan-based formulations could work effectively to kill LC cells. If a researcher is looking for a vehicle for medication for LC therapy, chitosan can be an appropriate choice.
Collapse
Affiliation(s)
- Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|