1
|
Lee MH, Park J, Kim KH, Kim KM, Kang CS, Lee GE, Choi JY, Shon J, Ko JM, Choi C. Genome-Wide Association Study of Arabinoxylan Content from a 562 Hexaploid Wheat Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:184. [PMID: 36616313 PMCID: PMC9823421 DOI: 10.3390/plants12010184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The selection of wheat varieties with high arabinoxylan (AX) levels could effectively improve the daily consumption of dietary fiber. However, studies on the selection of markers for AX levels are scarce. This study analyzed AX levels in 562 wheat genotypes collected from 46 countries using a GWAS with the BLINK model in the GAPIT3. Wheat genotypes were classified into eight subpopulations that exhibited high genetic differentiation based on 31,926 SNP loci. Eight candidate genes were identified, among which those encoding F-box domain-containing proteins, disease resistance protein RPM1, and bZIP transcription factor 29 highly correlated with AX levels. The AX level was higher in the adenine allele than in the guanine alleles of these genes in the wheat collection. In addition, the AX level was approximately 10% higher in 3 adenine combinations than 2 guanine, 1 adenine, and 3 guanine combinations in genotypes of three genes (F-box domain-containing proteins, RPM1, and bZIP transcription factor 29). The adenine allele, present in 97.46% of AX-95086356 SNP, exhibited a high correlation with AX levels following classification by country. Notably, the East Asian wheat genotypes contain high adenine alleles in three genes. These results highlight the potential of these three SNPs to serve as selectable markers for high AX content.
Collapse
|
2
|
Olaerts H, Courtin CM. Impact of Preharvest Sprouting on Endogenous Hydrolases and Technological Quality of Wheat and Bread: A Review. Compr Rev Food Sci Food Saf 2018; 17:698-713. [PMID: 33350132 DOI: 10.1111/1541-4337.12347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 11/30/2022]
Abstract
The cereal-based food industry faces the challenge to produce food of high and uniform quality to meet consumer demands. However, adverse weather conditions, including prolonged and repeated rainfall, before harvest time evoke germination of the kernels in the ear of the parent plant, which is known as preharvest sprouting (PHS). PHS results in the production of several hydrolytic enzymes in the kernel, which decreases the technological quality of wheat and causes problems during processing of the flour into cereal-based products. Therefore, wheat that is severely sprouted in the field is less suitable for products for human consumption, and is often discounted to animal feed. Up till now, most knowledge on PHS is obtained by research on laboratory-sprouted wheat as a proxy for field-sprouted wheat. Knowledge on PHS in the field itself is more scarce. This review gives a comprehensive overview of the recent findings on PHS of wheat in the field, compared to knowledge on controlled sprouting. The physiological and functional changes occurring in wheat during PHS and their impact on wheat and bread quality are discussed. This review provides a useful background for further research concerning the potential of field-sprouted wheat to be used as raw material in the food industry.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Olaerts H, De Bondt Y, Courtin CM. Density separation as a strategy to reduce the enzyme load of preharvest sprouted wheat and enhance its bread making quality. Food Chem 2018; 241:434-442. [PMID: 28958551 DOI: 10.1016/j.foodchem.2017.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
Abstract
As preharvest sprouting of wheat impairs its use in food applications, postharvest solutions for this problem are required. Due to the high kernel to kernel variability in enzyme activity in a batch of sprouted wheat, the potential of eliminating severely sprouted kernels based on density differences in NaCl solutions was evaluated. Compared to higher density kernels, lower density kernels displayed higher α-amylase, endoxylanase, and peptidase activities as well as signs of (incipient) protein, β-glucan and arabinoxylan breakdown. By discarding lower density kernels of mildly and severely sprouted wheat batches (11% and 16%, respectively), density separation increased flour FN of the batch from 280 to 345s and from 135 to 170s and increased RVA viscosity. This in turn improved dough handling, bread crumb texture and crust color. These data indicate that density separation is a powerful technique to increase the quality of a batch of sprouted wheat.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Yamina De Bondt
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium.
| |
Collapse
|
4
|
Olaerts H, Roye C, Derde LJ, Sinnaeve G, Meza WR, Bodson B, Courtin CM. Impact of Preharvest Sprouting of Wheat (Triticum aestivum) in the Field on Starch, Protein, and Arabinoxylan Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8324-8332. [PMID: 27734675 DOI: 10.1021/acs.jafc.6b03140] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To obtain detailed knowledge on possible changes in the properties of starch, proteins, and arabinoxylan as a result of field preharvest sprouting (PHS), three wheat varieties were harvested at maturity and several weeks later when severe PHS had occurred. Falling number values of flour dropped from 306 to 147 s (Sahara), 382 to 155 s (Forum), and 371 to 230 s (Tobak). Blocking of α-amylase activity demonstrated that the decline in falling number and changes in RVA pasting and gelation properties were not caused by changes in intrinsic starch properties as a result of PHS. PHS had no influence on the SDS-extractability and molecular weight distribution of the proteins. For arabinoxylan, incipient breakdown was noticed, leading to a higher amount and average degree of polymerization of water extractable arabinoxylan. Results show that strategies to cope with severely PHS in wheat should focus on blocking enzyme activities.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Chiara Roye
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Liesbeth J Derde
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Georges Sinnaeve
- Département Valorisation des Productions, Centre Wallon de Recherches Agronomiques (CRA-W) , Chaussée de Namur 24, B-5030 Gembloux, Belgium
| | - Walter R Meza
- Unité de Phytotechnie des Régions Tempérées, Gembloux Agro-Bio Tech (G-ABT), Université de Liége , Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Bernard Bodson
- Unité de Phytotechnie des Régions Tempérées, Gembloux Agro-Bio Tech (G-ABT), Université de Liége , Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Olaerts H, Roye C, Derde LJ, Sinnaeve G, Meza WR, Bodson B, Courtin CM. Evolution and Distribution of Hydrolytic Enzyme Activities during Preharvest Sprouting of Wheat (Triticum aestivum) in the Field. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5644-5652. [PMID: 27341479 DOI: 10.1021/acs.jafc.6b01711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To date, research on preharvest sprouted (PHS) wheat has mostly been conducted on kernels germinated under laboratory conditions, which differ widely from conditions in the field. To obtain detailed knowledge of the evolution of hydrolytic enzyme activities in PHS wheat (Triticum aestivum), a broad collection of samples from three varieties was obtained by harvesting before, at, and after maturity. Delaying harvest time coupled with periods of heavy rainfall caused sprouting in the kernels, observed as a drop in Falling Number and an increase in α-amylase activity. The appearance of α- and β-amylase, peptidase, and endoxylanase activity during field sprouting was independent from each other. Consequently, Falling Number could not be used to predict activity of other hydrolytic enzymes. When differentiating endogenous from kernel-associated microbial enzymes, results showed that α- and β-amylase and peptidase activity of PHS kernels were predominantly of endogenous origin, whereas endoxylanase activity was largely from microbial origin.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Chiara Roye
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Liesbeth J Derde
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Georges Sinnaeve
- Département Valorisation des Productions, Centre Wallon de Recherches Agronomiques (CRA-W) , Chaussée de Namur 24, B-5030 Gembloux, Belgium
| | - Walter R Meza
- Unité de Phytotechnie des Régions Tempérées, Gembloux Agro-Bio Tech (G-ABT), Université de Liége , Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Bernard Bodson
- Unité de Phytotechnie des Régions Tempérées, Gembloux Agro-Bio Tech (G-ABT), Université de Liége , Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven , Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
6
|
Saeed F, Pasha I, Anjum FM, Sultan JI, Arshad M. Arabinoxylan and Arabinogalactan Content in Different Spring Wheats. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2012.654568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Mercader JV, Parra J, Esteve-Turrillas FA, Agulló C, Abad-Somovilla A, Abad-Fuentes A. Development of monoclonal antibody-based competitive immunoassays for the detection of picoxystrobin in cereal and oilseed flours. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Saeed F, Pasha I, Anjum FM, Sultan MT. Arabinoxylans and arabinogalactans: a comprehensive treatise. Crit Rev Food Sci Nutr 2011; 51:467-76. [PMID: 21491271 DOI: 10.1080/10408391003681418] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The functional and nutraceutical importance of various foods is often attributed to the bioactive molecules present in them. A number of components have been studied but dietary fiber and its different constituents are of prime consideration. Among these, arabinoxylan (AX) and arabinogalactan (AG) are of significant importance in that they hold potential in improving the quality of the baked products along with providing health benefits against various ailments. However, the improvements are dependent on their molecular weights, cross linkages, and solubility. Water-Extractable Arabinoxylan (WEAX) is more effective as compared to Water-Unextractable Arabinoxylan (WUEAX). In this review article, efforts were directed to describe the structural and molecular conformations of these functional ingredients. The discussion has been made regarding the functional properties of AX and AG, for example, improvements in water absorption capacities, dough stability time, and viscosity. They also improve the baking absorption of flour that is positively correlated with bread volume, the most important criterion for stakeholders. The arguments are also provided on the detrimental effects on gluten quality with some possible solutions. Their role in improving the quality and extending the shelf life of bread by reducing the process of staling and retrogradation is the main idea presented in the article. The nutraceutical perspectives were also highlighted as they are helpful in regulating blood cholesterol which thereby protect the body from cardiovascular disorders like atherosclerosis. Additionally, they act as prebiotics for microorganisms residing in the gastrointestinal tract.
Collapse
Affiliation(s)
- Farhan Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | | | | | | |
Collapse
|
9
|
Gusakov AV. Proteinaceous inhibitors of microbial xylanases. BIOCHEMISTRY (MOSCOW) 2010; 75:1185-99. [DOI: 10.1134/s0006297910100019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Dornez E, Gebruers K, Delcour JA, Courtin CM. Grain-associated xylanases: occurrence, variability, and implications for cereal processing. Trends Food Sci Technol 2009. [DOI: 10.1016/j.tifs.2009.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Croes E, Gebruers K, Luyten N, Delcour JA, Courtin CM. Immunoblot quantification of three classes of proteinaceous xylanase inhibitors in different wheat ( Triticum aestivum ) cultivars and milling fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:1029-1035. [PMID: 19138080 DOI: 10.1021/jf802638n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In wheat ( Triticum aestivum ) grains, TAXI- (T. aestivum xylanase inhibitor), XIP- (xylanase inhibiting protein), and TLXI-type (thaumatin-like xylanase inhibitor) xylanase inhibitors (XIs) are expressed in considerable levels and under different forms. As these proteins have a significant impact on microbial xylanases frequently used in cereal-based biotechnological processes, knowledge of their quantitative and qualitative variability in wheat is of great interest. This paper reports the successful use of immunoquantification by Western blotting to determine the intercultivar variation in the three structurally different classes of XIs, as well as their distribution among various industrial milling fractions. TAXI and XIP protein levels in eight wheat cultivars ranged from 81 to 190 ppm and from 156 to 371 ppm, with average values of 133 and 235 ppm, respectively. Using immunoblotting, TLXI protein levels could be measured directly for the first time. They ranged from 51 to 150 ppm and amounted to 112 ppm on average. The three classes of XIs were distributed among different wheat milling fractions in a similar way, with 4 and 10 times higher concentrations in the aleurone-enriched fraction than in white flour and pericarp fractions, respectively. Immunoblot patterns suggested that the observed intercultivar and spatial variabilities within the wheat grain are not due to the presence or absence of specific members of the large polymorphic XI families but to differences in the overall level and/or proportions of the specific members.
Collapse
Affiliation(s)
- Evi Croes
- Department of Microbial and Molecular Systems, Laboratory of Food Chemistry and Biochemistry, and Leuven Food Science and Nutrition Research Centre, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
12
|
Li S, Morris CF, Bettge AD. Genotype and Environment Variation for Arabinoxylans in Hard Winter and Spring Wheats of the U.S. Pacific Northwest. Cereal Chem 2009. [DOI: 10.1094/cchem-86-1-0088] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuobi Li
- Northwest A&F University, Yangling, Shaanxi 712100, China. On sabbatical at the Western Wheat Quality Laboratory
| | - Craig F. Morris
- United States Department of Agriculture (USDA)–Agricultural Research Service Western Wheat Quality Laboratory, Washington State University, Pullman, WA 99164-6394. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
- Corresponding author. Phone: +1.509.335.4062. Fax: +1.509.335.8573. E-mail:
| | - Arthur D. Bettge
- United States Department of Agriculture (USDA)–Agricultural Research Service Western Wheat Quality Laboratory, Washington State University, Pullman, WA 99164-6394. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| |
Collapse
|
13
|
Gebruers K, Dornez E, Boros D, Fraś A, Dynkowska W, Bedo Z, Rakszegi M, Delcour JA, Courtin CM. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN Diversity Screen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:9740-9. [PMID: 18921978 DOI: 10.1021/jf800975w] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Within the HEALTHGRAIN diversity screening program, the variation in the content of dietary fiber and components thereof in different types of wheat was studied. The wheat types were winter (131 varieties) and spring (20 varieties) wheats (both Triticum aestivum L., also referred to as common wheats), durum wheat (Triticum durum Desf., 10 varieties), spelt wheat (Triticum spelta L., 5 varieties), einkorn wheat (T. monococcum L., 5 varieties), and emmer wheat (Triticum dicoccum Schubler, 5 varieties). Common wheats contained, on average, the highest level of dietary fiber [11.5-18.3% of dry matter (dm)], whereas einkorn and emmer wheats contained the lowest level (7.2-12.8% of dm). Intermediate levels were measured in durum and spelt wheats (10.7-15.5% of dm). Also, on the basis of the arabinoxylan levels in bran, the different wheat types could be divided this way, with ranges of 12.7-22.1% of dm for common wheats, 6.1-14.4% of dm for einkorn and emmer wheats, and 10.9-13.9% of dm for durum and spelt wheats. On average, bran arabinoxylan made up ca. 29% of the total dietary fiber content of wheat. In contrast to what was the case for bran, the arabinoxylan levels in flour were comparable between the different types of wheat. For wheat, in general, they varied between 1.35 and 2.75% of dm. Einkorn, emmer, and durum wheats contained about half the level of mixed-linkage beta-glucan (0.25-0.45% of dm) present in winter, spring, and spelt wheats (0.50-0.95% of dm). All wheat types had Klason lignin, the levels of which varied from 1.40 to 3.25% of dm. The arabinoxylan contents in bran and the dietary fiber contents in wholemeal were inversely and positively related with bran yield, respectively. Aqueous wholemeal extract viscosity, a measure for the level of soluble dietary fiber, was determined to large extent by the level of water-extractable arabinoxylan. In conclusion, the present study revealed substantial variation in the contents of dietary fiber and constituents thereof between different wheat types and varieties.
Collapse
Affiliation(s)
- Kurt Gebruers
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Box 2463, 3001 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dornez E, Gebruers K, Joye IJ, De Ketelaere B, Lenartz J, Massaux C, Bodson B, Delcour JA, Courtin CM. Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.03.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|