1
|
Harris J, Rajasekar A. Synthesis and Analysis of Novel Hyaluronic Acid-Based Dual Photocrosslinkable Tissue Adhesive: An In Vitro Study. Cureus 2024; 16:e58664. [PMID: 38770483 PMCID: PMC11103121 DOI: 10.7759/cureus.58664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Background Tissue adhesives are mainly used for aiding in the attachment of adjacent tissues or to nearby hard tissue surfaces. They promote the natural healing processes of the tissues, especially for less painful closure, simple application, no need for sutures following surgery, and localized drug release. This study aimed to synthesize and assess the properties of hyaluronic acid (HA)-based, dual photocrosslinkable tissue adhesive. Materials and methodology N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), HA, and polymethylmethacrylate, which served as a photoinitiator, were combined to synthesize a tissue adhesive. The prepared formulation was characterized, and its biocompatibility was assessed. Results Surface morphology, mechanical properties, and biological properties of the HA adhesive were comparable to those of conventional fibrin glue. Scanning electron microscopy (SEM) analysis showed the average size of the molecules, 10-25 mm in diameter, and also showed a smooth and nonporous surface. The specimens experienced maximum compressive stress of 0.06 ± 0.02 MPa, compressive strain of 3.07 ± 2.02, and a compressive displacement at break of 3.04 ± 1.23 mm, with a maximum force of 2.33 ± 0.07 N at break. The cytotoxicity assay results for HA and fibrin glue are almost equal. Conclusion HA-based photocrosslinkable tissue adhesive could be a potential biomaterial in various applications in the field of medicine, especially in soft tissue management.
Collapse
Affiliation(s)
- Johnisha Harris
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Arvina Rajasekar
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Wang Q, Zhao X, Yu F, Fang PH, Liu L, Du X, Li W, He D, Bai Y, Li S, Yuan J. Photocurable and Temperature-Sensitive Bioadhesive Hydrogels for Sutureless Sealing of Full-Thickness Corneal Wounds. SMALL METHODS 2024; 8:e2300996. [PMID: 37997553 DOI: 10.1002/smtd.202300996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 11/25/2023]
Abstract
Penetrating corneal wounds can cause severe vision impairment and require prompt intervention to restore globe integrity and minimize the risk of infection. Tissue adhesives have emerged as a promising alternative to suturing for mitigating postoperative complications. However, conventional water-soluble adhesives suffer formidable challenges in sealing penetrating corneal wounds due to dilution or loss in a moist environment. Inspired by the robust adhesion of mussels in aquatic conditions, an injectable photocurable bioadhesive hydrogel (referred to as F20HD5) composed of polyether F127 diacrylate and dopamine-modified hyaluronic acid methacrylate is developed for sutureless closure of corneal full-thickness wounds. F20HD5 exhibits high transparency, wound-sealing ability, proper viscosity, biodegradability, and excellent biocompatibility. It allows in situ cross-linking via visible light, thereby providing sufficient mechanical strength and adhesiveness. In vivo, the adhesive hydrogel effectively closed penetrating linear corneal incisions and corneal injuries with minimal tissue loss in rabbits. During the 56-day follow-up, the hydrogel facilitates the repair of the injured corneas, resulting in more symmetrical curvatures and less scarring in distinction to the untreated control. Thus, bioinspired hydrogel holds promise as an effective adhesive for sealing full-thickness corneal wounds.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Fei Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Po-Han Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Liu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, SunYat-sen University, Guangzhou, 510006, China
| | - Saiqun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510623, China
| |
Collapse
|
3
|
Lee AL, Hsieh HY, Chen YY, Tsai LH, Wey SL, Chen DS, Chen YJ, Young TH. Novel Application of Photo-Crosslinked Urocanic-Acid-Modified Chitosan in Corneal Wounds. ACS Biomater Sci Eng 2022; 8:2016-2027. [PMID: 35412808 DOI: 10.1021/acsbiomaterials.2c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the last few years, the use of tissue adhesives in corneal perforation has gained immense popularity in clinical practices. The present study aimed to devise a new application of urocanic-acid-modified chitosan (CS) with methylene blue (MB) as a photosensitizer for the development of a photo-crosslinked tissue adhesive. In particular, the curing time was controlled with the aid of a 650 nm red diode. Under the same irradiation condition, the mechanical properties were tuned using the photosensitizer at different concentrations. In vitro tests revealed that the gel was ductile and biocompatible. The application of the gel to a perforated cornea model stopped the leakage of aqueous humor, immediately after the gel was photo-crosslinked. The blue appearance of the gel provided high precision when applied to corneal wounds. Importantly, the crosslinked gel became transparent within 24 h, owing to the dissipation of MB from tears, and the gel spontaneously sloughed off without artificial removal. Altogether, the study reported the development of a novel photo-crosslinkable urocanic-acid-modified CS gel that exhibited significant potential to be utilized in the healing of corneal perforation.
Collapse
Affiliation(s)
- An-Li Lee
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan.,Division of Plastic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Hao-Ying Hsieh
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yun-Yu Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Li-Hui Tsai
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Shiuan-Li Wey
- Department of Pathology, Hsinchu MacKay Memorial Hospital, Hsinchu 30071, Taiwan
| | - Dai-Shi Chen
- Translational Cell Biology and Neurooncology Laboratory, Universitätsklinikum Erlangen (UKER), Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Yi-Jane Chen
- Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
4
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
5
|
D'ambrosio S, Alfano A, Cassese E, Restaino OF, Barbuto Ferraiuolo S, Finamore R, Cammarota M, Schiraldi C, Cimini D. Production and purification of higher molecular weight chondroitin by metabolically engineered Escherichia coli K4 strains. Sci Rep 2020; 10:13200. [PMID: 32764548 PMCID: PMC7411012 DOI: 10.1038/s41598-020-70027-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022] Open
Abstract
The capsular polysaccharide obtained from Escherichia coli K4 is a glycosaminoglycan-like molecule, similar to chondroitin sulphate, that has established applications in the biomedical field. Recent efforts focused on the development of strategies to increase K4 polysaccharide fermentation titers up to technologically attractive levels, but an aspect that has not been investigated so far, is how changes in the molecular machinery that produces this biopolymer affect its molecular weight. In this work, we took advantage of recombinant E. coli K4 strains that overproduce capsular polysaccharide, to study whether the inferred pathway modifications also influenced the size of the produced polymer. Fed-batch fermentations were performed up to the 22 L scale, in potentially industrially applicable conditions, and a purification protocol that allows in particular the recovery of high molecular weight unsulphated chondroitin, was developed next. This approach allowed to determine the molecular weight of the purified polysaccharide, demonstrating that kfoF overexpression increased polymer size up to 133 kDa. Higher polysaccharide titers and size were also correlated to increased concentrations of UDP-GlcA and decreased concentrations of UDP-GalNAc during growth. These results are interesting also in view of novel potential applications of higher molecular weight chondroitin and chondroitin sulphate in the biomedical field.
Collapse
Affiliation(s)
- S D'ambrosio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - A Alfano
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - E Cassese
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - O F Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - S Barbuto Ferraiuolo
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - R Finamore
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - M Cammarota
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - C Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy
| | - D Cimini
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania L. Vanvitelli, via de Crecchio 7, 80138, Napoli, Italy.
| |
Collapse
|
6
|
Ge L, Chen S. Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers (Basel) 2020; 12:polym12040939. [PMID: 32325657 PMCID: PMC7240468 DOI: 10.3390/polym12040939] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
Tissue adhesives have attracted more attention to the applications of non-invasive wound closure. The purpose of this review article is to summarize the recent progress of developing tissue adhesives, which may inspire researchers to develop more outstanding tissue adhesives. It begins with a brief introduction to the emerging potential use of tissue adhesives in the clinic. Next, several critical mechanisms for adhesion are discussed, including van der Waals forces, capillary forces, hydrogen bonding, static electric forces, and chemical bonds. This article further details the measurement methods of adhesion and highlights the different types of adhesive, including natural or biological, synthetic and semisynthetic, and biomimetic adhesives. Finally, this review article concludes with remarks on the challenges and future directions for design, fabrication, and application of tissue adhesives in the clinic. This review article has promising potential to provide novel creative design principles for the generation of future tissue adhesives.
Collapse
Affiliation(s)
- Liangpeng Ge
- Chongqing Academy of Animal Sciences and Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Correspondence: (L.G.); (S.C.)
| | - Shixuan Chen
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Correspondence: (L.G.); (S.C.)
| |
Collapse
|
7
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Trujillo-de Santiago G, Sharifi R, Yue K, Sani ES, Kashaf SS, Alvarez MM, Leijten J, Khademhosseini A, Dana R, Annabi N. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials 2019; 197:345-367. [PMID: 30690421 PMCID: PMC6687460 DOI: 10.1016/j.biomaterials.2019.01.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/16/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
Closure of ocular wounds after an accident or surgery is typically performed by suturing, which is associated with numerous potential complications, including suture breakage, inflammation, secondary neovascularization, erosion to the surface and secondary infection, and astigmatism; for example, more than half of post-corneal transplant infections are due to suture related complications. Tissue adhesives provide promising substitutes for sutures in ophthalmic surgery. Ocular adhesives are not only intended to address the shortcomings of sutures, but also designed to be easy to use, and can potentially minimize post-operative complications. Herein, recent progress in the design, synthesis, and application of ocular adhesives, along with their advantages, limitations, and potential are discussed. This review covers two main classes of ocular adhesives: (1) synthetic adhesives based on cyanoacrylates, polyethylene glycol (PEG), and other synthetic polymers, and (2) adhesives based on naturally derived polymers, such as proteins and polysaccharides. In addition, different technologies to cover and protect ocular wounds such as contact bandage lenses, contact lenses coupled with novel technologies, and decellularized corneas are discussed. Continued advances in this area can help improve both patient satisfaction and clinical outcomes.
Collapse
Affiliation(s)
- Grissel Trujillo-de Santiago
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Roholah Sharifi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Kan Yue
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Ehsan Shrizaei Sani
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Sara Saheb Kashaf
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Mario Moisés Alvarez
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Jeroen Leijten
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Ali Khademhosseini
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nasim Annabi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
|
10
|
Kumar P, Pandit A, Zeugolis DI. Progress in Corneal Stromal Repair: From Tissue Grafts and Biomaterials to Modular Supramolecular Tissue-Like Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5381-5399. [PMID: 27028373 DOI: 10.1002/adma.201503986] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/31/2015] [Indexed: 06/05/2023]
Abstract
Corneal injuries and degenerative conditions have major socioeconomic consequences, given that in most cases, they result in blindness. In the quest of the ideal therapy, tissue grafts, biomaterials, and modular engineering approaches are under intense investigation. Herein, advancements and shortfalls are reviewed and future perspectives for these therapeutic strategies discussed.
Collapse
Affiliation(s)
- Pramod Kumar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Center for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
11
|
Liu Y, Lv H, Ren L, Xue G, Wang Y. Improving the moisturizing properties of collagen film by surface grafting of chondroitin sulfate for corneal tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:758-72. [DOI: 10.1080/09205063.2016.1160561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Annabi N, Yue K, Tamayol A, Khademhosseini A. Elastic sealants for surgical applications. Eur J Pharm Biopharm 2015; 95:27-39. [PMID: 26079524 PMCID: PMC4591192 DOI: 10.1016/j.ejpb.2015.05.022] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Sealants have emerged as promising candidates for replacing sutures and staples to prevent air and liquid leakages during and after the surgeries. Their physical properties and adhesion strength to seal the wound area without limiting the tissue movement and function are key factors in their successful implementation in clinical practice. In this contribution, the advances in the development of elastic sealants formed from synthetic and natural materials are critically reviewed and their shortcomings are pointed out. In addition, we highlight the applications in which elasticity of the sealant is critical and outline the limitations of the currently available sealants. This review will provide insights for the development of novel bioadhesives with advanced functionality for surgical applications.
Collapse
Affiliation(s)
- Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA; Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kan Yue
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Tamayol
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
13
|
Abstract
Clear corneal incisions are routinely used in cataract surgery, but watertight wound closure may not always be achieved, which can increase the risk for anterior chamber fluid egress or ocular surface fluid ingress. A new US Food and Drug Administration-approved ocular sealant appears to have good efficacy in sealing clear corneal incisions; its use may be indicated when wound integrity is in question.
Collapse
|
14
|
|
15
|
Lee BP, Konst S. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:3415-3419. [PMID: 24596273 DOI: 10.1002/adma.201306137] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/21/2014] [Indexed: 06/03/2023]
Abstract
A novel hydrogel actuator that combines ionoprinting techniques with reversible catechol-metal ion coordination chemistry found in mussel adhesive proteins is developed. Deposited metal ions increase the local crosslinking density, which induces sharp bending of the hydrogel. Reversibly bound metal ions can be removed and reintroduced in a different pattern so that the hydrogel can be reprogrammed to transform into a different 3-dimentional shape.
Collapse
Affiliation(s)
- Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931, USA
| | | |
Collapse
|
16
|
Yang S, Guo Q, Shores LS, Aly A, Ramakrishnan M, Kim GH, Lu Q, Su L, Elisseeff JH. Use of a chondroitin sulfate bioadhesive to enhance integration of bioglass particles for repairing critical-size bone defects. J Biomed Mater Res A 2014; 103:235-42. [DOI: 10.1002/jbm.a.35143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/22/2014] [Accepted: 02/25/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Shuqing Yang
- Department of Trauma; Tangshan Second Hospital; Tangshan Hebei 063000 China
| | - Qiongyu Guo
- Translational Tissue Engineering Center; Johns Hopkins University; Baltimore Maryland 21231
- Wilmer Eye Institute, Johns Hopkins University; Baltimore Maryland 21231
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland 21231
| | - Lucas S. Shores
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland 21231
| | - Ahmed Aly
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland 21231
| | - Meera Ramakrishnan
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland 21231
| | - Ga Hye Kim
- Department of Psychology; Princeton University; Princeton New Jersey 08544
| | - Qiaozhi Lu
- Translational Tissue Engineering Center; Johns Hopkins University; Baltimore Maryland 21231
- Wilmer Eye Institute, Johns Hopkins University; Baltimore Maryland 21231
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland 21231
| | - Lixin Su
- Department of Trauma; Tangshan Second Hospital; Tangshan Hebei 063000 China
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center; Johns Hopkins University; Baltimore Maryland 21231
- Wilmer Eye Institute, Johns Hopkins University; Baltimore Maryland 21231
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland 21231
| |
Collapse
|
17
|
Elisseeff J, Madrid MG, Lu Q, Chae JJ, Guo Q. Future perspectives for regenerative medicine in ophthalmology. Middle East Afr J Ophthalmol 2014; 20:38-45. [PMID: 23580850 PMCID: PMC3617526 DOI: 10.4103/0974-9233.106385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Repair and reconstruction of the cornea has historically relied on synthetic materials or tissue transplantation. However, the future holds promise for treatments using smart biomaterials and stem cells that direct tissue repair and regeneration to ultimately create new ocular structures that are indistinguishable from the original native tissue. The cornea is a remarkable engineering structure. By understanding the physical structure of the tissue and the resulting impact of the structure on biological function, we can design novel materials for a number of ophthalmic clinical applications. Furthermore, by extending this structure-function approach to characterizing corneal disease processes, new therapies can be engineered.
Collapse
Affiliation(s)
- Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
18
|
Peng HT, Shek PN. Novel wound sealants: biomaterials and applications. Expert Rev Med Devices 2014; 7:639-59. [DOI: 10.1586/erd.10.40] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Simson JA, Strehin IA, Allen BW, Elisseeff JH. Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive. Tissue Eng Part A 2013; 19:1843-51. [PMID: 23517453 DOI: 10.1089/ten.tea.2012.0578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.
Collapse
Affiliation(s)
- Jacob A Simson
- Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
20
|
Simson J, Crist J, Strehin I, Lu Q, Elisseeff JH. An orthopedic tissue adhesive for targeted delivery of intraoperative biologics. J Orthop Res 2013; 31:392-400. [PMID: 23097279 DOI: 10.1002/jor.22247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/20/2012] [Indexed: 02/04/2023]
Abstract
Tissue adhesives can bind together damaged tissues and serve as tools to deliver and localize therapeutics to facilitate regeneration. One emerging therapeutic trend in orthopedics is the use of intraoperative biologics (IOB), such as bone marrow (BM) and platelet-rich plasma (PRP), to stimulate healing. Here, we introduce the application of the biomaterial chondroitin sulfate succinimidyl succinate (CS-NHS) to deliver IOB in a hydrogel adhesive. We demonstrate the biomaterial's ability to bind various tissue types and its cellular biocompatibility with encapsulated human mesenchymal stem cells (hMSCs). Further, we examine in detail the CS-NHS adhesive combined with BM aspirate for use in bone applications. hMSCs were encapsulated in CS-BM and cultured for 5 weeks in osteogenic medium. Quantitative RT-PCR demonstrated osteogenesis via upregulation of the osteogenic transcription factor Runx2 and bone markers alkaline phosphatase and osteocalcin. Significant deposition of calcium and osteocalcin was detected using biochemical, histological, and immunohistochemical techniques. Shear testing demonstrated that the CS-BM adhesive exhibited an adhesive strength approximately an order of magnitude stronger than fibrin glue and approaching that of a cyanoacrylate adhesive. These results indicate that CS-NHS is a promising delivery tool for IOB in orthopedic applications requiring a strong, degradable, and biocompatible adhesive that supports bone growth.
Collapse
Affiliation(s)
- Jacob Simson
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
21
|
Simson JA, Strehin IA, Lu Q, Uy MO, Elisseeff JH. An adhesive bone marrow scaffold and bone morphogenetic-2 protein carrier for cartilage tissue engineering. Biomacromolecules 2013; 14:637-43. [PMID: 23320412 DOI: 10.1021/bm301585e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A chondroitin sulfate-bone marrow (CS-BM) adhesive hydrogel was used to localize rhBMP-2 to enhance articular cartilage tissue formation. Chondrocyte pellet culture revealed that 0.1 and 1 μg/mL of rhBMP-2 enhanced sulfated-GAG content. rhBMP-2 localization within the hydrogels was investigated, and it was found that BM, CS-NHS, and rhBMP-2 levels and time affected rhBMP-2 retention. Retention was modulated from 82 to 99% over a 3-week period for the material formulations investigated. To evaluate carrier efficacy, rhBMP-2 and bovine articular chondrocytes were encapsulated within CS-BM, and biochemical evaluation revealed significant increases in total collagen production with rhBMP-2. Histological analysis revealed more robust tissue formation and greater type-II collagen production with encapsulated rhBMP-2. Subsequently, a subcutaneous culture of hydrogels revealed increased total collagen, type-II to type-I collagen ratio, and sulfated GAG in samples carrying rhBMP-2. These findings indicate the development of a multifunctional system capable of localizing rhBMP-2 to enhance repair tissue quality.
Collapse
Affiliation(s)
- Jacob A Simson
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
22
|
Guo Q, Aly A, Schein O, Trexler MM, Elisseeff JH. Moxifloxacin in situ gelling microparticles-bioadhesive delivery system. RESULTS IN PHARMA SCIENCES 2012; 2:66-71. [PMID: 25755996 PMCID: PMC4167180 DOI: 10.1016/j.rinphs.2012.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 01/28/2023]
Abstract
Antibiotic use for ocular treatments has been largely limited by poor local bioavailability with conventional eyedrops formulations. Here, we developed a controlled delivery system composed of moxifloxacin-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulated in a chondroitin sulfate-based, two-component bioadhesive hydrogel. Using a simple and fast electrohydrodynamic spray drying (electrospraying) technique, surfactant-free moxifloxacin-loaded microparticles were fabricated with diameters on the order of 1 μm. A mixed solvent system of methanol/dichloromethane (MeOH/DCM) was employed to prepare the microparticles for the electrospraying processing. Extended release of moxifloxacin using a series of MeOH/DCM mixed solvents was accomplished over 10 days with release concentrations higher than the minimum inhibitory concentration (MIC). In contrast, moxifloxacin loaded directly in hydrogels was released rapidly within 24 h. We observed a decrease of the drug release rate from the microparticles when using an increased percentage of methanol in the mixed solvent from 10% to 30% (v/v), which can be explained by the mixed solvent system providing a driving force to form a gradient of the drug concentrations inside the microparticles. In addition, the delivery system developed in this study, which incorporates a bioadhesive to localize drug release by in situ gelling, may potentially integrate antibiotic prophylaxis and wound healing in the eye.
Collapse
Affiliation(s)
- Qiongyu Guo
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA
| | - Ahmed Aly
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA
| | - Oliver Schein
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA
| | - Morgana M Trexler
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, MD 20723, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA ; Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland, MD 21231, USA
| |
Collapse
|
23
|
Synthesis of In situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol Res 2012. [DOI: 10.1007/s13233-012-0138-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Chenault HK, Bhatia SK, DiMaio WG, Vincent GL, Camacho W, Behrens A. Sealing and Healing of Clear Corneal Incisions with an Improved Dextran Aldehyde-PEG Amine Tissue Adhesive. Curr Eye Res 2011; 36:997-1004. [DOI: 10.3109/02713683.2011.606590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Oelker AM, Berlin JA, Wathier M, Grinstaff MW. Synthesis and characterization of dendron cross-linked PEG hydrogels as corneal adhesives. Biomacromolecules 2011; 12:1658-65. [PMID: 21417379 PMCID: PMC3878822 DOI: 10.1021/bm200039s] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In pursuit of a wound-specific corneal adhesive, hydrogels formed by the reaction of propionaldehyde, butyraldehyde, or 2-oxoethyl succinate-functionalized poly(ethylene glycol) (PEG) with a peptide-based dendritic cross-linker (Lys(3)Cys(4)) were characterized. These macromers react within minutes of mixing to form transparent and elastic hydrogels with in vitro degradation times that range from hours to months based on the type of bonds formed during the cross-linking reaction, either thiazolidine or pseudoproline. The mechanical properties of these materials, determined via parallel plate rheology, were dependent on the polymer concentration, as was the hydrogel adhesive strength, which was determined by lap shear adhesive testing. In addition, these hydrogels were efficacious in closing ex vivo 4.1 mm central corneal lacerations: wounds closed with these hydrogel adhesives were able to withstand intraocular pressure values equivalent to, or in excess of, those obtained by closing the wounds with suturing.
Collapse
Affiliation(s)
| | - Jason A. Berlin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Michel Wathier
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| |
Collapse
|
26
|
Karajanagi SS, Yoganathan R, Mammucari R, Park H, Cox J, Zeitels SM, Langer R, Foster NR. Application of a dense gas technique for sterilizing soft biomaterials. Biotechnol Bioeng 2011; 108:1716-25. [PMID: 21337339 DOI: 10.1002/bit.23105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/19/2011] [Accepted: 02/10/2011] [Indexed: 12/15/2022]
Abstract
Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO(2) )-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO(2) . The dense CO(2) -based methods effectively sterilized the hydrogels achieving a SAL of 10(-7) without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO(2) -treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO(2) -based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements.
Collapse
Affiliation(s)
- Sandeep S Karajanagi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shao H, Weerasekare GM, Stewart RJ. Controlled curing of adhesive complex coacervates with reversible periodate carbohydrate complexes. J Biomed Mater Res A 2011; 97:46-51. [PMID: 21308985 DOI: 10.1002/jbm.a.33026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/10/2010] [Accepted: 12/06/2010] [Indexed: 11/12/2022]
Abstract
Periodate oxidation of carbohydrates with vicinal hydroxyl groups and aromatic ortho-dihydroxyphenyl groups has been employed extensively to initiate crosslinking or conjugation reactions in adhesive biomaterials. Periodate forms stable tridentate complexes with carbohydrates containing three appropriately configured hydroxyls, such as 1,2-O-isopropylidene-a-D-glucofuranose, that are not appreciably oxidized relative to carbohydrates with vicinal hydroxyls and ortho-dihydroxyphenyl groups. In the presence of 1,2-O-Isopropylidene-a-D-glucofuranose the rate of periodate oxidation of dihydroxy containing compounds is controlled by the rates of association and dissociation of the periodate-carbohydrate complex. By varying the ratio of 1,2-O-isopropylidene-a-D-glucofuranose to periodate the curing rate of adhesive complex coacervates was varied over a wide range.
Collapse
Affiliation(s)
- Hui Shao
- Department of Bioengineering, University of Utah, 20 S. 2030 East, Room 506C, Salt Lake City, Utah 84112
| | | | | |
Collapse
|
28
|
Rouillard AD, Berglund CM, Lee JY, Polacheck WJ, Tsui Y, Bonassar LJ, Kirby BJ. Methods for Photocrosslinking Alginate Hydrogel Scaffolds with High Cell Viability. Tissue Eng Part C Methods 2011; 17:173-9. [DOI: 10.1089/ten.tec.2009.0582] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrew D. Rouillard
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York
| | - Caroline M. Berglund
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | - Jae Youn Lee
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | - William J. Polacheck
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | - Yvonne Tsui
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | - Lawrence J. Bonassar
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
- Department of Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Brian J. Kirby
- Department of Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
29
|
Coburn J, Gibson M, Bandalini PA, Laird C, Mao HQ, Moroni L, Seliktar D, Elisseeff J. Biomimetics of the Extracellular Matrix: An Integrated Three-Dimensional Fiber-Hydrogel Composite for Cartilage Tissue Engineering. SMART STRUCTURES AND SYSTEMS 2011; 7:213-222. [PMID: 22287978 PMCID: PMC3266370 DOI: 10.12989/sss.2011.7.3.213] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles.
Collapse
Affiliation(s)
- Jeannine Coburn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Matt Gibson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | | | - Christopher Laird
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Lorenzo Moroni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Jennifer Elisseeff
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
30
|
A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 2010; 31:2788-97. [PMID: 20047758 DOI: 10.1016/j.biomaterials.2009.12.033] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/13/2009] [Indexed: 11/24/2022]
Abstract
We developed a chondroitin sulfate-polyethylene glycol (CS-PEG) adhesive hydrogel with numerous potential biomedical applications. The carboxyl groups on chondroitin sulfate (CS) chains were functionalized with N-hydroxysuccinimide (NHS) to yield chondroitin sulfate succinimidyl succinate (CS-NHS). Following purification, the CS-NHS molecule can react with primary amines to form amide bonds. Hence, using six arm polyethylene glycol amine PEG-(NH2)6 as a crosslinker we formed a hydrogel which was covalently bound to proteins in tissue via amide bonds. By varying the initial pH of the precursor solutions, the hydrogel stiffness, swelling properties, and kinetics of gelation could be controlled. The sealing/adhesive strength could also be modified by varying the damping and storage modulus properties of the material. The adhesive strength of the material with cartilage tissue was shown to be ten times higher than that of fibrin glue. Cells encapsulated or in direct contact with the material remained viable and metabolically active. Furthermore, CS-PEG material produced minimal inflammatory response when implanted subcutaneously in a rat model and enzymatic degradation was demonstrated in vitro. This work establishes an adhesive hydrogel derived from biological and synthetic components with potential application in wound healing and regenerative medicine.
Collapse
|
31
|
|
32
|
Abstract
This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications.
Collapse
Affiliation(s)
- Aaron D. Baldwin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
33
|
Current world literature. Curr Opin Ophthalmol 2009; 21:81-90. [PMID: 19996895 DOI: 10.1097/icu.0b013e3283350158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|