1
|
Wang Y, Wang Z, Li Q, Feng Y, Li J, Lu Y, Zhang J, Ke X. A "three-in-one" thermosensitive gel system that enhances mucus and biofilm penetration for the treatment of vulvovaginal candidiasis. J Control Release 2025; 382:113666. [PMID: 40147534 DOI: 10.1016/j.jconrel.2025.113666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The special physiological barriers of women, such as vaginal mucus and self-cleaning behavior, pose great challenges for the treatment of vulvovaginal candidiasis (VVC), and the drug resistance caused by fungal biofilms limits the application of existing antifungal drugs. Based on this, we designed a "three-in-one" thermosensitive gel system (AF/BP Gel) loaded with antibiofilm nanoparticles (AF NPs) and mucus penetration-assisting nanoparticles (BP NPs) to achieve vaginal adhesion while enhancing mucus and biofilm penetration. AF NPs were loaded with farnesol (FAR) and amphotericin B (AMB), and FAR is one of quorum sensing molecules which can interfere with biofilm-related genes such as ALS3, HWP1, RAS1, CPH1, EFG1, NRG1, TUP1, UME6, and disperse mature biofilm, thus playing a synergic antibiofilm role with AMB. BP NPs was loaded with bromelain (BRO), which cleared the mucus barrier for AF NPs and help it penetrate deep into the infection. These two kinds of nanoparticles use the thermosensitive gel matrix to reach the surface of the vaginal mucosa uniformly and persistently to overcome the obstacle of vaginal self-cleaning. AF/BP Gel showed great anti-candida albicans activity in vitro and in vivo, and greatly improved the inflammatory conditions in VVC mice. Overall, this "three-in-one" thermosensitive gel system can overcome multiple physiological barriers and resist different periods of biofilm, providing a new platform for treating vagina-associated infections.
Collapse
Affiliation(s)
- Yameng Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyuan Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qibin Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yangjun Feng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinling Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxiang Lu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - JingYing Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Ke
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Mishra R, Singh TG, Bhatia R, Awasthi A. Unveiling the therapeutic journey of snail mucus in diabetic wound care. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6531-6560. [PMID: 39869187 DOI: 10.1007/s00210-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization. Additionally, in DW there is the presence of microbial load which makes the wound worse and impedes the wound healing cycle. There are several treatment strategies which have been employed by the researchers to mitigate the aforementioned challenges. However, they failed to address the multifactorial pathogenic nature of the disease. Looking at the severity of the disease researchers have explored snail mucus and its components such as achacin, allantoin, elastin, collagen, and glycosaminoglycan due to its multiple therapeutic potentials; however, glycosaminoglycan (GAGs) is very important among all because they accelerate the wound-healing process by promoting reepithelialization, vascularization, granulation, and angiogenesis at the site of injury. Despite its varied applications, the field of snail mucus in wound healing is still underexplored. The present review aims to highlight the role of snail mucus in diabetic wound healing, the advantages of snail mucus over conventional treatments, the therapeutic potential of snail mucus, and the application of snail mucus in DW. Additionally, clinical trials, patents, structural variations, and advancements in snail mucus characterization have been covered in the article.
Collapse
Affiliation(s)
- Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
3
|
Wu S, Xia X, Zhou R, Zhao H. Hydrogel-enabled ROS-GSH modulation for sustained copper-mediated chemodynamic therapy of oral squamous cell carcinoma. J Control Release 2025; 383:113772. [PMID: 40280240 DOI: 10.1016/j.jconrel.2025.113772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Copper ion (Cu2+) has been revealed to be involved in the occurrence and development of oral squamous cell carcinoma (OSCC), making copper-mediated chemodynamic therapy (Cu-CDT) a promising treatment strategy for OSCC by elevating Cu2+ levels to generating a large amount of reactive oxygen species (ROS). However, the excessive reduced glutathione (GSH) in the tumor microenvironment can scavenge the ROS generated by Cu-CDT. While the directional co-delivery of Cu2+ and GSH-depleting agents shows promise for Cu-CDT in OSCC therapy, their rapid metabolism and the superficial nature of OSCC lesions necessitate tailored drug formulations to ensure effective bioavailability. To counteract this challenge, this work proposed a practical hydrogel-supported ROS-GSH regulation strategy, which involves the on-demand design of a copper ion-crosslinked guanosine-based hydrogel (GCD) containing dimethyl fumarate (DMF, which conjugates with GSH for consumption). It can directionally and sustainably co-deliver Cu2+ and DMF to OSCC lesions under mildly acidic pH conditions, thereby enhancing Cu-CDT efficiency through improved Cu2+ utilization and DMF-driven GSH depletion. As anticipated, the strategy sustains the generation of hydroxyl radicals, effectively inducing apoptosis and suppressing cell proliferation in CAL-27 cells, which consequently inhibits the growth of OSCC tumors. Therefore, this work highlights the GCD hydrogel's great potential as a promising Cu-CDT therapeutic platform.
Collapse
Affiliation(s)
- Shihong Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
You C, Wang C, Ma Z, Yu Q, Liu S. Review on application of silk fibroin hydrogels in the management of wound healing. Int J Biol Macromol 2025; 298:140082. [PMID: 39832605 DOI: 10.1016/j.ijbiomac.2025.140082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care. Its remarkable biocompatibility facilitates seamless integration with host tissues, thereby minimizing the risk of rejection or adverse reactions. Furthermore, its intrinsic degradability permits controlled release of therapeutic agents, promoting an optimal microenvironment conducive to healing. This review investigates the multifaceted potential of silk fibroin specifically as a wound dressing material and examines the intricate nuances associated with its application in hydrogels for wound healing, aiming to furnish a thorough overview for both researchers and clinicians. By scrutinizing underlying mechanisms, current applications, and prospective directions, we aspire to cultivate new insights and inspire innovative strategies within this rapidly evolving field.
Collapse
Affiliation(s)
- Chang You
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Changkun Wang
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Zhenghao Ma
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Qianhui Yu
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Wu H, Li Y, Shi L, Liu Y, Shen J. New Advances in Periodontal Functional Materials Based on Antibacterial, Anti-Inflammatory, and Tissue Regeneration Strategies. Adv Healthc Mater 2025; 14:e2403206. [PMID: 39895157 DOI: 10.1002/adhm.202403206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/17/2025] [Indexed: 02/04/2025]
Abstract
With the global population aging, awareness of oral health is rising. Periodontitis, a widespread bacterial infectious disease, is gaining attention. Current novel biomaterials address key clinical issues like bacterial infection, gum inflammation, tooth loosening, and loss, focusing on antibacterial, anti-inflammatory, and tissue regeneration properties. However, strategies that integrate the advantages of these biomaterials to achieve synergistic therapeutic effects by clearing oral biofilms, inhibiting inflammation activation, and restoring periodontal soft and hard tissue functions remain very limited. Recent studies highlight the link between periodontitis and systemic diseases, underscoring the complexity of the periodontal disease. There is an urgent need to find comprehensive treatment plans that address clinical requirements. Whether by integrating new biomaterials to enhance existing periodontal treatments or by developing novel approaches to replace traditional therapies, these efforts will drive advancements in periodontitis treatment. Therefore, this review compares novel biomaterials with traditional treatments. It highlights the design concepts and mechanisms of these functional materials, focusing on their antibacterial, anti-inflammatory, and tissue regeneration properties, and discusses the importance of developing comprehensive treatment strategies. This review aims to provide guidance for emerging periodontitis research and to promote the development of precise and efficient treatment strategies.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
6
|
Yin Y, Guo W, Chen Q, Tang Z, Liu Z, Lin R, Pan T, Zhan J, Ren L. A Single H 2S-Releasing Nanozyme for Comprehensive Diabetic Wound Healing through Multistep Intervention. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18134-18149. [PMID: 40088144 DOI: 10.1021/acsami.5c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Diabetic wound healing presents a significant medical challenge and requires multistep interventions due to comprehensive wound environments, such as hyperglycemia, bacterial infection, and impaired angiogenesis. However, current multistep interventions are complicated and need on-demand sequential release and synergy of multicomponents. Herein, a H2S-releasing cascade nanozyme (FeS@Au), which is composed of ultrasmall gold nanocluster (AuNC) loaded on ferrous sulfide nanoparticle (FeSNP), is developed as a single component to regulate glucose level, eliminate infection, and promote angiogenesis, achieving multistep interventions for comprehensive diabetic wound treatment. The glucose oxidase-like activity of AuNC catalyzes glucose into gluconic acid and H2O2, which not only lowers the local glucose level but also decreases the local pH and increases H2O2 level to boost the peroxidase-like activity of FeSNP to generate abundant hydroxyl radical (reactive oxygen species, ROS), inducing ferroptosis-like death in drug-resistant bacteria. Additionally, FeSNP release H2S in the acidified environment to upregulate hypoxia-inducible factor-1 to enhance vascularization through upregulating the expression of vascular endothelial growth factor (VEGF) and other angiogenesis-related genes, reducing the damage to endothelial cells caused by excessive ROS produced by the nanozyme. In a full-thickness MRSA-infected diabetic rat model, FeS@Au significantly eliminates bacteria, enhances angiogenesis, promotes collagen deposition, and accelerates wound healing. This work presents a single nanozyme with H2S-release for multistep interventions, providing a versatile strategy for healing extensive tissue damage caused by diabetes.
Collapse
Affiliation(s)
- Ying Yin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Wentai Guo
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Qiangyu Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Zhimin Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Zheng Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Ruibin Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Ting Pan
- Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, 511443 Guangzhou, China
| | - Jiezhao Zhan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Liu H, Ai R, Liu B, He L. Dual ROS/Glucose-Responsive Quercetin-Loaded Supramolecular Hydrogel for Diabetic Wound Healing. Biomacromolecules 2025; 26:1541-1554. [PMID: 39908554 DOI: 10.1021/acs.biomac.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Diabetic wound healing remains a significant challenge due to complex pathological mechanisms, including prolonged inflammation, excessive reactive oxygen species (ROS) accumulation, angiogenesis dysfunction, and increased susceptibility to bacterial infection. In this study, we developed a dual ROS/glucose-responsive quercetin-loaded supramolecular hydrogel (GPQ hydrogel) for treating diabetic wounds. The hydrogel was fabricated by incorporating quercetin (QUE) into a guanosine-phenylboronic acid (GP) hydrogel network through dynamic borate ester bonds. Structural characterization revealed the formation of a typical G-quadruplex structure in the GPQ hydrogel. The dual responsiveness to ROS and glucose enabled the controlled release of QUE, effectively addressing the abnormal wound microenvironment in diabetes. In vitro studies demonstrated the excellent antibacterial, antioxidant, anti-inflammatory, and pro-angiogenic properties of the GPQ hydrogel. Furthermore, the in vivo diabetic wound healing study using a full-thickness wound model in streptozotocin-induced diabetic rats showed that the GPQ hydrogel significantly accelerated wound closure, enhanced re-epithelialization and collagen deposition, and promoted angiogenesis compared to the control and GP hydrogel groups. Immunofluorescence analysis confirmed the superior antioxidant and pro-angiogenic effects of the GPQ hydrogel in the wound microenvironment. This study presents a promising multifunctional biomaterial for effectively managing diabetic wounds.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ronger Ai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bizhi Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Li He
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Ma C, Li Y, Liu B, Deng J, Gao X, Zhang H, Zhang B, Zhou Q, Peng X, Zhang H. Exosomes derived from adipose mesenchymal stem cells promote corneal injury repair and inhibit the formation of scars by anti-apoptosis. Colloids Surf B Biointerfaces 2025; 247:114454. [PMID: 39675062 DOI: 10.1016/j.colsurfb.2024.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
In the corneal wound healing process, epithelial cell re-epithelialization and migration are the critical first steps following an injury. As the disease progresses, orderly regeneration of corneal stromal collagen and mild corneal stromal fibrosis are vital for corneal function reconstruction. Exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exos) have emerged as a promising therapy due to their anti-oxidant, anti-apoptosis, and tissue repair properties. In this study, we successfully isolated exosomes via differential centrifugation and verified their effective extraction through transmission electron microscopy and nanoparticle tracking analysis. In vitro, ADSCs-Exos increased corneal epithelial cell migration by 20 % and reduced oxidative damage by 50 %. In addition, ADSCs-Exos demonstrated remarkable wound healing properties in corneal tissue. This effect was attributed to their ability to inhibit apoptosis of corneal stroma cells by upregulating Bax and downregulating Bcl2, reducing the Bax/Bcl2 protein expression ratio from 1 to 0.45. This decrease may subsequently inhibit α-SMA expression, thereby preventing corneal scarring. Overall, this research has elucidated the effects and potential targets of ADSCs-Exos in promoting corneal wound repair, offering a novel and promising approach for treating corneal injuries.
Collapse
Affiliation(s)
- Chunli Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yixiao Li
- Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China; Shandong University, Jinan 250100, China
| | - Baoling Liu
- Department of Oncology, Linyi People's Hospital, Linyi 276000, China
| | - Junjie Deng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China
| | - Xue Gao
- Shandong University, Jinan 250100, China; The Second Hospital of Shandong University, Jinan 250033, China
| | - Huixin Zhang
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Bingqiang Zhang
- Qingdao Key Laboratory of Cancer and Immune Cells, Qingdao Restore Medical Testing Laboratory Co., Ltd., Qingdao 266111, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Xiaoting Peng
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Han Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Shandong First Medical University & Shandong Academy of Medical Science, Jinan 271016, China.
| |
Collapse
|
9
|
Xie L, Wu H, Li Y, Shi L, Liu Y. Recent Development of Nanozymes for Combating Bacterial Drug Resistance: A Review. Adv Healthc Mater 2025; 14:e2402659. [PMID: 39388414 DOI: 10.1002/adhm.202402659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Indexed: 10/12/2024]
Abstract
The World Health Organization has warned that without effective action, deaths from drug-resistant bacteria can exceed 10 million annually, making it the leading cause of death. Conventional antibiotics are becoming less effective due to rapid bacterial drug resistance and slowed new antibiotic development, necessitating new strategies. Recently, materials with catalytic/enzymatic properties, known as nanozymes, have been developed, inspired by natural enzymes essential for bacterial eradication. Unlike recent literature reviews that broadly cover nanozyme design and biomedical applications, this review focuses on the latest advancements in nanozymes for combating bacterial drug resistance, emphasizing their design, structural characteristics, applications in combination therapy, and future prospects. This approach aims to promote nanozyme development for combating bacterial drug resistance, especially towards clinical translation.
Collapse
Affiliation(s)
- Lingping Xie
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
| | - Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yong Liu
- The People's Hospital of Yuhuan, Taizhou, Zhejiang, 317600, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Huang Q, Hu Y, Chen Y, Zhou M, Zhang Y, Sun Z, Chen Z. An antimicrobial and adhesive conductive chitosan quaternary ammonium salt hydrogel dressing for combined electrical stimulation and photothermal treatment to promote wound healing. Carbohydr Polym 2025; 351:123136. [PMID: 39779038 DOI: 10.1016/j.carbpol.2024.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study is to investigate the effect of the adhesive, conductive hydrogel on wound healing when used as a therapeutic dressing. Herein, a dressing of PVA/QCS/TP@Fe3+ (PQTF) was designed and prepared integrating polyvinyl alcohol (PVA), chitosan quaternary ammonium salt (QCS), tea polyphenol (TP), and ferric ions (Fe3+) by a simple one-pot and freeze-thaw method. In view of the comprehensive properties of PQTF600 hydrogel, including adhesion, electrical conductivity, and swelling performance, PQTF600 was selected for subsequent in vitro and in vivo healing promotion studies. PQTF600 had good adhesion and conductive ability, which was suitable for human motion monitoring and wound treatment. Notably, the PQTF600 showed and controllable human safety temperature thresholds (~44.8 °C) under near-infrared light (NIR). Meanwhile, PQTF600 achieved nearly 100 % antibacterial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas putida (P. putida), methicillin-resistant Staphylococcus aureus (MRSA). In addition, the PQTF600 hydrogel dressing was demonstrated to achieve 99.59 ± 4.11 % would healing rate in a mouse trauma model under the dual stimulation of NIR (808 nm) and electricity (1.5 V direct current). The versatile PQTF600 hydrogel is a promising dressing for enhancing wound closure integrating with electrical stimulation (ES) and photothermal therapy.
Collapse
Affiliation(s)
- Qiaoyu Huang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yong Hu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yige Chen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Man Zhou
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhengguang Sun
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhaoxia Chen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Material Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Wu H, Liu Y, Wang Y, Piao Y, Meng Z, Hu X, Shi L, Shen J, Li Y. Dynamic Covalent Prodrug Nanonetworks via Reaction-Induced Self-Assembly for Periodontitis Treatment. ACS NANO 2024; 18:34884-34901. [PMID: 39663546 DOI: 10.1021/acsnano.4c12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Periodontitis is characterized by dysbiotic biofilms, gingival inflammation, and bone resorption, highlighting the urgent need for a comprehensive approach to drug combination therapy. In this study, we introduce dynamic covalent nanonetworks (dcNNWs) synthesized through a one-pot, four-component reaction-induced self-assembly method using polyamines, 2-formylphenylboronic acid, epigallocatechin gallate, and alendronate. The formation of iminoboronate bonds drives the creation of dcNNWs, allowing controlled release in the periodontitis microenvironment. The inclusion of catechol and bisphosphonate imparts exceptional bioadhesive properties to the dcNNWs, enhancing their efficacy in preventing pathogenic bacterial biofilm formation and eliminating mature biofilms. Moreover, the dcNNWs efficiently absorb pathogen-associated molecular patterns and scavenge excess reactive oxygen species, regulating the local immune response and demonstrating anti-inflammatory effects. Additionally, the released polyphenol and alendronate from the dcNNWs alleviated inflammation and enhanced osteogenesis significantly. The detailed synergistic effects of dcNNWs in biofilm eradication, anti-inflammation, and bone remodeling, with minimal impact on healthy tissues, are confirmed in a rat model of periodontitis. With a facile synthesis process, excellent synergistic effects in periodontitis treatment, and biocompatibility, our dcNNWs present a promising and translational solution for the effective management of periodontitis.
Collapse
Affiliation(s)
- Haoyue Wu
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yumeng Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University institution, Wenzhou, Zhejiang 325035, China
| | - Yinzi Piao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zhuojun Meng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Xiaowen Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China
| | - Yuanfeng Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University institution, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
12
|
Lv X, Li H, Chen Y, Wang Y, Chi J, Wang S, Yang Y, Han B, Jiang Z. Crocin-1 laden thermosensitive chitosan-based hydrogel with smart anti-inflammatory performance for severe full-thickness burn wound therapeutics. Carbohydr Polym 2024; 345:122603. [PMID: 39227115 DOI: 10.1016/j.carbpol.2024.122603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Burns are the fourth most common type of civilian trauma worldwide, and the management of severe irregular scald wounds remains a significant challenge. Herein, crocin-1 laden hydroxybutyl chitosan (CRO-HBC) thermosensitive hydrogel with smart anti-inflammatory performance was developed for accelerating full-thickness burn healing. The injectable and shape adaptability of the CRO-HBC gel make it a promising candidate for effectively filling scald wounds with irregular shapes, while simultaneously providing protection against external pathogens. The CRO-HBC gel network formed by hydrophobic interactions exhibited an initial burst release of crocin-1, followed by a gradual and sustained release over time. The excessive release of ROS and pro-inflammatory cytokines should be effectively regulated in the early stage of wound healing. The controlled release of crocin-1 from the CRO-HBC gel adequately addresses this requirement for wound healing. The CRO-HBC hydrogel also exhibited an excellent biocompatibility, an appropriate biodegradability, keratinocyte migration facilitation properties, and a reactive oxygen species scavenging capability. The composite CRO-HBC hydrogel intelligently mitigated inflammatory responses, promoted angiogenesis, and exhibited a commendable efficacy for tissue regeneration in a full-thickness scalding model. Overall, this innovative temperature-sensitive CRO-HBC injectable hydrogel dressing with smart anti-inflammatory performance has enormous potential for managing severe scald wounds.
Collapse
Affiliation(s)
- Xiansen Lv
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Hui Li
- Qingdao Institute of Preventive Medicine, Qingdao Municipal Center for Disease Control & Prevention, Qingdao 266033, PR China
| | - Ya Chen
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanting Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yan Yang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
13
|
Liu H, Wei X, Peng H, Yang Y, Hu Z, Rao Y, Wang Z, Dou J, Huang X, Hu Q, Tan L, Wang Y, Chen J, Liu L, Yang Y, Wu J, Hu X, Lu S, Shang W, Rao X. LysSYL-Loaded pH-Switchable Self-Assembling Peptide Hydrogels Promote Methicillin-Resistant Staphylococcus Aureus Elimination and Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412154. [PMID: 39548922 DOI: 10.1002/adma.202412154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/26/2024] [Indexed: 11/18/2024]
Abstract
Staphylococcus aureus (S. aureus), especially methicillin-resistant S. aureus (MRSA), causes wound infections, whose treatment remains a clinical challenge. Bacterium-infected wounds often create acidic niches with a pH 4.5-6.5. Endolysin LysSYL, which is derived from phage SYL, shows promise as an antistaphylococcal agent. However, endolysins generally exhibit instability and possess low bioavailability in acidic microenvironments. Here, an array of self-assembling peptides is designed, and peptide L5 is screened out based on its gel formation property and bioavailability. L5 exerted a pH-switchable antimicrobial effect (pH 5.5) and formed biocompatible hydrogels at neutral pH (pH 7.4). The LysSYL-loaded L5 can assemble L5@LysSYL hydrogels, increase thermal stability, and exhibit the slow-release effect of LysSYL. Effective elimination of S. aureus is achieved by L5@LysSYL through bacterial membrane disruption and cell separation inhibition. Moreover, L5@LysSYL hydrogels exhibit great potential in promoting wound healing in a mouse wound model infected by MRSA. Furthermore, L5@LysSYL hydrogels are safe and can decrease the cytokine levels and increase the number of key factors for vessel formation, which contribute to wound healing. Overall, the self-assembling L5@LysSYL can effectively clean MRSA and promote wound healing, which suggests its potential as a pH-sensitive wound dressing for the management of wound infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xuemei Wei
- Institute of Biomedical Research, Southwest University, Chongqing, 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yifan Rao
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhefen Wang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jianxiong Dou
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Juan Chen
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Lu Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yuhua Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
- Institute of Biomedical Research, Southwest University, Chongqing, 400037, China
| |
Collapse
|
14
|
Zhang W, Wu W, Wang T, Wu Z, Li Y, Ding T, Fang Z, Tian D, He X, Huang F. Novel Supramolecular Hydrogel for Infected Diabetic Foot Ulcer Treatment. Adv Healthc Mater 2024; 13:e2402092. [PMID: 39225408 DOI: 10.1002/adhm.202402092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional responsive hydrogels hold significant promise for diabetic foot ulcer (DFU) treatment, though their complex design and manufacturing present challenges. This study introduces a novel supramolecular guanosine-phenylboronic-chlorogenic acid (GBC) hydrogel developed using a dynamic covalent strategy. The hydrogel forms through guanosine quadruplex assembly in the presence of potassium ions and chlorogenic acid (CA) linkage via dynamic borate bonds. GBC hydrogels exhibit pH and glucose responsiveness, releasing more chlorogenic acid under acidic and high glucose conditions due to borate bond dissociation and G-quadruplex (G4) hydrogel disintegration. Experimental results indicate that GBC hydrogels exhibit good self-healing, shear-thinning, injectability, and swelling properties. Both in vitro and in vivo studies demonstrate the GBC hydrogel's good biocompatibility, ability to eliminate bacteria and reactive oxygen species (ROS), facilitate macrophage polarization from the M1 phenotype to the M2 phenotype (decreasing CD86 expression and increasing CD206 expression), exhibit anti-inflammatory effects (reducing TNF-α expression and increasing IL-10 expression), and promote angiogenesis (increasing VEGF, CD31, and α-SMA expression). Thus, GBC hydrogels accelerate DFU healing and enhance tissue remodeling and collagen deposition. This work provides a new approach to developing responsive hydrogels to expedite DFU healing.
Collapse
Affiliation(s)
- Wenbiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Weiwei Wu
- Department of Anaesthesia, The First Affiliated Hospital of Anhui Medical University North district, Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhiwei Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Tao Ding
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhennan Fang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| |
Collapse
|
15
|
Cai W, Song Y, Xie Q, Wang S, Yin D, Wang S, Wang S, Zhang R, Lee M, Duan J, Zhang X. Dual osmotic controlled release platform for antibiotics to overcome antimicrobial-resistant infections and promote wound healing. J Control Release 2024; 375:627-642. [PMID: 39284525 DOI: 10.1016/j.jconrel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Methicillin-Resistant Staphylococcus aureus forming into biofilms can trigger chronic inflammation and disrupt skin wound healing processes. Prolonged and excessive use of antibiotics can expedite the development of resistance, primarily because of their limited ability to penetrate microbial membranes and biofilms, especially antibiotics with intracellular drug targets. Herein, we devise a strategy in which virus-inspired nanoparticles control the release of antibiotics through rapid penetration into both bacterial cells and biofilms, thereby combating antimicrobial-resistant infections and promoting skin wound healing. Lipid-based nanoparticles based on stearamine and cholesterol were designed to mimic viral highly ordered nanostructures. To mimic the arginine-rich fragments in viral protein transduction domains, the primary amines on the surface of the lipid-based nanoparticles were exchanged by guanidine segments. Levofloxacin, an antibiotic that inhibits DNA replication, was chosen as the model drug to be incorporated into nanoparticles. Hyaluronic acid was coated on the surface of nanoparticles acting as a capping agent to achieve bacterial-specific degradation and guanidine explosion in the bacterial microenvironment. Our virus-inspired nanoparticles displayed long-acting antibacterial effects and powerful biofilm elimination to overcome antimicrobial-resistant infections and promote skin wound healing. This work demonstrates the ability of virus-inspired nanoparticles to achieve a dual penetration of microbial cell membranes and biofilm structures to address antimicrobial-resistant infections and trigger skin wound healing.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510000, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Qing Xie
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shiyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Song Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rui Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Min Lee
- Division of Oral and Systemic Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Jinju Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiao Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
16
|
Wang J, Su L, Li Y, Liu Y, Xie L. Nanoscale fluconazole-constructed metal-organic frameworks with smart drug release for eradication of Candida biofilms in vulvovaginitis infection. Colloids Surf B Biointerfaces 2024; 245:114238. [PMID: 39270401 DOI: 10.1016/j.colsurfb.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Fungal infections associated with oral, gynecological, and skin ailments pose significant clinical challenges. The presence of biofilms often hampers the efficacy of conventional antifungal drugs owing to the complex microenvironment they create. In this study, the widely used antifungal medication fluconazole is utilized as a foundational component to be incorporated into zinc 2-methylimidazolate frameworks, resulting in the synthesis of nanoscale fluconazole-constructed metal-organic frameworks (F-ZIF). The F-ZIF is constructed through coordination interactions between zinc and fluconazole, retaining the structure and pH-responsiveness of the zinc 2-methylimidazolate framework. The pH-responsiveness F-ZIF makes sure the fluconazole can be released in acidic biofilm, which prevents the undesired release in healthy tissue, resulting in good biocompatibility both in vitro and in vivo. The in vitro studies demonstrated that F-ZIF exhibits enhanced efficacy in eradicating fungal pathogens in their biofilm growth state compared with the free fluconazole. Furthermore, in vivo experiments reveal the better effectiveness of F-ZIF in treating Candida albicans-induced vulvovaginal candidiasis, and less infection-related inflammation was observed. Hence, the one-port synthetic F-ZIF presents a promising solution for addressing fungal biofilm-related infections.
Collapse
Affiliation(s)
- Jinhui Wang
- The People's Hospital of Yuhuan, Yuhuan, Zhejiang 317600, China
| | - Linzhu Su
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yuanfeng Li
- Translational Medicine Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang 325001, China.
| | - Lingping Xie
- The People's Hospital of Yuhuan, Yuhuan, Zhejiang 317600, China.
| |
Collapse
|