1
|
VandenHeuvel SN, Nash LL, Raghavan SA. Dormancy in Metastatic Colorectal Cancer: Tissue Engineering Opportunities for In Vitro Modeling. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40195931 DOI: 10.1089/ten.teb.2025.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Colorectal cancer (CRC) recurs at a striking rate, specifically in patients with liver metastasis. Dormant CRC cells disseminated following initial primary tumor resection or treatment often resurface years later to form aggressive, therapy-resistant tumors that result in high patient mortality. Routine imaging-based screenings often fail to detect dormant cancer cell clusters, and there are no overt symptomatic presentations, making dormant CRC a major clinical challenge to diagnose and treat. Tissue engineering approaches are ideally suited to model dormant cancer cells and enable the discovery of therapeutic vulnerabilities or unique mechanistic dependencies of dormant CRC. Emerging evidence suggests that tissue-engineered approaches have been successfully used to model dormant breast and lung cancer. With CRC responsible for the second most cancer-related deaths worldwide and CRC patients commonly experiencing recurrence, it is essential to expand dormancy models to understand this phenomenon in the context of CRC. Most published in vitro models of CRC dormancy simplify the complex tumor microenvironment with two-dimensional culture systems to elucidate dormancy-driving mechanisms. Building on this foundation, future research should apply tissue engineering methods to this growing field to generate competent three-dimensional models and increase mechanistic knowledge. This review summarizes the current state of in vitro CRC dormancy models, highlighting the techniques utilized to give rise to dormant CRC cells: nutrient depletion, anticancer drugs, physical extracellular matrix interactions, and genetic manipulation. The metrics used to validate dormancy within each model are also consolidated to demonstrate the lack of established standards and the ambiguity around comparing studies that have been validated differently. The methods of these studies are organized in this review to increase comprehensibility and identify needs and opportunities for future bioengineered in vitro models to address dormancy-driven mortality in patients with CRC liver metastasis. Impact Statement Dormant cancer drives high patient mortality, especially in metastatic colorectal cancer, owing to the clinical inability to identify dormant cells prior to their overt recurrence. Lacking clinical insights, in vitro modeling for mechanistic and therapeutic discovery is hindered. Here, we review models and methods of inducing colorectal cancer dormancy with the goal of consolidating findings for reference. We also highlight the need for advanced, tissue-engineered models to better mimic the organ-specific 3D microenvironment of metastatic colorectal cancer. New models would enable breakthroughs in understanding mechanisms driving dormancy progression and reversal, thereby providing context for therapeutic advances to improve patient survival.
Collapse
Affiliation(s)
| | - Lucia L Nash
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Regional Excellence Center in Cancer, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Wang XY, Chen AQ, Huang J, Luo JH, Zou Q. A review on structure, bioactivity, mechanism, structure-activity relationship and application of anti-breast cancer polysaccharides. Int J Biol Macromol 2024; 282:137043. [PMID: 39476909 DOI: 10.1016/j.ijbiomac.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is one of the most common female malignant tumors. BC treatment depends on the use of chemotherapeutic drugs, causing various adverse effects. Increasing evidence has shown that natural polysaccharides (NPs) are potential adjuvants or substitutes for anti-BC drugs. However, the information regarding anti-BC NPs remains scattered. Thus, the recent progress in the structure, bioactivity, mechanism and application of anti-BC NPs is comprehensively summarized in this review. Moreover, the structure-activity relationship is discussed. Additionally, the prospects for future work are proposed. Recent studies have shown that anti-BC NPs have diverse structural features, which are affected by the extraction and purification methods. NPs show anti-BC activities in cell and animal experiments as well as in clinical researches, and enhance anti-BC effects of chemotherapeutic drugs in cell and animal experiments. The anti-BC mechanisms of NPs include anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, immunoenhancement, gut microbiota regulation and others. The anti-BC activities of NPs are influenced by molecular weight, monosaccharide composition, functional groups, glycosidic bond types, backbone and side chains. NPs-based nanoparticles, nanocarriers, drug delivery systems, nanocomposites and other materials can also be used in anti-BC. This review provides theoretical bases for future research and functional application of NPs in anti-BC.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jing Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| | - Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Development and Utilization of Gannan Characteristic Food Function Component of Ganzhou, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
3
|
Wang Z, Han X, Sun G, Yu M, Qin J, Zhang Y, Ding D. Advances in cancer diagnosis and therapy by alginate-based multifunctional hydrogels: A review. Int J Biol Macromol 2024; 283:137707. [PMID: 39566758 DOI: 10.1016/j.ijbiomac.2024.137707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
The field of oncology has been changed by the application of hydrogels. These 3D polymeric networks have demonstrated significant promise in the treatment of cancer and can boost the efficacy of conventional therapeutics including chemotherapy and immunotherapy. Noteworthy, the development of biocompatible and effective hydrogels has been of interest. In this case, alginate as a biopolymer and carbohydrate polymer has been used to modify or synthesis multifunctional nanoparticles for the treatment of human diseases, especially cancer. Therefore, highlighting the function of alginate in the development of hydrogels in cancer therapy can provide new insights for improving outcome and survival rate of patients. Alginate hydrogels improve the specific and selective delivery of cargo and therefore, they reduce the systemic toxicity of drugs, while they enhance anti-cancer activity. Alginate hydrogels protect the genes against degradation by enzymes and increase blood circulation time. The alginate hydrogels can respond to the specific stimuli in the tumor microenvironment including pH, redox and light to improve the site-specific release of cargo. The nanoparticles can be incorporated in the structure of alginate hydrogels to augment their anti-cancer activity. In addition, alginate hydrogels can accelerate immunotherapy and phototherapy through delivery of immunomodulators and photosensitizers, respectively.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xu Han
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guowei Sun
- Interventional Center, Fengcheng Central Hospital, Fengcheng 118199, China
| | - Miao Yu
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Juan Qin
- Department of Endocrinology and Metabolism, Shenyang Fourth People Hospital, Shenyang 110001, China
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
4
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
5
|
Xue H, Zeng H, Zhou S, Shao Y, Chen H, Lei L, Fan X. Polydopamine-coated chondroitin sulfate methacryloyl multifunctional microspheres for wound treatment. Int J Biol Macromol 2024; 280:136087. [PMID: 39341326 DOI: 10.1016/j.ijbiomac.2024.136087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The disappearance of the protective barrier after skin injury leads to the overproduction of reactive oxygen species (ROS) in response to various stimuli. Oxidative stress is one of the most important causes of delayed wound healing, leading to negative outcomes, such as excessive inflammatory response and impaired angiogenesis. In this study, we used microfluidic technology to integrate Prussian blue nanozymes and vascular endothelial growth factor and constructed multifunctional microspheres that improved local oxidative stress. In order to enhance the adhesion of the microspheres on the wound surface and prolong the release of the drug, we coated them with dopamine, ensuring uniform encapsulation on their surface. The microspheres adhered well to the wound surface and promoted wound healing by scavenging ROS, reducing the inflammatory response, and promoting angiogenesis. This strategy of integrating nanozymes and growth factors can have a synergistic effect, which is significant for wound healing.
Collapse
Affiliation(s)
- Huaqian Xue
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China; The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Shaoyu Zhou
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
6
|
Tang M, Song J, Zhang S, Shu X, Liu S, Ashrafizadeh M, Ertas YN, Zhou Y, Lei M. Innovative theranostic hydrogels for targeted gastrointestinal cancer treatment. J Transl Med 2024; 22:970. [PMID: 39465365 PMCID: PMC11514878 DOI: 10.1186/s12967-024-05749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.
Collapse
Affiliation(s)
- Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China
| | - Junzhou Song
- Department of Oncology, BoAo Evergrande International Hospital, Qionghai, 571400, Hainan Province, China
| | - Shuyi Zhang
- Department of Health Management Center, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaolei Shu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Türkiye
- Department of Technical Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Ya Zhou
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China.
| | - Ming Lei
- Department of Nuclear Medicine, Chongqing University FuLing Hospital, Chongqing University, No. 2 Gaosuntang Road, Chongqing, China.
| |
Collapse
|
7
|
Hu P, Jia Z, Zhao S, Lin K, Yang G, Guo W, Yu S, Cheng J, Du G, Shi J. Injectable Therapeutic Hydrogel with H 2O 2 Self-Supplying and GSH Consumption for Synergistic Chemodynamic/Low-Temperature Photothermal Inhibition of Postoperative Tumor Recurrence and Wound Infection. Adv Healthc Mater 2024; 13:e2401551. [PMID: 38923861 DOI: 10.1002/adhm.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Postoperative tumor recurrence and wound infection remain significant clinical challenges in surgery, often requiring adjuvant therapies. The combination treatment of photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be effective in cancer treatment and wound infection. However, the hyperthermia during PTT increases the risk of normal tissue damage, severely impeding its application. Moreover, the efficacy of CDT is limited by insufficient hydrogen peroxide (H2O2) and excessive glutathione (GSH) levels at tumor or infection sites. Herein, an injectable and multifunctional CuO2@Au hydrogel system (CuO2@Au Gel) is developed for synergistic CDT and low-temperature PTT (LTPTT) to prevent tumor recurrence and bacterial wound infections. CuO2@Au Gel is constructed by embedding therapeutic CuO2@Au into low-melting point agarose hydrogel. In vitro and in vivo experiments confirm that the CuO2@Au in CuO2@Au Gel is capable of self-supplying H2O2 and depleting GSH, exhibiting effective CDT effect in acidic tumor or bacterial infected microenvironment. Additionally, it exhibits favorable photothermal conversion ability, inducing localized temperature elevation and synergistically enhancing CDT efficiency. The prepared CuO2@Au Gel demonstrates efficient tumor ablation capability in post-surgery recurrence mouse models and exhibits promising anti-infective efficiency in bacterial infection wound models, indicating significant potential in adjuvant therapy for post-surgical treatment and recovery.
Collapse
Affiliation(s)
- Peng Hu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Zhili Jia
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuang Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Kunpeng Lin
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guoye Yang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Wujie Guo
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Shuling Yu
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Jianjun Cheng
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| | - Guanhua Du
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jiahua Shi
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, State Key Laboratory of Antiviral Drugs, Henan University, Kaifeng, Henan, 475004, P. R. China
| |
Collapse
|
8
|
Ganie SA, Naik RA, Dar OA, Rather LJ, Assiri MA, Li Q. Design and fabrication of functionalized curdlan-curcumin delivery system to facilitate the therapeutic effects of curcumin on breast cancer. Int J Biol Macromol 2024; 267:131388. [PMID: 38608982 DOI: 10.1016/j.ijbiomac.2024.131388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
We developed a facile method for the fabrication of a biodegradable delivery system composed of two blocks: curdlan and curcumin. This was achieved by chemical functionalization of curdlan through tosylation, amination followed by complexation with curcumin. A comprehensive evaluation of structural characterization and component stability showed that cur-cum complex exhibited better anticancer properties with enhanced thermal properties. The cur-cum complex shows pH sensitive sustained release behaviour with higher release at acidic pH and kinetic data of drug release follows the Korsmeyer-Peppas model. The cur-cum complex has ability to block the proliferation of the MCF-7 cell line as revealed by MTT assay which showed increased toxicity of cur-cum complex against these cell lines. The results obtained from western blot analysis demonstrated that the co-administration of cur and cum effectively induced apoptosis in MCF-7 cells. This effect was observed by a considerable upregulation of the Bcl-2/Bax ratio, a decline in mRNA expression of LDHA, level of lactate and LDH activity. The results clearly depict the role of functionalized curdlan as efficient carrier for curcumin delivery with prolonged, sustained release and enhanced bioavailability, thereby improving the overall anticancer activity.
Collapse
Affiliation(s)
- Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| | - Rayees Ahmad Naik
- Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya Sagar, Madhya Pradesh 470003, India
| | - Ovas Ahmad Dar
- College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, PR China.
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Qing Li
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
9
|
Xiong X, Yin C, Tong A, Zhong G, Wu Z, Tong C, Wang X, Liu B. Dermal extracellular matrix gelatin delivering Prussian blue nanoparticles to relieve skin flap ischemia. Int J Biol Macromol 2024; 267:131361. [PMID: 38574902 DOI: 10.1016/j.ijbiomac.2024.131361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
The survival rate of flap is a crucial factor for determining the success of tissue repair and reconstruction. Flap transplantation surgery often leads to ischemic and reperfusion injury, causing apoptosis and tissue necrosis, which significantly reduces the survival rate of flap. To address this issue, we developed a porcine skin decellularized matrix gel nanocomplex loaded with alprostadil (Alp) in Prussian blue nanoparticles (PB NPs) called Alp@PB-Gel. This gel not only maintained the cell affinity of the extracellular scaffold but also exhibited a high degree of plasticity. In vitro assays demonstrated that Alp@PB-Gel possessed antioxidant activity, scavenging ROS ability, and effectively promoted the angiogenesis and migration of human vascular endothelial cells (HUVECs) by stimulating the proliferation of vascular epithelial cells and fibroblasts. In vivo assays further confirmed that Alp@PB-Gel could effectively alleviate necrosis in the early and late stages after surgery, downregulate the levels of NLRP3 and CD68 to inhibit apoptosis and attenuate inflammation, while upregulate the levels of VEGF and CD31 to promote vascular tissue regeneration. Moreover, Alp@PB-Gel exhibited excellent cell affinity and biocompatibility, highlighting its potential for clinical application.
Collapse
Affiliation(s)
- Xiang Xiong
- Department of Plastic and Aesthetic(Burn)Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Caiyun Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Aidi Tong
- College of Biology, Hunan University, Changsha 410082, China
| | - Guowei Zhong
- College of Biology, Hunan University, Changsha 410082, China
| | - Zhou Wu
- College of Biology, Hunan University, Changsha 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiancheng Wang
- Department of Plastic and Aesthetic(Burn)Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China.
| |
Collapse
|
10
|
Wang P, Hou Z, Wang Z, Luo X. Multifunctional Therapeutic Nanodiamond Hydrogels for Infected-Wound Healing and Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9656-9668. [PMID: 38377529 DOI: 10.1021/acsami.3c13464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Wound infection and tumor recurrence are the two main threats to cancer patients after surgery. Although researchers have developed new treatment systems to address the two significant challenges simultaneously, the potential side effects of the heavy-metal-ion-based treatment systems still severely limit their widespread application in therapy. In addition, the wounds from tumor removal compared with general operative wounds are more complex. The tumor wounds mainly exhibit more hemorrhage, larger trauma area, greater vulnerability to bacterial infection, and residual tumor cells. Therefore, a multifunctional treatment platform is urgently needed to integrate rapid hemostasis, sterilization, wound healing promotion, and antitumor functions. In this work, nanodiamonds (NDs), a material that has been well proven to have excellent biocompatibility, are added into a solution of acrylic-grafted chitosan (CEC) and oxidized hyaluronic acid (OHA) to construct a multifunctional treatment platform (CEC-OHA-NDs). The hydrogels exhibit rapid hemostasis, a wound-healing-promoting effect, excellent self-healing, and injectable abilities. Moreover, CEC-OHA-NDs can effectively eliminate bacteria and inhibit tumor proliferation by the warm photothermal effect of NDs under tissue-penetrable near-infrared laser irradiation (NIR) without cytotoxicity. Consequently, we adopt a simple and convenient strategy to construct a multifunctional treatment platform using carbon-based nanomaterials with excellent biocompatibility to promote the healing of infected wounds and to inhibit tumor cell proliferation simultaneously.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zishuo Hou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zizhen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
11
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|