1
|
Cui K, Ren F, Yu J, Pan H. Bioinspired nanomedicines for the management of osteosarcoma: Recent progress and perspectives. Mater Today Bio 2025; 32:101607. [PMID: 40151805 PMCID: PMC11946877 DOI: 10.1016/j.mtbio.2025.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant primary bone tumor, predominantly affecting children and young adults between the ages of 11 and 20. OS presents huge challenges in treatment because of its aggressive nature and high metastatic potential. Chemotherapeutic drugs have attracted considerable interest for the treatment of OS, but they suffer from poor targeting, low bioavailability, severe side effects, and the multi-drug resistance acquired by the tumor. Therefore, it is imperative to develop novel therapeutic tactics that can improve OS outcomes while minimizing toxicity. Bioinspired nanoparticles, designed through exploiting or simulating the biological structures and processes, provide promising strategies for the treatment of OS. In this review, we elaborate on the biological properties and biomedical applications of state-of-the-art bioinspired nanoparticles, including cell membrane-based nanoparticles, exosome-based nanoparticles, protein template-based nanoparticles, and peptide template-based nanoparticles for the management of OS.
Collapse
Affiliation(s)
- Kai Cui
- Department of Orthopaedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| | - Fei Ren
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Jian Yu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| | - Hong Pan
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| |
Collapse
|
2
|
Wen J, Wu X, Shu Z, Wu D, Yin Z, Chen M, Luo K, Liu K, Shen Y, Le Y, Shu Q. Clusterin-mediated polarization of M2 macrophages: a mechanism of temozolomide resistance in glioblastoma stem cells. Stem Cell Res Ther 2025; 16:146. [PMID: 40128761 PMCID: PMC11934612 DOI: 10.1186/s13287-025-04247-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Glioblastoma remains one of the most lethal malignancies, largely due to its resistance to standard chemotherapy such as temozolomide. This study investigates a novel resistance mechanism involving glioblastoma stem cells (GSCs) and the polarization of M2-type macrophages, mediated by the extracellular vesicle (EV)-based transfer of Clusterin. Using 6-week-old male CD34+ humanized huHSC-(M-NSG) mice (NM-NSG-017) and glioblastoma cell lines (T98G and U251), we demonstrated that GSC-derived EVs enriched with Clusterin induce M2 macrophage polarization, thereby enhancing temozolomide resistance in glioblastoma cells. Single-cell and transcriptome sequencing revealed close interactions between GSCs and M2 macrophages, highlighting Clusterin as a key mediator. Our findings indicate that Clusterin-rich EVs from GSCs drive glioblastoma cell proliferation and resistance to temozolomide by modulating macrophage phenotypes. Targeting this pathway could potentially reverse resistance mechanisms, offering a promising therapeutic approach for glioblastoma. This study not only sheds light on a critical pathway underpinning glioblastoma resistance but also lays the groundwork for developing therapies targeting the tumor microenvironment. Our results suggest a paradigm shift in understanding glioblastoma resistance, emphasizing the therapeutic potential of disrupting EV-mediated communication in the tumor microenvironment.
Collapse
Affiliation(s)
- Jianping Wen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China.
| | - Xia Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Zhicheng Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Dongxu Wu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Zonghua Yin
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Minglong Chen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Kun Luo
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Kebo Liu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Yulong Shen
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Yi Le
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China
| | - Qingxia Shu
- Department of Neurosurgery, Hunan University of Medicine General Hospital, No. 144, Jinxi South Road, Hecheng District, Huaihua, 418000, Hunan Province, China.
| |
Collapse
|
3
|
Samanta R, Haldar N, Pamecha A, Gajbhiye V. Cell membrane-camouflaged nanocarriers: A cutting-edge biomimetic technology to develop cancer immunotherapy. Int J Pharm 2025; 672:125336. [PMID: 39947362 DOI: 10.1016/j.ijpharm.2025.125336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The development and growth of many diseases are significantly influenced by immune dysregulation. Similarly, uncontrolled tumor growth occurs in cancer because the immune system is unable to identify and eradicate cancer cells. Therefore, to address this issue, cancer immunotherapy plays a crucial role in detecting tumors and inhibiting their growth. This immune-oncotherapy has gained significant interest over the last decade because of its relevant success in biomedical applications. The fundamental goal of immunotherapy in the war against cancer is to develop potent immunotherapies that have minimal side effects and excellent tumor selectivity. To develop these characteristics, nanotechnology offered promising opportunities for cancer immunotherapy. Cell membrane-coated nanoparticles (CMNPs) have recently evolved, which has a tremendous advantage over other nanoparticles (NPs). The CMNPs can be formed by wrapping cell membranes, which can camouflage the specific cell type, allowing these NPs to survive like "self" during blood circulation and escape immune cell capture. These provide NPs with increased biocompatibility, minimal immunogenicity, longer circulation, and targeted tumor therapy. These advantages have made CMNPs a potential delivery vehicle for immunostimulatory drugs, which can induce immunological responses and lead to cancer immunotherapy. Surface modification of CMNPs using cutting-edge genetic engineering techniques revolutionizes cancer immunotherapy to produce new nano-formulations with greater effectiveness. In this review, we briefly discuss the relationship between cancer and the immune system, various techniques of CMNPs synthesis, and the use of naturally occurring and genetically modified CMNPs for cancer immunotherapy.
Collapse
Affiliation(s)
- Rajkumar Samanta
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007 India
| | - Niladri Haldar
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007 India
| | - Anchal Pamecha
- Place of Work, Nanobioscience Group, Agharkar Research Institute, Pune 411004 India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Savitribai Phule Pune University, Ganeshkhind, Pune 411007 India.
| |
Collapse
|
4
|
Pourmasoumi P, Banihashemian SA, Zamani F, Rasouli-Nia A, Mehrabani D, Karimi-Busheri F. Nanoparticle-Based Approaches in the Diagnosis and Treatment of Brain Tumors. J Clin Med 2024; 13:7449. [PMID: 39685907 DOI: 10.3390/jcm13237449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastomas are highly invasive brain tumors among perilous diseases. They are characterized by their fast proliferation and delayed detection that render them a significant focal point for medical research endeavors within the realm of cancer. Among glioblastomas, Glioblastoma multiforme (GBM) is the most aggressive and prevalent malignant brain tumor. For this, nanomaterials such as metallic and lipid nanoparticles and quantum dots have been acknowledged as efficient carriers. These nano-materials traverse the blood-brain barrier (BBB) and integrate and reach the necessary regions for neuro-oncology imaging and treatment purposes. This paper provides a thorough analysis on nanoparticles used in the diagnosis and treatment of brain tumors, especially for GBM.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Seyed Abdolvahab Banihashemian
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Farshid Zamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Davood Mehrabani
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
5
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
6
|
Xiang Y, Qiu Z, Ding Y, Du M, Gao N, Cao H, Zuo H, Cheng H, Gao X, Zheng S, Wan W, Huang X, Hu K. Dexamethasone-loaded ROS stimuli-responsive nanogels for topical ocular therapy of corneal neovascularization. J Control Release 2024; 372:874-884. [PMID: 38977133 DOI: 10.1016/j.jconrel.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Dexamethasone (DEX) has been demonstrated to inhibit the inflammatory corneal neovascularization (CNV). However, the therapeutic efficacy of DEX is limited by the poor bioavailability of conventional eye drops and the increased risk of hormonal glaucoma and cataract associated with prolonged and frequent usage. To address these limitations, we have developed a novel DEX-loaded, reactive oxygen species (ROS)-responsive, controlled-release nanogel, termed DEX@INHANGs. This advanced nanogel system is constructed by the formation of supramolecular host-guest complexes by cyclodextrin (CD) and adamantane (ADA) as a cross-linking force. The introduction of the ROS-responsive material, thioketal (TK), ensures the controlled release of DEX in response to oxidative stress, a characteristic of CNV. Furthermore, the nanogel's prolonged retention on the corneal surface for over 8 h is achieved through covalent binding of the integrin β1 fusion protein, which enhances its bioavailability. Cytotoxicity assays demonstrated that DEX@INHANGs was not notably toxic to human corneal epithelial cells (HCECs). Furthermore, DEX@INHANGs has been demonstrated to effectively inhibit angiogenesis in vitro. In a rabbit model with chemically burned eyes, the once-daily topical application of DEX@INHANGs was observed to effectively suppress CNV. These results collectively indicate that the nanomedicine formulation of DEX@INHANGs may offer a promising treatment option for CNV, offering significant advantages such as reduced dosing frequency and enhanced patient compliance.
Collapse
Affiliation(s)
- Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Zhu Qiu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Huijie Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Hong Cheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No.266 Fangzheng Avenue, Beibei District, Chongqing 400714, China.
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, No.1 Youyi Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
7
|
Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater 2024; 13:e2400514. [PMID: 38652681 DOI: 10.1002/adhm.202400514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Haifeng Yang
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
8
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
9
|
Zhang S, Zhang X, Gao H, Zhang X, Sun L, Huang Y, Zhang J, Ding B. Cell Membrane-Coated Biomimetic Nanoparticles in Cancer Treatment. Pharmaceutics 2024; 16:531. [PMID: 38675192 PMCID: PMC11055162 DOI: 10.3390/pharmaceutics16040531] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug delivery systems have emerged as a focal point of research and development, due to their exceptional traits, including precise targeting, low toxicity, and good biocompatibility. This review outlines the categorization and advantages of cell membrane bionic nano-delivery systems, provides an introduction to preparation methods, and assesses their applications in cancer treatment, including chemotherapy, gene therapy, immunotherapy, photodynamic therapy, photothermal therapy, and combination therapy. Notably, the review delves into the challenges in the application of various cell membrane bionic nano-delivery systems and identifies opportunities for future advancement. Embracing cell membrane-coated biomimetic nanoparticles presents a novel and unparalleled avenue for personalized tumor therapy.
Collapse
Affiliation(s)
- Shu Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 214122, China;
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaojuan Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Huan Gao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaoqin Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Lidan Sun
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Yueyan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Jie Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| |
Collapse
|
10
|
Meng Y, Sun J, Yu T, Piao H. Plant-derived nanovesicles offer a promising avenue for anti-aging interventions. PHYSIOLOGIA PLANTARUM 2024; 176:e14283. [PMID: 38627963 DOI: 10.1111/ppl.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Over the past few years, the study of plant-derived nanovesicles (PDNVs) has emerged as a hot topic of discussion and research in the scientific community. This remarkable interest stems from their potential role in facilitating intercellular communication and their unique ability to deliver biologically active components, including proteins, lipids, and miRNAs, to recipient cells. This fascinating ability to act as a molecular courier has opened up an entirely new dimension in our understanding of plant biology. The field of research focusing on the potential applications of PDNVs is still in its nascent stages. However, it has already started gaining traction due to the growing interest in its possible use in various branches of biotechnology and medicine. Their unique properties and versatile applications offer promising future research and development prospects in these fields. Despite the significant progress in our understanding, many unanswered questions and mysteries surround the mechanisms by which PDNVs function and their potential applications. There is a dire need for further extensive research to elucidate these mechanisms and explore the full potential of these fascinating vesicles. As the technology at our disposal advances and our understanding of PDNVs deepens, it is beyond doubt that PDNVs will continue to be a subject of intense research in anti-aging therapeutics. This comprehensive review is designed to delve into the fascinating and multifaceted world of PDNV-based research, particularly focusing on how these nanovesicles can be applied to anti-aging therapeutics.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| |
Collapse
|
11
|
Fernández-Borbolla A, García-Hevia L, Fanarraga ML. Cell Membrane-Coated Nanoparticles for Precision Medicine: A Comprehensive Review of Coating Techniques for Tissue-Specific Therapeutics. Int J Mol Sci 2024; 25:2071. [PMID: 38396747 PMCID: PMC10889273 DOI: 10.3390/ijms25042071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoencapsulation has become a recent advancement in drug delivery, enhancing stability, bioavailability, and enabling controlled, targeted substance delivery to specific cells or tissues. However, traditional nanoparticle delivery faces challenges such as a short circulation time and immune recognition. To tackle these issues, cell membrane-coated nanoparticles have been suggested as a practical alternative. The production process involves three main stages: cell lysis and membrane fragmentation, membrane isolation, and nanoparticle coating. Cell membranes are typically fragmented using hypotonic lysis with homogenization or sonication. Subsequent membrane fragments are isolated through multiple centrifugation steps. Coating nanoparticles can be achieved through extrusion, sonication, or a combination of both methods. Notably, this analysis reveals the absence of a universally applicable method for nanoparticle coating, as the three stages differ significantly in their procedures. This review explores current developments and approaches to cell membrane-coated nanoparticles, highlighting their potential as an effective alternative for targeted drug delivery and various therapeutic applications.
Collapse
Affiliation(s)
- Andrés Fernández-Borbolla
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Lorena García-Hevia
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| | - Mónica L. Fanarraga
- The Nanomedicine Group, Institute Valdecilla-IDIVAL, 39011 Santander, Spain; (A.F.-B.); (L.G.-H.)
- Molecular Biology Department, Faculty of Medicine, Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|