1
|
Jiang H, Lu Q, Huang X, Zhang H, Zeng J, Wang M, Xu J, Yuan Z, Wei Q, Xiao E, Wang P, Huang G, Xu A. Sinomenine-glycyrrhizic acid self-assembly enhanced the anti-inflammatory effect of sinomenine in the treatment of rheumatoid arthritis. J Control Release 2025; 382:113718. [PMID: 40220871 DOI: 10.1016/j.jconrel.2025.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that causes cartilage and bone damage in multiple joints, ultimately leading to disability. There is an urgent need to develop multidimensional strategies to treat RA. Sinomenine (SIN) has the distinctive pharmacological activity in treating RA, but its broader clinical application is limited by its exceedingly short half-life and adverse digestive tract effects. To overcome this obstacle, a self-assembled nanohydrogel (S-G hydrogel) was designed and produced with sinomenine (SIN) and glycyrrhizic acid (GA) without carriers or catalysts through noncovalent bonding. The S-G hydrogel could promote the absorption of SIN probably by protecting SIN from releasing and degrading in the acid circumstances. Oral intake of the S-G hydrogel significantly suppressed the overactivation of neutrophil via the Nf-κb and Mapk pathways in mice with RA. Furthermore, the S-G hydrogel regulated neutrophil activity by reversing apoptosis delay and decreasing autophagy-dependent NET formation. In summary, this study presents a self-assembled hydrogel with promising potential for clinical application, and offers a novel strategy to develop new drugs from the existing patent medicine composed of compounds from traditional Chinese medicine, as well as a special insight to elucidate the herb-matching mechanism in decoction prescriptions.
Collapse
Affiliation(s)
- Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengdan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Hong Kong Institute of Advanced Studies, Sun Yat-sen University, Hong Kong, China.
| |
Collapse
|
2
|
Amin H, Zayed G, Ibrahim IM, Hassanein EHM. Exploring the potentials of chitosan as a promising carrier for methotrexate for beating cancer. Int J Biol Macromol 2025; 313:144116. [PMID: 40368211 DOI: 10.1016/j.ijbiomac.2025.144116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Cancer has long been considered to be one of the drivers of global mortality. The most prevalent malignancies are those of the breast, lungs, colorectal, and prostate. There is a different set of interventions that is used for treating cancer; chemotherapeutics, radiotherapeutics, and surgical interventions. However, these classic medications leave the body in crisis as a consequence of their tremendous harm. Consequently, researchers would not rely on those classic choices. Hopefully, chitosan (CS) and methotrexate (MTX) can offer a state-of-the-art delivery system in beating cancer. As CS can be exploited in numerous ways to deposit MTX in cancer cells. For instance, it is implemented in formulating nanomicelles, hydrogels, nanoparticles (NPs), and as coating material for metallic and protein NPs. Furthermore, CS can also be coated with hyaluronic acid or folic acid for actively targeting cancer cells. Interestingly, CS and MTX could bridge the gap between classic chemo drugs and novel drug delivery systems. Moreover, they can chart a new way forward and leverage our limited options in cancer therapy.
Collapse
Affiliation(s)
- Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Gamal Zayed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Al-Azhar Centre of Nanosciences and Applications (ACNA), Al-Azhar University, Assiut 71524, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| |
Collapse
|
3
|
Zhang C, Sun S, Zhu T, Fang X, Liu Y, Liu R, Yu J, Li W, Xu C, Dong K. NIR-activating glycyrrhizic acid/carbon nanozyme injectable polysaccharides-based hydrogels for promoting polymicrobial infected wound healing. Int J Biol Macromol 2025; 307:142082. [PMID: 40118398 DOI: 10.1016/j.ijbiomac.2025.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
The slow healing or non-healing of skin wounds caused by polymicrobial infections has become a serious problem in clinical wound treatment. Herein, we have developed a near-infrared (NIR) activating glycyrrhizic acid/carbon nanozyme injectable polysaccharides-based hydrogel (the CPCA hydrogel) for the synergistic treatment of polymicrobial infected wound. The CPCA hydrogel could undergo phase transition at a specific temperature and facilitate administration at the wound site. Additionally, under near-infrared light irradiation, the CPCA hydrogel could generate heat and promote the release of glycyrrhizic acid (GA) for achieving photothermal-drug synergistic treatment of multiple bacteria. Furthermore, the carbon nanozyme (CN) within the injectable polysaccharides-based hydrogel could mimic the activity of superoxide dismutase (SOD) and catalase (CAT) for enabling the removal of reactive oxygen species, effectively alleviating inflammation and promoting wound healing caused by polymicrobial infections. The results of in vitro antibacterial experiments demonstrated the excellent antibacterial effect of CPCA hydrogel on methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, in vivo experiments confirmed that the hydrogels significantly reduced inflammatory responses and accelerated angiogenesis in polymicrobial infected wounds. Collectively, the CPCA hydrogel exhibited excellent antibacterial and anti-inflammatory properties, offering a novel strategy for developing new treatments for polymicrobial infections.
Collapse
Affiliation(s)
- Chenhao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tianyu Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Fang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yaling Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rongji Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chen Xu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| | - Kai Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
4
|
Li H, Jin X, Chu B, Zhang K, Qin X, Pan S, Zhao Y, Shi H, Zhang J, Wang H, Wen Z, He Y, Sun X. Inflammation Targeting and Responsive Multifunctional Drug-Delivery Nanoplatforms for Combined Therapy of Rheumatoid Arthritis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500113. [PMID: 40277325 DOI: 10.1002/smll.202500113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by persistent inflammation, joint swelling, pain, and progressive joint destruction. Methotrexate (MTX) is the standard first-line treatment for RA, but its clinical application is hindered by poor water solubility and non-specific delivery. In this work, a multifunctional drug-delivery nanoplatform that targets both macrophages and tumor necrosis factor α (TNFα) is developed to enhance the therapeutic efficacy of MTX in RA. The nanoplatform consists of folic acid (FA, for macrophage targeting) and a TNFα-specific Aptamer (TNFα-Apt), facilitating a dual-targeting strategy that significantly improves the accumulation of MTX at the sites of RA lesions (≈3.5-fold). Moreover, the manganese dioxide (MnO₂) and polydopamine (PDA) coatings on the nanoplatform effectively scavenge reactive oxygen species (ROS), generate oxygen, and promote the polarization of pro-inflammatory M1 macrophages to the anti-inflammatory M2 macrophages. This shift in macrophage polarization restores the expression of key inflammatory cytokines, improving the local inflammatory microenvironment. Ultimately, the nanoplatform significantly ameliorates the inflammation and joint damage in a collagen-induced arthritis (CIA) model, suggesting that this multi-target combination therapy holds considerable potential for the treatment of RA in vivo.
Collapse
Affiliation(s)
- Hongyang Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Xiangbowen Jin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Binbin Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xuan Qin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Sheng Pan
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, Suzhou, 215000, China
| | - Yadan Zhao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Haoliang Shi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Jiawei Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Houyu Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
| | - Zhen Wen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| | - Yao He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Soochow University, Suzhou, 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, China
| | - Xuhui Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Han J, Yue Z, Sun W, Fang W, Zhang Y, Liu X, Wang J, Chen J. Design of indomethacin novel small molecule hydrogels for concomitant release and permeability increases. Int J Pharm 2025; 672:125286. [PMID: 39892673 DOI: 10.1016/j.ijpharm.2025.125286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
With the expansion of gel research, organic small molecule gels are beginning to gain attention. Whether the small-molecule gel approach can be a new formulation strategy of solubilization and permeation promotion for poorly soluble drugs needs to be explored in this study. The model ingredient indomethacin (IND) as a nonsteroidal anti-flammatory drug shows limited therapeutic application mainly due to its low water solubility. Herein, the IND small molecule hydrogel was design to co-formed with a small molecule ligand by integrating theory-model-experiment techniques. Then, the formed IND small molecule hydrogels (i.e., IND-MEG hydrogel and IND-ARG hydrogel) with meglumine (MEG) or arginine (ARG) appeared typical 3-D network with good rheology. In comparison to crystalline IND, the solubilities of IND-MEG hydrogel and IND-ARG hydrogel exhibited 506.71-fold and 479.63-fold improvements, respectively. Meanwhile, both IND hydrogels performed significantly enhanced release rate and degree, and maintained supersaturation for a long time arising from the complexation reaction of IND and ligand, which was revealed by phase solubility and fluorescence quenching studies. Furthermore, the designed IND hydrogels significantly promoted IND membrane permeability compared to the commercial IND hydrogel, and enhanced the development potential of novel IND hydrogels for oral and transdermal applications. Therefore, this study provides a new formulation technique to increase the solubility/release and permeability of poorly water-soluble drugs by designing their small molecule hydrogel systems.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Weitao Fang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Jiaxin Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
6
|
Wang S, Li J, Ren F, Zhang J, Song W, Ren L. New Dawn in the Treatment of Rheumatoid Arthritis: Advanced Insight into Polymer Hydrogel Research. Gels 2025; 11:136. [PMID: 39996679 PMCID: PMC11855332 DOI: 10.3390/gels11020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
As a chronic systemic autoimmune disease, rheumatoid arthritis (RA) not only damages joints and other organs or systems throughout the body but also torments patients' physical and mental health for a long time, seriously affecting their quality of life. According to incomplete statistics at present, the global prevalence of RA is approximately 0.5-1%, and the number of patients is increasing year by year. Currently, drug therapies are usually adopted for the treatment of RA, such as non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying antirheumatic drugs (DMARDs), glucocorticoids/steroids, and so on. However, traditional drug therapy has problems such as long half-lives, long treatment cycles requiring frequent drug administration, lack of specificity, and other possible adverse reactions (such as gastrointestinal side effects, skin stratum corneum barrier damage, and systemic toxicity), which greatly restrict the treatment of RA. In order to improve the limitations of traditional drug, physical, and surgical treatments for RA, a large number of related studies on the treatment of RA have been carried out. Among them, hydrogels have been widely used in the research on the treatment of RA due to their excellent biocompatibility, mechanical properties, and general adaptability. For example, hydrogels can be injected into the synovial cavity of joints as synovial fluid to reduce wear between joints, lubricate joints, and avoid synovial surface degradation. This article reviews the applications of hydrogels in the treatment of RA under different functions and the situation of hydrogels as carriers in the treatment of RA through different drug delivery routes and confirms the outstanding potential of hydrogels as drug carriers in the treatment of RA, which has great research significance.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Jinyang Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130012, China;
| | - Fazhan Ren
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Jiale Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China;
| | - Wei Song
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| |
Collapse
|
7
|
Fiaschini N, Hanieh PN, Ariaudo D, Cimino R, Abbate C, Romano E, Cavalieri F, Venanzi M, Palumbo V, Scimeca M, Bernardini R, Mattei M, Migliore A, Rinaldi A. Application of Microsponge Drug Platform to Enhance Methotrexate Administration in Rheumatoid Arthritis Therapy. Pharmaceutics 2024; 16:1593. [PMID: 39771571 PMCID: PMC11676977 DOI: 10.3390/pharmaceutics16121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to develop a novel nanotechnological slow-release drug delivery platform based on hyaluronic acid Microsponge (MSP) for the subcutaneous administration of methotrexate (MTX) in the treatment of rheumatoid arthritis (RA). RA is a chronic autoimmune disease characterized by joint inflammation and damage, while MTX is a common disease-modifying antirheumatic drug (DMARD), the conventional use of which is limited by adverse effects and the lack of release control. METHODS MSP were synthesized as freeze-dried powder to increase their stability and allow for a facile reconstitution prior to administration and precise MTX dosing. RESULTS A highly stable and rounded-shaped micrometric MSP, characterized by an open porosity inner structure, achieved both a high MTX loading efficiency and a slow release of MTX after injection. Our drug release assays indeed demonstrated a characteristic drug release profile consisting of a very limited burst release in the first few hours, followed by a slow release of MTX sustained for over a month. By means of a preclinical rat model of RA, the administration of MTX-loaded MSP proved to nearly double the therapeutic efficacy compared to sole MTX, according to a steep reduction in arthritic score compared to control groups. The preclinical study was replicated twice to confirm this improvement in performance and the safety profile of the MSP. CONCLUSIONS This study suggests that the MSP drug delivery platform holds significant potential for clinical use in improving RA therapy by enabling the sustained slow release of MTX, thereby enhancing therapeutic outcomes and minimizing side effects associated with conventional burst-release drug administration.
Collapse
Affiliation(s)
- Noemi Fiaschini
- Nanofaber S.r.l., Via Anguillarese 301, 00123 Rome, Italy; (N.F.); (P.N.H.)
| | | | - Daniela Ariaudo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Rita Cimino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Carlo Abbate
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Elena Romano
- Centre of Advance Microscopy P. Albertano, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica Snc, 00133 Rome, Italy;
| | - Francesca Cavalieri
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (D.A.); (R.C.); (C.A.); (F.C.); (M.V.)
| | - Valeria Palumbo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.P.); (M.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (V.P.); (M.S.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Alberto Migliore
- San Pietro Fatebenefratelli Hospital, Via Cassia 600, 00189 Rome, Italy
| | - Antonio Rinaldi
- Nanofaber S.r.l., Via Anguillarese 301, 00123 Rome, Italy; (N.F.); (P.N.H.)
| |
Collapse
|
8
|
Liu S, Yang M, Liu H, Hao Y, Zhang D. Recent Progress in Microenvironment-Responsive Nanodrug Delivery Systems for the Targeted Treatment of Rheumatoid Arthritis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2008. [PMID: 39532280 DOI: 10.1002/wnan.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long-term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment-responsive therapeutic release at the RA site. Microenvironment-responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment-responsive NDDSs for RA treatment, including pH-, ROS-, MMP-, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.
Collapse
Affiliation(s)
- Shuhang Liu
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ming Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Han Liu
- Center of Emergency, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|