1
|
Beyan A, Molla W, Molla AB, Birhan M, Ibrahim SM, Dessalegn B, Kenubih A, Gessese AT, Kinde MZ, Dagnaw GG, Fenta MD, Tesfaye H, Tesgera T, Tesfaw L, Abesha H, Tarekegn ZS, Dejene H, Bitew M. Seroprevalence and risk factors of bluetongue virus infection in sheep and goats in West Gondar zone, Northwest Ethiopia. Front Vet Sci 2025; 12:1565624. [PMID: 40110436 PMCID: PMC11920756 DOI: 10.3389/fvets.2025.1565624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Bluetongue is a non-contagious arthropod-borne viral disease that affects ruminants. No investigations have yet been conducted to ascertain the seroprevalence and associated risk factors of bluetongue in Northwest Ethiopia. It is essential to determine the seroprevalence and correlated risk elements to formulate an effective strategy for preventing and surveillance of the disease. Methods A cross-sectional study was carried out between February 2023 and May 2023 to determine the seroprevalence and risk factors associated with Bluetongue virus (BTV) in sheep and goats in the selected districts of West Gondar zone. A multistage cluster sampling technique was employed, with zones and districts purposively selected, and kebeles within these districts chosen through simple random sampling. Villages were treated as clusters. A total of 444 blood specimens were collected from the sheep and goats and subsequently tested for BTV antibodies using a commercially available competitive enzyme-linked immunosorbent assay kit. A mixed-effects logistic regression was employed to evaluate the relationship between Bluetongue virus seropositivity and potential risk factors. Results The overall seroprevalence rate at the individual animal level was 84.5% (95% CI: 81.09-87.82). The seroprevalence in sheep and goats was 83.8% (257/308) and 86.8% (118/136), respectively. Species and age were significant risk factors for BTV seropositivity in the study area (p < 0.05). Adult and older sheep and goats exhibited 3.49 (95% CI: 1.90-6.41) and 25.95 (95% CI: 9.45-71.28) times higher seroprevalence with the bluetongue virus in comparison to their younger counterparts, respectively. Discussion In conclusion, the current findings showed that BTV is highly prevalent. The specific circulating BTV serotypes and the temporal pattern of Bluetongue in the study area remain unknown, necessitating further investigation.
Collapse
Affiliation(s)
- Adem Beyan
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Wassie Molla
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Adugna Berju Molla
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mastewal Birhan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Saddam Mohammed Ibrahim
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Bereket Dessalegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Ambaye Kenubih
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Tesfaye Gessese
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Getaneh Dagnaw
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Hana Tesfaye
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Takele Tesgera
- Department of Animal Health and Quality Control Team, National Veterinary Institute, Bishoftu, Ethiopia
| | - Liyuwork Tesfaw
- Department of Animal Health and Quality Control Team, National Veterinary Institute, Bishoftu, Ethiopia
| | - Habtamu Abesha
- Metekel Zone Agriculture and Rural Development Office, Metekel, Ethiopia
| | - Zewdu Seyoum Tarekegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Haileyesus Dejene
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Molalegne Bitew
- Health Biotechnology Directorate, Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Gomes KC, Lima FWB, da Silva Aguiar HQ, de Araújo SS, de Cordova CAS, de Cordova FM. Thiamine deficiency and recovery: impact of recurrent episodes and beneficial effect of treatment with Trolox and dimethyl sulfoxide. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2289-2307. [PMID: 34468817 DOI: 10.1007/s00210-021-02148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
At present, thiamine deficiency (TD) is managed with administration of high doses of thiamine. Even so, severe and permanent neurological disorders can occur in recurrent episodes of TD. In this study, we used a murine model to assess the efficacy of TD recovery treatments using thiamine with or without additional administration of the antioxidant Trolox or the anti-inflammatory dimethyl sulfoxide (DMSO) after a single or recurrent episode of TD. TD was induced for 9 days with deficient chow and pyrithiamine, and the recovery period was 7 days with standard amounts of chow and thiamine, Trolox, and/or DMSO. After these periods, we evaluated behavior, histopathology, and ERK1/2 modulation in the brain. Deficient animals showed reductions in locomotor activity, motor coordination, and spatial memory. Morphologically, after a single episode of TD and recovery, deficient mice showed neuronal vacuolization in the dorsal thalamus and, after two episodes, a reduction in neuronal cell number. These effects were attenuated or reversed by the recovery treatments, mainly in the treatments with thiamine associated with Trolox or DMSO. Deficient animals showed a strong increase in ERK1/2 phosphorylation in the thalamus, hippocampus, and cerebral cortex after one deficiency episode and recovery. Interestingly, after recurrent TD and recovery, ERK1/2 phosphorylation remained high only in the deficient mice treated with thiamine and/or Trolox or thiamine with DMSO. Our data suggest that a protocol for TD treatment with thiamine in conjunction with Trolox or DMSO enhances the recovery of animals and possibly minimizes the late neurological sequelae.
Collapse
Affiliation(s)
- Ketren Carvalho Gomes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Suiane Silva de Araújo
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos , Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
3
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
4
|
Saminathan M, Singh KP, Maity M, Vineetha S, Manjunathareddy GB, Dhama K, Malik YS, Ramakrishnan MA, Misri J, Gupta VK. Pathological and immunological characterization of bluetongue virus serotype 1 infection in type I interferons blocked immunocompetent adult mice. J Adv Res 2021; 31:137-153. [PMID: 34194838 PMCID: PMC8240118 DOI: 10.1016/j.jare.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction Wild-type adult mice with intact interferon (IFN) system were neither susceptible to bluetongue virus (BTV) infection nor showed signs of morbidity/mortality. Establishment of immunologically competent wild-type adult mouse model with type I IFNs blockade is necessary to assess the pathogenesis, immune responses and testing of BTV vaccines. Objectives Present study aimed to establish and characterize BTV serotype 1 infection in immunocompetent adult mice with type I IFNs blockade at the time of infection by studying immune responses and sequential pathology. Methods Adult mice were administered with anti-mouse IFN-α/β receptor subunit-1 (IFNAR1) blocking antibody (Clone: MAR1-5A3) 24 h before and after BTV serotype 1 infection, and sacrificed at various time points. Sequential pathology, BTV localization by immunohistochemistry and quantification by qRT-PCR, immune cell kinetics and apoptosis by flow cytometry, and cytokines estimation by c-ELISA and qRT-PCR were studied. Results IFNAR blocked-infected mice developed clinical signs and typical lesions of BT; whereas, isotype-infected control mice did not develop any disease. The IFNAR blocked-infected mice showed enlarged, edematous, and congested lymph nodes (LNs) and spleen, and vascular (congestion and hemorrhage) and pneumonic lesions in lungs. Histopathologically, marked lymphoid depletion with “starry-sky pattern” due to lymphocytes apoptosis was noticed in the LNs and spleen. BTV antigen was detected and quantified in lymphoid organs, lungs, and other organs at various time points. Initial leukopenia (increased CD4+/CD8+ T cells ratio) followed by leukocytosis (decreased CD4+/CD8+ T cells ratio) and significantly increased biochemical values were noticed in IFNAR blocked-infected mice. Increased apoptotic cells in PBMCs and tissues coincided with viral load and levels of different cytokines in blood, spleen and draining LNs and notably varied between time points in IFNAR blocked-infected mice. Conclusion Present study is first to characterize BTV serotype 1 infection in immunocompetent adult mouse with type I IFNs blockade. The findings will be useful for studying pathogenesis and testing the efficacy of BTV vaccines.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, Punjab, India
| | | | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi 110001, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-IVRI, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| |
Collapse
|
5
|
Medeiros RDCN, Moraes JO, Rodrigues SDC, Pereira LM, Aguiar HQDS, de Cordova CAS, Yim Júnior A, de Cordova FM. Thiamine Deficiency Modulates p38 MAPK and Heme Oxygenase-1 in Mouse Brain: Association with Early Tissue and Behavioral Changes. Neurochem Res 2020; 45:940-955. [PMID: 31989470 DOI: 10.1007/s11064-020-02975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Thiamine deficiency (TD) produces severe neurodegenerative lesions. Studies have suggested that primary neurodegenerative events are associated with both oxidative stress and inflammation. Very little is known about the downstream effects on intracellular signaling pathways involved in neuronal death. The primary aim of this work was to evaluate the modulation of p38MAPK and the expression of heme oxygenase 1 (HO-1) in the central nervous system (CNS). Behavioral, metabolic, and morphological parameters were assessed. Mice were separated into six groups: control (Cont), TD with pyrithiamine (Ptd), TD with pyrithiamine and Trolox (Ptd + Tr), TD with pyrithiamine and dimethyl sulfoxide (Ptd + Dmso), Trolox (Tr) and DMSO (Dmso) control groups and treated for 9 days. Control groups received standard feed (AIN-93M), while TD groups received thiamine deficient feed (AIN-93DT). All the groups were subjected to behavioral tests, and CNS samples were collected for cell viability, histopathology and western blot analyses. The Ptd group showed a reduction in weight gain and feed intake, as well as a reduction in locomotor, grooming, and motor coordination activities. Also, Ptd group showed a robust increase in p38MAPK phosphorylation and mild HO-1 expression in the cerebral cortex and thalamus. The Ptd group showed a decreased cell viability, hemorrhage, spongiosis, and astrocytic swelling in the thalamus. Groups treated with Trolox and DMSO displayed diminished p38MAPK phosphorylation in both the structures, as well as attenuated thalamic lesions and behavioral activities. These data suggest that p38MAPK and HO-1 are involved in the TD-induced neurodegeneration in vivo, possibly modulated by oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Rita de Cássia Noronha Medeiros
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Juliana Oliveira Moraes
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Leidiano Martins Pereira
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Helen Quézia da Silva Aguiar
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | | | - Alberto Yim Júnior
- Curso de Medicina Veterinária, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil
| | - Fabiano Mendes de Cordova
- Programa de Pós-Graduação em Sanidade Animal e Saúde Pública nos Trópicos, Universidade Federal do Tocantins, BR-153, km 112, Araguaína, TO, 77804-970, Brazil.
| |
Collapse
|
6
|
KHORAJIYA JH, SINGH KP, BHATT PANKAJ, SAMINATHAN M, TIWARI S, BHAT SA, VINEETHA S, MAITY M, PANDA SHIBANI, GUPTA VK. Haematological and biochemical alterations in native sheep experimentally infected with bluetongue virus serotype-2. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i1.86230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study was designed to determine the haematological and biochemical alterations in sero-negative native sheep following the experimental bluetongue virus serotype-2 (BTV-2) infection. The BTV infected group comprised 14 sheep inoculated with 6 ml of clarified virus containing 1×106/ml TCID50 of BTV-2 by intradermal route. The uninfected control group comprised 6 animals inoculated with 6 ml of cell culture medium without virus by intradermal route. The blood and serum samples were analyzed at 0, 1, 2, 3, 7, 11, 14, 21 and 45 days post-infection (dpi). Significant changes were observed in all the haematological and biochemical parameters studied. Marked leucopenia was observed from 2 to 7 dpi in BTV infected group. Significant leucocytosis was documented during 11 to 14 dpi in infected group. Significant thrombocytopenia was observed during 2 to 14 dpi whereas significantly low packed cell volume (PCV) and haemoglobin (Hb) values were observed between 3 and 21 dpi in BTV infected group. Differential leucocyte count revealed significantly low lymphocyte percentage on day 3 and high on day 11 in infected group. The various biochemical enzymes like alanine aminotransferase (ALT) showed significantlyhigh values during 3 to 21 dpi, aspartate aminotransferase (AST) during 3 to 21 dpi, alkaline phosphatise (ALP) during 3 to 11 dpi and creatine kinase (CK) during 7 to 14 dpi in BTV infected group. The result of our study demonstrated significantly decreased levels of total leucocyte count, total platelet count, haemoglobin and PCV values while significantly increased levels of ALT, AST, ALP and CK values in BTV infected group. On histopathological examination, spleen and lymph nodes showed depletion of lymphoid cells, liver and kidney showed degeneration, congestion and haemorrhage at many places. The BTV nucleic acid was detected from blood and tissues by RT-PCR. These findings indicated the damage to various soft tissue organs and muscles as a sequel to vascular endothelial damages caused by BTV.
Collapse
|