1
|
Dong L, Jiang S, Lou W, Xu C, Wang J. Cationic Lipid-Assisted PEG-b-PLA Nanoparticles Achieve Long-Lasting Targeted Delivery of Natural Hydrophobic Antioxidants. Mol Nutr Food Res 2025; 69:e202400703. [PMID: 39981785 DOI: 10.1002/mnfr.202400703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/23/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Natural hydrophobic antioxidants (e.g., β-carotene and naringenin) are severely limited in their application due to their low solubility and high sensitivity properties. In this study, cationic lipid-assisted nanoparticles loaded with β-carotene (NP-BC) and naringenin (NP-NAR), respectively, were fabricated and characterized, and their digestive and metabolic behaviors were evaluated using static digestion models and in vivo imaging. The particle size and potential of cationic polymer nanoparticles changed during digestion but retained their structural integrity, which was conducive to targeted drug delivery to the liver and prolonged the in vivo circulation of the drug. It is noteworthy that whereas NP-BC was more advantageous in lowering hepatic fat deposition, NP-NAR successfully limited weight gain. This study proved that cationic polymer nanoparticles are promising carriers for transporting natural hydrophobic antioxidants and may be beneficial for improving nutrition absorption and targeted delivery to alleviate metabolic dysfunction-associated steatotic liver disease (MASLD) symptoms.
Collapse
Affiliation(s)
- Lu Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shuiqing Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Wenyong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Congfei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Juan Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [DOI: https:/doi.org/10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 05/15/2025]
Abstract
Background:
Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality,
necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a
promising frontier in addressing the complexities of CVDs.
Objective:
This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications
in therapeutics and diagnostics.
Observations:
In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such
as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes,
nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with
minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration
of multifunctional components, such as therapeutic agents and target ligands, into a single system for
comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and
monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac
biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further,
nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization
of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution
imaging and aid in the visualization of cardiovascular structures and abnormalities.
Conclusion:
The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular
healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection
for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand,
Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah,
Saudi Arabia
| |
Collapse
|
3
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [PMID: 39506444 DOI: 10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs. OBJECTIVE This study aims to explore the interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics. OBSERVATIONS In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, Nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities. CONCLUSION The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand, Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Zhu M, Chen X, Zhang Y, Chen Y, Wu J, Duan X. Intestinal probiotic-based nanoparticles for cytotoxic siRNA delivery in immunotherapy against cancer. Int J Pharm 2024; 665:124689. [PMID: 39278289 DOI: 10.1016/j.ijpharm.2024.124689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/14/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Immunogene therapy has emerged as strategy against cancer by introducing immune-stimulating components into gene therapy. However, there is still a need for an ideal platform to achieve both immune stimulation and efficient gene delivery. Lactobacillus reuteri has potential immunomodulatory activity owing to its unique antigenicity, which is potentially relevant to cancer progression. Here, we designed a novel non-viral siRNA vector (DMPLAC) by encapsulating Lactobacillus reuteri lysate in DMP. DMPLAC can promote maturation and activation of immune cells, increase infiltration of APC and cytotoxic T cells in tumor microenvironment, and exhibit tumor suppressive effects. Loading of siRNA targeting Stat3, DMPLAC/siStat3 further inhibits tumor in multiple models. We designed a strategy that combines immune activation with Stat3 silencing, triggering an immune response and tumor killing. This dual-functional design provides a new choice in development of effective immunogene therapy.
Collapse
Affiliation(s)
- Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaohua Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yueyang Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yang Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
5
|
Li B, Ma L, Li X, Suleman Z, Liu C, Piskareva O, Liu M. Size matters: Altering antigen specific immune tolerance by tuning size of particles. J Control Release 2024; 373:823-836. [PMID: 39094633 DOI: 10.1016/j.jconrel.2024.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Precisely co-delivering antigens and immunosuppressants via nano/microcarriers to antigen-presenting cells (APCs) to induce antigen-specific immune tolerance represents a highly promising strategy for treating or preventing autoimmune diseases. The physicochemical properties of nano/microcarriers play a pivotal role in regulating immune function, with particle size and surface charge emerging as crucial parameters. In particular, very few studies have investigated micron-scale carriers of antigens. Herein, various nanoparticles and microparticles (NPs/MPs) with diverse particle sizes (ranging from 200 nm to 5 μm) and surface charges were prepared. Antigen peptides (MOG35-55) and immunosuppressants were encapsulated in these particles to induce antigen-specific immune tolerance. Two emulsifiers, PVA and PEMA, were employed to confer different surface charges to the NPs/MPs. The in vitro and in vivo studies demonstrated that NP/MP-PEMA could induce immune tolerance earlier than NP/MP-PVA and that NP/MP-PVA could induce immune tolerance more slowly and sustainably, indicating that highly negatively charged particles can induce immune tolerance more rapidly. Among the different sizes and charged particles tested, 200-nm-NP-PVA and 3-μm-MP-PEMA induced the greatest immune tolerance. In addition, the combination of NPs with MPs can further improve the induction of immune tolerance. In particular, combining 200 nm-NP-PVA with 3 μm-MP-PEMA or combining 500 nm-NP-PEMA with 3 μm-MP-PVA had optimal therapeutic efficacy. This study offers a new perspective for treating diseases by combining NPs with MPs and applying different emulsifiers to prepare NPs and MPs.
Collapse
Affiliation(s)
- Baisong Li
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Lin Ma
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Xiwen Li
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China
| | - Zainab Suleman
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Changming Liu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China
| | - Olga Piskareva
- Department of Anatomy and Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - Mi Liu
- Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu 215300, People's Republic of China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; Suzhou Ersheng Biopharmaceutical Co., Ltd, Suzhou, 215123, People's Republic of China.
| |
Collapse
|