1
|
Ullah H, Ullah Z, Khattak ZAK, Tahir M, Kang E, Verpoort F, You Kim H. Solvent Free Ambient Pressure CO 2 Cycloaddition Catalyzed by Cobalt-Impregnated 2D-Nanofibrous COFs. CHEMSUSCHEM 2025; 18:e202401046. [PMID: 39539092 DOI: 10.1002/cssc.202401046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Covalent organic frameworks (COFs) constitute an evolving class of permanently porous and ordered materials, and they have recently attracted increased interest due to their intriguing morphological features and numerous applications in gas storage, adsorption, and catalysis. However, their low aqueous stabilities and tedious syntheses generally hamper their use in heterogeneous catalysis. Nonetheless, a capable and water-stable heterogeneous catalytic system for coupling CO2/epoxides to generate industrially important cyclic carbonates is still of great interest. Herein, exceedingly water- and thermally stable 2D-cobalt-impregnated hydrazone-linked fibrous COFs are reported as a catalyst for CO2/epoxide coupling reactions at ambient pressure. The functionalized cobalt (Co)-doped COFs demonstrated excellent catalytic activities with the high TONs (80925) and TOFs (6466 h-1), outperforming reported heterogeneous catalysts for CO2/epoxide coupling at ambient pressure. We found that the Co2+ ions within the COF matrix catalyze CO2 cycloaddition through density functional theory calculations. We also confirmed the excellent structural stability and consistent activity of Co-doped COFs up to ten repeating cycles.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
- Department of Chemistry, University of Sialkot, Sialkot, Punjab, 51040, Pakistan
| | - Zakir Ullah
- Department of Molecular and Supramolecular Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Consejo Superior de Investigaciones Científicas, Campus Universitari de Bellaterra, Cerdanyola del Vallès, 08193, Spain
| | - Zafar A K Khattak
- Department of Chemistry, University of Buner, Swari, Buner, Khyber Pakhtunkhwa, 19281, Pakistan
| | - Muhammad Tahir
- Key Laboratory of Green Printing, Chinese Academy of Sciences, 100190, Beijing, China
| | - Eunji Kang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 19281, Wuhan, PR China
- Research School of Chemistry & Applied Biomedical Science, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050, Tomsk, Russian Federation
- Joint Institute of Chemical Research (FFMiEN), Peoples Friendship University of Russia (RUDN University), 6 Mi-klukho-Maklaya Str., 117198, Moscow, Russia
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
2
|
Wang Z, Yan T, Guo L, Wang Q, Zhang R, Zhan H, Yi L, Chen J, Wu X. Synthesis of TBAB‐based Deep Eutectic Solvents as the Catalyst in the Coupling Reaction between CO
2
and Epoxides under Ambient Temperature. ChemistrySelect 2022. [DOI: 10.1002/slct.202202091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zixian Wang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 P.R. China
| | - Ting Yan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 P.R. China
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 P.R. China
| | - Qindong Wang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 P.R. China
| | - Ran Zhang
- State Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing Wuhan Textile University Wuhan 430073 P.R. China
| | - Haijuan Zhan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering Ningxia University Yinchuan 750021 P.R. China
| | - Lan Yi
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 P.R. China
| | - Jialin Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 P.R. China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 P.R. China
| |
Collapse
|
3
|
Al-Qaisi FM, Qaroush AK, Okashah IK, Eftaiha A, Vasko P, Alsoubani F, Repo T. The Use of Sustainable Transition Metals for the Cycloaddition of Epoxides and CO2 under Mild Reaction Conditions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Ala'a Eftaiha
- Hashemite University Faculty of Science Chemistry Chemistry Department 13133 Zarqa JORDAN
| | - Petra Vasko
- University of Helsinki City Centre Campus: Helsingin Yliopisto Department of Chemistry FINLAND
| | | | - Timo Repo
- University of Helsinki City Centre Campus: Helsingin Yliopisto Department of Chemistry FINLAND
| |
Collapse
|
4
|
Recent Achievements in the Synthesis of Cyclic Carbonates from Olefins and CO2: The Rational Design of the Homogeneous and Heterogeneous Catalytic System. Catalysts 2022. [DOI: 10.3390/catal12050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
With the consumption of fossil fuels, the level of CO2 in the atmosphere is growing rapidly, which leads to global warming. Hence, the chemical conversion of CO2 into high value-added products is one of the most important approaches to reducing CO2 emissions. Due to being simple, inexpensive and environmentally friendly, the direct synthesis of cyclic carbonates from olefins and CO2 is a promising project for industrial application. In this review, we discuss the design of the homogeneous and heterogeneous catalytic system for the synthesis of cyclic carbonates from the reaction of olefins and CO2. Usually, the catalyst contains the epoxidation active site and the cycloaddition active site, which could achieve the oxidation of oleifins and the CO2-insert, respectively. This review will provide a comprehensive overview of the direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by homogeneous and heterogeneous catalysts. The focus mainly lies on the rational fabrication of multifunctional catalysts, and provides a new perspective for the design of catalysts.
Collapse
|