1
|
Maitlo HA, Younis SA, Lee CS, Kim KH. Progress in heterostructures for photoelectrocatalytic reduction of carbon dioxide into fuels and value-added products. Adv Colloid Interface Sci 2025; 341:103483. [PMID: 40139066 DOI: 10.1016/j.cis.2025.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/15/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Carbon capture and utilization (CCU) technology offers a sustainable option to simultaneously address both energy crisis and environmental pollution such as catalytic reduction of carbon dioxide (CO2) into value-added fuel products (e.g., C1-C3). Among diverse CCU strategies, the light-irradiated photoelectrocatalytic (PEC) approach is recognized as a cutting-edge option for efficient CO2 reduction reaction (RR) through the integration of photocatalysis and electrocatalysis within a one-stage hybridized catalytic system. Therefore, this review is meticulously structured to elucidate the potential utility of advanced composite catalysts (e.g., titanium dioxide, metal-organic frameworks, and organic/miscellaneous heterostructure materials) in PEC-CO2RR. It also examines the factors and processes governing their PEC-CO2RR activites in relation to their reduction pathways, electronic structures, charge-carrier dynamics, types of electrolytes, mass transfer, light-adsorption potential, and the viability of active sites. The fundamental principles and working mechanisms of diverse catalytic materials in PEC-CO2RR are also outlined to help establish the advanced catalytic systems based on performance assessments (e.g., in terms of CO2 conversion rate, quantum yield, and space-time yield). Overall, this review is expected to deliver the new path for the construction of the next-generation PEC-CO2RR systems that are upscalable, stable, and reusable with enhanced catalytic activity.
Collapse
Affiliation(s)
- Hubdar Ali Maitlo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea; Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea; Analysis and Evaluation department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Caroline Sunyong Lee
- Department of Materials and Chemical Engineering, Hanyang University, Gyeonggi 15500, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Ferreira de Brito J, Medina M, Sousa Santos HL, Dos Santos Araujo M, Santana Andrade MA, Helena Mascaro L. Multi-Layer Kesterite-Based Photocathodes for NH 3 Photosynthesis from N 2 Reduction Reaction. Chemphyschem 2025; 26:e202400737. [PMID: 39432356 DOI: 10.1002/cphc.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The necessity of new methods to substitute the Haber-Bosch process in the NH3 synthesis, generating fewer greenhouse gases, and dispensing less energy, drove the investigation of the photoelectrocatalytic approach in the N2 reduction reaction (N2RR). For that, this work presents the synthesis and characterization of the layered CZTSSe/CdS/TiO2 photocathode decorated with Pt nanoparticles for application in NH3 production using the photoelectrocatalysis technique. The CZTSSe/CdS/TiO2-Pt characterization showed a well-designed and stable photocatalyst synthesized layer by layer with an important contribution of the Pt nanoparticles for the catalyst performance, improving the photocurrent density and the charge transfer. The N2RR in a two-compartment photochemical cell with 0.1 mol L-1 Na2SO3 and 0.05 mol L-1 H2SO4 in the cathodic and anodic chamber, respectively, using CZTSSe/CdS/TiO2-Pt and under 1 sun of light incidence and applied potential of -0.4 VAg/AgCl reached 0.22 mmol L-1 cm-2 NH3, a value 28 folds higher than using the catalyst without Pt modification. The superiority of N2RR under the photoelectrocatalysis technique was demonstrated compared to photocatalytic and electrocatalytic techniques, together with the investigation of the supporting electrolyte influence in the cathodic compartment. Additionally, that is the first time a kesterite-based photocathode has been applied to NH3 photosynthesis, showing excellent photoconversion capability.
Collapse
Grants
- 2211-41925 Serrapilheira Institute
- #2023/10027-5 São Paulo Research Foundation, FAPESPM
- #2023/14228-5 São Paulo Research Foundation, FAPESPM
- #2019/26860-2 São Paulo Research Foundation, FAPESPM
- #2018/02950-0 São Paulo Research Foundation, FAPESPM
- #2017/12794-2 São Paulo Research Foundation, FAPESPM
- #2018/26005-2 São Paulo Research Foundation, FAPESPM
- #2018/16401-8 São Paulo Research Foundation, FAPESPM
- #2014/50249-8 São Paulo Research Foundation, FAPESPM
- #152471/2018-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq
- #406156/2022-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq
- 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil, CAPES
- #465571/2014-0 INCT-DATREM
Collapse
Affiliation(s)
- Juliana Ferreira de Brito
- Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Univ. Estadual Paulista - Institute of Chemistry - Araraquara, UNESP, Rua Francisco Degni, 55, Bairro Quitandinha, Araraquara, SP, 14800-900, Brazil
| | - Marina Medina
- Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Univ. Estadual Paulista - Institute of Chemistry - Araraquara, UNESP, Rua Francisco Degni, 55, Bairro Quitandinha, Araraquara, SP, 14800-900, Brazil
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP, 13565-905, São Carlos-SP, Brazil
| | - Hugo Leandro Sousa Santos
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP, 13565-905, São Carlos-SP, Brazil
| | - Mileny Dos Santos Araujo
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP, 13565-905, São Carlos-SP, Brazil
| | - Marcos Antônio Santana Andrade
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP, 13565-905, São Carlos-SP, Brazil
| | - Lucia Helena Mascaro
- Department of Chemistry, Federal University of São Carlos, Rod. Washington Luiz, Km 235, CEP, 13565-905, São Carlos-SP, Brazil
| |
Collapse
|
3
|
Han GH, Bang J, Park G, Choe S, Jang YJ, Jang HW, Kim SY, Ahn SH. Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO 2 to C 2+ Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205765. [PMID: 36592422 DOI: 10.1002/smll.202205765] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Environmental problems such as global warming are one of the most prominent global challenges. Researchers are investigating various methods for decreasing CO2 emissions. The CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes has been a popular research topic because the energy it requires can be sourced from renewable sources. The CO2 reduction reaction converts stable CO2 molecules into useful products such as CO, CH4 , C2 H4 , and C2 H5 OH. To obtain economic benefits from these products, it is important to convert them into hydrocarbons above C2 . Numerous investigations have demonstrated the uniqueness of the CC coupling reaction of Cu-based catalysts for the conversion of CO2 into useful hydrocarbons above C2 for electrocatalysis. Herein, the principle of semiconductors for photocatalysis is briefly introduced, followed by a description of the obstacles for C2+ production. This review presents an overview of the mechanism of hydrocarbon formation above C2 , along with advances in the improvement, direction, and comprehension of the CO2 reduction reaction via electrochemical, photochemical, and photoelectrochemical processes.
Collapse
Affiliation(s)
- Gyeong Ho Han
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Junbeom Bang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Gaeun Park
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seonghyun Choe
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Youn Jeong Jang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
4
|
Xu S, Shen Q, Zheng J, Wang Z, Pan X, Yang N, Zhao G. Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203941. [PMID: 36008141 PMCID: PMC9631090 DOI: 10.1002/advs.202203941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Emerging photoelectrocatalysis (PEC) systems synergize the advantages of electrocatalysis (EC) and photocatalysis (PC) and are considered a green and efficient approach to CO2 conversion. However, improving the selectivity and conversion rate remains a major challenge. Strategies mimicking natural photosynthesis provide a prospective way to convert CO2 with high efficiency. Herein, several typical strategies are described for constructing biomimetic photoelectric functional interfaces; such interfaces include metal cocatalysts/semiconductors, small molecules/semiconductors, molecular catalysts/semiconductors, MOFs/semiconductors, and microorganisms/semiconductors. The biomimetic PEC interface must have enhanced CO2 adsorption capacity, preferentially activate CO2 , and have an efficient conversion ability; with these properties, it can activate CO bonds effectively and promote electron transfer and CC coupling to convert CO2 to single-carbon or multicarbon products. Interfacial electron transfer and proton coupling on the biomimetic PEC interface are also discussed to clarify the mechanism of CO2 reduction. Finally, the existing challenges and perspectives for biomimetic photoelectrocatalytic CO2 reduction are presented.
Collapse
Affiliation(s)
- Shaohan Xu
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Qi Shen
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
- Institute of New Energy, School of Chemistry and Chemical EngineeringShaoxing University508 Huancheng West RoadShaoxingZhejiang312000China
| | - Jingui Zheng
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Zhiming Wang
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Xun Pan
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| | - Nianjun Yang
- Institute of Materials EngineeringUniversity of Siegen57076SiegenGermany
| | - Guohua Zhao
- School of Chemical Science and EngineeringKey Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji HospitalTongji UniversityShanghai200092China
| |
Collapse
|
5
|
Plascencia-Hernández F, Araiza DG, Pfeiffer H. Effect of Sodium Ortho and Pyrosilicates (Na 4SiO 4–Na 6Si 2O 7) Mixture during the CO 2 Chemical Capture Performance. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fernando Plascencia-Hernández
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito interior s/n, Ciudad Universitaria, Del. Coyoacán, Ciudad de MéxicoCP 04510, México
| | - Daniel G. Araiza
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito interior s/n, Ciudad Universitaria, Del. Coyoacán, Ciudad de MéxicoCP 04510, México
| | - Heriberto Pfeiffer
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito interior s/n, Ciudad Universitaria, Del. Coyoacán, Ciudad de MéxicoCP 04510, México
| |
Collapse
|
6
|
Chu S, Rashid RT, Pan Y, Wang X, Zhang H, Xiao R. The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Binder free cobalt iron phosphate thin films as efficient electrocatalysts for overall water splitting. J Colloid Interface Sci 2022; 613:720-732. [DOI: 10.1016/j.jcis.2022.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
|
8
|
Li G, Wang M, Shao H, Liu W, Yang S, Sun W, Ishihara T, Sun Y, Zhou X. Light-driven carbon dioxide reduction over the Ag-decorated modified TS-1 zeolite. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02126e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu species doped defective Ag/TS-1 owns Ti3+–Vo which could play an vital part in stabilizing Cu2O. It shows high selectivity for CO and C2H5OH under light excitation and photoelectric condition. The possible pathway of CO2RR process is proposed.
Collapse
Affiliation(s)
- Guohui Li
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No.99 South Longkun Road, Haikou 571158, China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Hengyang Shao
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No.99 South Longkun Road, Haikou 571158, China
| | - Wenqing Liu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No.99 South Longkun Road, Haikou 571158, China
| | - Sicong Yang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No.99 South Longkun Road, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No.99 South Longkun Road, Haikou 571158, China
| | - Tatsumi Ishihara
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuanyuan Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, No.99 South Longkun Road, Haikou 571158, China
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xiaoxia Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| |
Collapse
|