1
|
Zhang Z, Liu Y, Liang X, Wang Q, Xu M, Yang X, Tang J, He X, He Y, Zhang D, Li C. Advances in nanodelivery systems based on apoptosis strategies for enhanced rheumatoid arthritis therapy. Acta Biomater 2025; 197:87-103. [PMID: 40154765 DOI: 10.1016/j.actbio.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder primarily characterized by persistent synovial inflammation and progressive bone erosion. The pathogenesis of RA involves a complex cascade of cellular and molecular events, including sustained hyperactivation of macrophages, excessive recruitment and activation of neutrophils, pathological proliferation and invasion of fibroblast-like synoviocytes (FLS), and dysregulated differentiation and function of osteoclasts (OCs). The inflammatory factors secreted by these dysregulated cells significantly disrupt the joint microenvironment through multiple pathological mechanisms, primarily by promoting synovial inflammation, cartilage matrix degradation, osteoclast-mediated bone erosion, and pathological angiogenesis. Therapeutic strategies targeting the induction of apoptosis in these malignant cells have demonstrated considerable potential in preclinical studies, offering a promising approach to enhance treatment outcomes by simultaneously reducing inflammatory cytokine production and inhibiting pathogenic cell proliferation. However, conventional therapeutic drugs are limited in clinical applications because of their high toxicity and side effects. Inflammation induces morphological and functional changes in cells within the rheumatoid arthritis microenvironment (RAM), particularly the overexpression of specific receptors on cell membranes. This phenomenon has driven the development of ligand-modified targeted nanodelivery systems (NDSs), which can specifically target and induce apoptosis in specific cell types, thereby enhancing therapeutic efficacy. This paper comprehensively reviews the research progress of targeted NDSs based on apoptosis strategies for RA therapy, with a detailed discussion of their advantages in inducing apoptosis in various disease-associated cells. Furthermore, the potential of combining apoptosis of multiple cell types for RA treatment is explored. This review is expected to improve insights into the apoptosis of malignant cells to enhance RA therapy. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in nanodelivery systems (NDSs) based on apoptotic strategies for enhanced rheumatoid arthritis (RA) therapy. Unlike conventional NDSs, these optimized systems specifically induce apoptosis in malignant cells within the RA microenvironment by integrating multiple therapeutic strategies. By summarizing the latest research, our work demonstrates the potential of these NDSs to suppress inflammatory responses and prevent bone destruction through targeted elimination of malignant cells, offering a novel direction for RA treatment. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective therapeutic approaches for RA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qian Wang
- Classical teaching and Research Department, College of Integrated Chinese and Western medicine, Affiliated TCM Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Lee D, Kim MJ, Cho CS, Yang YJ, Kim JK, Jeon R, An SH, Park KI, Cho K. The Therapeutic Effects of Dendropanax morbiferus Lév. Water Leaf Extracts in a Rheumatoid Arthritis Animal Model. Antioxidants (Basel) 2025; 14:548. [PMID: 40427430 PMCID: PMC12108300 DOI: 10.3390/antiox14050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
(1) Background: Rheumatoid arthritis (RA) is a chronic inflammatory condition known for its symptoms of joint damage and cartilage breakdown. Current treatments frequently result in adverse effects and show restricted efficacy in the long term. Dendropanax morbiferus, a plant recognized for its bioactive properties, demonstrates promise in the treatment of inflammatory conditions. The objective of this study was to examine the therapeutic properties of Dendropanax morbiferus Lév. water extract (DMWE) in RA through the utilization of in vitro and in vivo models. (2) Methods: Ultra-high-performance liquid chromatography (UPLC) analysis was used to identify bioactive compounds in DMWE. Antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical-scavenging assays. The in vitro experiments involved the treatment of CHON-001 cells with DMWE in order to assess its impacts on inflammation and matrix metalloproteinase (MMP) expression. The impact of DMWE on the Janus Kinase 2 (JAK2) and Signal Transducer and Activator of Transcription (STAT) signaling pathways was also assessed. RA was induced in Balb/c mice who were subsequently treated with varying doses of DMWE to assess its impact on joint morphology, edema, and body weight. (3) Results: DMWE demonstrated substantial antioxidant activity and hindered the expression of MMP-2 and MMP-8 in chondrocytes treated with IL-1β. It additionally inhibited the JAK2/STAT pathway and diminished inflammatory responses. Treatment with DMWE in living organisms led to a decrease in joint swelling, improved weight regains, and maintained joint structure, with higher doses exhibiting effects similar to those of the positive control, dexamethasone (Dexa). (4) Conclusions: DMWE was found to have excellent in vitro antioxidant and anti-inflammatory activities. In an RA-induced mouse model, DMWE-3 (500 mg/kg BW) was found to effectively treat RA by reducing the concentration of pro-inflammatory factors and preventing joint deformation.
Collapse
Affiliation(s)
- Dongho Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Inje University, Gimhae 47392, Republic of Korea;
| | - Min Jung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.K.); (C.-S.C.); (Y.J.Y.)
| | - Chang-Soo Cho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.K.); (C.-S.C.); (Y.J.Y.)
| | - Ye Jin Yang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.K.); (C.-S.C.); (Y.J.Y.)
| | - Jin-Kyung Kim
- Department of Dental Hygiene, Daegu Health College, Daegu 41453, Republic of Korea;
| | - Ryounghoon Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea; (R.J.); (S.-H.A.)
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea; (R.J.); (S.-H.A.)
| | - Kwang Il Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (M.J.K.); (C.-S.C.); (Y.J.Y.)
| | - Kwangrae Cho
- Department of Anesthesiology and Pain Medicine, College of Medicine, Inje University, Gimhae 47392, Republic of Korea;
| |
Collapse
|
3
|
Zhu XX, Xu AJ, Cai WW, Han ZJ, Zhang SJ, Hou B, Wen YY, Cao XY, Li HD, Du YQ, Zhuang YY, Wang J, Hu XR, Bai XR, Su JB, Zhang AY, Lu QB, Gu Y, Qiu LY, Pan L, Sun HJ. NaHS@Cy5@MS@SP nanoparticles improve rheumatoid arthritis by inactivating the Hedgehog signaling pathway through sustained and targeted release of H 2S into the synovium. J Nanobiotechnology 2025; 23:192. [PMID: 40055697 PMCID: PMC11889778 DOI: 10.1186/s12951-025-03286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/02/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Aberrant proliferation and inflammation of fibroblast-like synoviocytes (FLSs) significantly contribute to the pathogenesis of rheumatoid arthritis (RA). Deficiency of hydrogen sulfide (H2S) is a driving force for the development of RA, and the short half-life of the H2S-releasing donor sodium hydrosulfide (NaHS) limits its clinical application in RA therapy. Designing a targeted delivery system with slow-release properties for FLSs could offer novel strategies for treating RA. METHODS Herein, we designed a strategy to achieve slow release of H2S targeted to the synovium, which was accomplished by synthesizing NaHS-CY5@mesoporous silic@LNP targeted peptide Dil (NaHS@Cy5@MS@SP) nanoparticles. RESULTS Our results demonstrated that NaHS@Cy5@MS@SP effectively targets FLSs, upregulates H2S and its-producing enzyme cystathionine-γ-lyase (CSE) in the joints of arthritic mice. Overexpression of CSE inhibited the proliferation, migration, and inflammation of FLSs upon lipopolysaccharide (LPS) exposure, effects that were mimicked by NaHS@Cy5@MS@SP. In vivo studies showed that NaHS@Cy5@MS@SP achieved a threefold higher AUCinf than that of free NaHS, significantly improving the bioavailability of NaHS. Further, NaHS@Cy5@MS@SP inhibited synovial hyperplasia and reduced bone and cartilage erosion in the DBA/1J mouse model of collagen-induced arthritis (CIA), which was superior to NaHS. RNA sequencing and molecular studies validated that NaHS@Cy5@MS@SP inactivated the Hedgehog signaling pathway in FLSs, as evidenced by reductions in the protein expression of SHH, SMO, GLI1 and phosphorylated p38/MAPK. CONCLUSION This study highlights NaHS@Cy5@MS@SP as a promising strategy for the controlled and targeted delivery of H2S to synoviocytes, offering potential for RA management.
Collapse
Affiliation(s)
- Xue-Xue Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - An-Jing Xu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Wei-Wei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi, 214001, China
| | - Shi-Jie Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yuan-Yuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xing-Yu Cao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Hao-Dong Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Yue-Qing Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - You-Yi Zhuang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jing Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Ran Hu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xin-Ran Bai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jia-Bao Su
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China
| | - Ao-Yuan Zhang
- Department of Clinical Research Center, Jiangnan University Medical Center, Wuxi, 214001, China
| | - Qing-Bo Lu
- Department of Endocrinology, Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi, 214122, China
| | - Ye Gu
- Department of Orthopedics, Central Laboratory, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, 215506, China.
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Lin Pan
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China.
| |
Collapse
|
4
|
Wang H, Yuan T, Yu X, Wang Y, Liu C, Li Z, Sun S. Norwogonin Attenuates Inflammatory Osteolysis and Collagen-Induced Arthritis via Modulating Redox Signalling and Calcium Oscillations. J Cell Mol Med 2025; 29:e70492. [PMID: 40099974 PMCID: PMC11915625 DOI: 10.1111/jcmm.70492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Norwogonin is a flavonoid extraction derived from Scutellaria baicalensis. However, its potential mechanisms in the context of rheumatoid arthritis (RA) are unclear. This study investigates the specific effects and associated targets of Norwogonin in RA-related inflammatory osteolysis. Network pharmacology was conducted to analyse the core targets and signalling pathways of Norwogonin in RA. In vitro experiments were carried out to explore the actual effects of Norwogonin on osteoclast behaviours and related signalling mechanisms. In vivo studies further validated the therapeutic effect of Norwogonin in collagen-induced arthritis (CIA) mice. The network pharmacological analysis identified 18 shared targets between Norwogonin and RA, indicating a connection with inflammatory response and oxidoreductase activity. For biological validations, the results of in vitro experiments revealed 160 μM of Norwogonin inhibited LPS-driven osteoclast differentiation and function. The qPCR assay and Western blot analysis also disclosed consistently diminished changes to osteoclastic marker genes and proteins due to Norwogonin treatment, including those for osteoclast differentiation (Traf6, Tnfrsf11a and Nfatc1), fusion (Atp6v0d2, Dcstamp and Ocstamp) and function (Mmp9, Ctsk and Acp5). Further mechanism study revealed Norwogonin suppressed LPS-driven ROS production and calcium (Ca2+) oscillations. Also, intraperitoneal injection of 30 mg/kg Norwogonin every other day successfully mitigated clinical arthritis progression and attenuated bone destruction in the CIA model. Our study scrutinises Norwogonin's therapeutic prospects in treating RA and illustrates its inhibitory effects and potential mechanism within LPS-induced osteoclastogenesis and CIA mice, providing a basis for further translational research on Norwogonin in the treatment of RA-related inflammatory osteolysis.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xiao Yu
- Department of Obstetrics and GynecologyJian Gong HospitalBeijingChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research LaboratoryMedical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research LaboratoryMedical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint SurgeryShandong Provincial Hospital, Cheeloo College of Medicine, Shandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research LaboratoryMedical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
5
|
Zhou MY, Feng HY, Wang TT, Xu ZS, Gu SL, Li LL, Cai L, Li R. TLR3 as an emerging molecule facilitating pyroptosis in the context of rheumatoid arthritis: A study combined bioinformatics and experimental validation. Cytokine 2025; 187:156875. [PMID: 39884182 DOI: 10.1016/j.cyto.2025.156875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an inflammatory disease of the joints mediated by immune cells. As an immune-related mode of cell death, pyroptosis has yet to be fully understood in RA. This research identified novel pyroptosis-related markers in RA and confirmed its functional significance in RA. METHODS Initially, crucial pyroptosis-related genes of RA were identified through GEO database, and biological pathways were determined through enrichment analysis. Then, PPI network, WGCNA and CIBERSORT analysis was utilized to screen hub genes and evaluate immune cell infiltration levels. Finally, validation experiments determined hub genes expression and regulatory roles in RA pathogenesis, and screened potential therapeutic drugs. RESULTS A total of 46 DEPRGs in RA were identified, which involved in NOD-like receptor and Toll-like receptor signaling pathway. Further screening revealed 3 crucial hub genes: CCL5, LY96, and TLR3 had significantly increased expression in RA synovial tissue and FLS, which might become diagnostic markers of RA. Analysis of immune infiltration revealed that hub genes exhibited associations with plasma cells, T lymphocytes, and macrophages. Further study on the crucial hub gene TLR3 revealed that knocking down TLR3 significantly inhibited the RA FLS hyperproliferation and pyroptosis, and dexamethasone and doxorubicin, as potential drugs, could treat RA by inhibiting TLR3. CONCLUSION Our study indicates that high expression of TLR3 promotes FLS pyroptosis and RA progression, suggesting its potential as both a biomarker and a therapeutic target for RA.
Collapse
Affiliation(s)
- Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Hong-Yan Feng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Tian-Tian Wang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Li Cai
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, China.
| |
Collapse
|
6
|
Wang S, Li J, Ren F, Zhang J, Song W, Ren L. New Dawn in the Treatment of Rheumatoid Arthritis: Advanced Insight into Polymer Hydrogel Research. Gels 2025; 11:136. [PMID: 39996679 PMCID: PMC11855332 DOI: 10.3390/gels11020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
As a chronic systemic autoimmune disease, rheumatoid arthritis (RA) not only damages joints and other organs or systems throughout the body but also torments patients' physical and mental health for a long time, seriously affecting their quality of life. According to incomplete statistics at present, the global prevalence of RA is approximately 0.5-1%, and the number of patients is increasing year by year. Currently, drug therapies are usually adopted for the treatment of RA, such as non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying antirheumatic drugs (DMARDs), glucocorticoids/steroids, and so on. However, traditional drug therapy has problems such as long half-lives, long treatment cycles requiring frequent drug administration, lack of specificity, and other possible adverse reactions (such as gastrointestinal side effects, skin stratum corneum barrier damage, and systemic toxicity), which greatly restrict the treatment of RA. In order to improve the limitations of traditional drug, physical, and surgical treatments for RA, a large number of related studies on the treatment of RA have been carried out. Among them, hydrogels have been widely used in the research on the treatment of RA due to their excellent biocompatibility, mechanical properties, and general adaptability. For example, hydrogels can be injected into the synovial cavity of joints as synovial fluid to reduce wear between joints, lubricate joints, and avoid synovial surface degradation. This article reviews the applications of hydrogels in the treatment of RA under different functions and the situation of hydrogels as carriers in the treatment of RA through different drug delivery routes and confirms the outstanding potential of hydrogels as drug carriers in the treatment of RA, which has great research significance.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Jinyang Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China;
| | - Fazhan Ren
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Jiale Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China;
| | - Wei Song
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| |
Collapse
|
7
|
Ci Z, Wang H, Luo J, Wei C, Chen J, Wang D, Zhou Y. Application of Nanomaterials Targeting Immune Cells in the Treatment of Chronic Inflammation. Int J Nanomedicine 2024; 19:13925-13946. [PMID: 39735324 PMCID: PMC11682674 DOI: 10.2147/ijn.s497590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Chronic inflammation is a common characteristic of all kinds of diseases, including autoimmune diseases, metabolic diseases, and tumors. It is distinguished by the presence of low concentrations of inflammatory factors stimulating the body for an extended period, resulting in a persistent state of infection. This condition is manifested by the aggregation and infiltration of mononuclear cells, lymphocytes, and other immune cells, leading to tissue hyperplasia and lesions. Although various anti-inflammatory medications, including glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs), have shown strong therapeutic effects, they lack specificity and targeting ability, and require high dosages, which can lead to severe adverse reactions. Nanoparticle drug delivery mechanisms possess the capacity to minimize the effect on healthy cells or tissues due to their targeting capabilities and sustained drug release properties. However, most nanosystems can only target the inflammatory sites rather than specific types of immune cells, leaving room for further improvement in the therapeutic effects of nanomaterials. This article reviews the current research progress on the role of diverse immune cells in inflammation, focusing on the functions of neutrophils and macrophages during inflammation. It provides an overview of the domestic and international applications of nanomaterials in targeted therapy for inflammation, aiming to establish a conceptual foundation for the utilization of nanomaterials targeting immune cells in the treatment of chronic inflammation and offer new perspectives for the avoidance and management of inflammation.
Collapse
Affiliation(s)
- Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Dongyang Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Biology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
8
|
Deng Q, Peng Z, Meng F, Zeng W, Zhu M, Liu N, Yan W, Peng J. FOXO3 as a potential diagnostic biomarker for autophagy in rheumatoid arthritis: A bioinformatics study. Autoimmunity 2024; 57:2423759. [PMID: 39498523 DOI: 10.1080/08916934.2024.2423759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
This study aimed to identify genes associated with autophagy and potential diagnostic biomarkers by comparing the gene expression profiles of synovial tissues in patients with rheumatoid arthritis (RA) and healthy individuals, aiming to offer new insights for clinical treatment strategies. We used publicly available datasets to analyze differentially expressed genes (DEGs) between the synovial tissue of RA patients and healthy individuals. Then, we intersected these DEGs with autophagy-related genes to identify autophagy genes in the synovial tissue of RA patients. We further analyzed the biological processes and functions of these genes. Furthermore, we used machine learning to identify characteristic autophagy genes in RA synovial tissue. Finally, we examined the differential expression of these characteristic genes in the blood of RA patients using an external dataset. Our study identified FOXO3 as a potential biomarker for diagnosing RA. FOXO3 gene expression was downregulated in both the synovial tissue and blood of RA patients, suggesting its involvement in multiple biological processes such as local inflammation, oxidative stress, metabolic processes, and immune responses. Our findings suggest that FOXO3 may be a novel biomarker for the clinical diagnosis of RA and may play a crucial role in the pathogenesis of RA. The study provides new insights into the molecular mechanisms of RA and potential new therapeutic targets.
Collapse
Affiliation(s)
- Qian Deng
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zining Peng
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fanyu Meng
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wangxin Zeng
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mengyuan Zhu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Nian Liu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Weitian Yan
- The No.1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiangyun Peng
- The No.1 Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|