1
|
Praphasanobol P, Chokwiwatkul R, Habila S, Chantawong Y, Buaboocha T, Comai L, Chadchawan S. Effects of Salt Stress at the Booting Stage of Grain Development on Physiological Responses, Starch Properties, and Starch-Related Gene Expression in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:885. [PMID: 40265802 PMCID: PMC11944574 DOI: 10.3390/plants14060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
Here, we investigated physiological responses, yield components, starch properties, and starch biosynthesis genes in five Thai rice (Oryza sativa L.) cultivars (SPR1, Hawm Daeng, RD43, RD69, and PTT1) with distinct starch characteristics under salt stress. Salt stress decreased flag leaf greenness (SPAD), normalized difference vegetation index (NDVI) levels, and carotenoid reflectance index 1 (CRI1) levels in all cultivars, resulting in reduced net photosynthesis, transpiration rates, and yield components across all cultivars, with Hawm Daeng and PTT1 being most susceptible. In contrast, RD69 and SPR1 were more tolerant, exhibiting recovered chlorophyll fluorescence levels and total performance index values after 3 days. Salt stress reduced apparent amylose content (AAC) and increased rapidly available glucose (RAG) levels in all cultivars. Granule-bound starch synthase I (GBSSI) expression declined the most in PTT1 and Hawm Daeng. SPAD, NDVI, CRI1, and photosynthetic parameters were correlated with GBSSI expression at the milky and dough stages of grain development. GBSSI expression levels showed little to no correlation with slowly available glucose but correlated with resistant starch levels at the booting stage of grain development. Salt stress affected yield components and rice starch quality, with variations depending on salt susceptibility, which in turn affected GBSSI expression levels during the milky and dough stages of grain development.
Collapse
Affiliation(s)
- Parama Praphasanobol
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
| | - Ratchata Chokwiwatkul
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Susinya Habila
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Department of Plant Science and Biotechnology, Faculty of Natural Science, University of Jos, Jos North 930003, Nigeria
| | - Yosita Chantawong
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
| | - Teerapong Buaboocha
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA;
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (R.C.); (S.H.); (Y.C.)
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
2
|
Wan C, Yang H, Chen Y, Li Y, Cao Y, Zhang H, Duan X, Ge J, Tao J, Wang Q, Dang P, Feng B, Gao J. Insights into starch synthesis and amino acid composition of common buckwheat in response to phosphate fertilizer management strategies. Int J Biol Macromol 2024; 275:133587. [PMID: 38960252 DOI: 10.1016/j.ijbiomac.2024.133587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
To investigate the response and the regulatory mechanism of common buckwheat starch, amylose, and amylopectin biosynthesis to P management strategies, field experiments were conducted in 2021 and 2022 using three phosphorus (P) levels. Results revealed that the application of 75 kg hm-2 phosphate fertilizer significantly enhanced amylopectin and total starch content in common buckwheat, leading to improved grain weight and starch yield, and decreased starch granule size. The number of upregulated differentially expressed proteins induced by phosphate fertilizer increased with the application rate, with 56 proteins identified as shared differential proteins between different P levels, primarily associated with carbohydrate and amino acid metabolism. Phosphate fertilizer inhibited amylose synthesis by downregulating granule-bound starch synthase protein expression and promoted amylopectin accumulation by upregulating 1,4-alpha-glucan branching enzyme and starch synthase proteins expression. Additionally, Phosphate fertilizer primarily promoted the accumulation of hydrophobic and essential amino acids. These findings elucidate the mechanism of P-induced starch accumulation and offer insights into phosphate fertilizer management and high-quality cultivation of common buckwheat.
Collapse
Affiliation(s)
- Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Youxiu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yaxin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Yuchen Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Haokuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Xuyang Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jiahao Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Jincai Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Pengfei Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
3
|
Sandhu N, Singh J, Ankush AP, Augustine G, Raigar OP, Verma VK, Pruthi G, Kumar A. Development of Novel KASP Markers for Improved Germination in Deep-Sown Direct Seeded Rice. RICE (NEW YORK, N.Y.) 2024; 17:33. [PMID: 38727876 PMCID: PMC11087395 DOI: 10.1186/s12284-024-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The lack of stable-high yielding and direct-seeded adapted varieties with better germination ability from deeper soil depth and availability of molecular markers are major limitation in achieving the maximum yield potential of rice under water and resource limited conditions. Development of high-throughput and trait-linked markers are of great interest in genomics-assisted breeding. The aim of present study was to develop and validate novel KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving germination and seedling vigor of deep sown direct seeded rice (DSR). RESULTS Out of 58 designed KASP assays, four KASP assays did not show any polymorphism in any of the eleven genetic backgrounds considered in the present study. The 54 polymorphic KASP assays were then validated for their robustness and reliability on the F1s plants developed from eight different crosses considered in the present study. The third next validation was carried out on 256 F3:F4 and 713 BC3F2:3 progenies. Finally, the reliability of the KASP assays was accessed on a set of random 50 samples from F3:F4 and 80-100 samples from BC3F2:3 progenies using the 10 random markers. From the 54 polymorphic KASP, based on the false positive rate, false negative rate, KASP utility in different genetic backgrounds and significant differences in the phenotypic values of the positive (desirable) and negative (undesirable) traits, a total of 12 KASP assays have been selected. These 12 KASP include 5 KASP on chromosome 3, 1 on chromosome 4, 3 on chromosome 7 and 3 on chromosome 8. The two SNPs lying in the exon regions of LOC_Os04g34290 and LOC_Os08g32100 led to non-synonymous mutations indicating a possible deleterious effect of the SNP variants on the protein structure. CONCLUSION The present research work will provide trait-linked KASP assays, improved breeding material possessing favourable alleles and breeding material in form of expected pre-direct-seeded adapted rice varieties. The marker can be utilized in introgression program during pyramiding of valuable QTLs/genes providing adaptation to rice under DSR. The functional studies of the genes LOC_Os04g34290 and LOC_Os08g32100 possessing two validated SNPs may provide valuable information about these genes.
Collapse
Affiliation(s)
- Nitika Sandhu
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Jasneet Singh
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | | | | | | | - Gomsie Pruthi
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Arvind Kumar
- Delta Agrigenetics, Plot No. 99 & 100 Green Park Avenue, Village, Jeedimetla, Secunderabad, Telangana, 500055, India
| |
Collapse
|
4
|
Praphasanobol P, Purnama PR, Junbuathong S, Chotechuen S, Moung-Ngam P, Kasettranan W, Paliyavuth C, Comai L, Pongpanich M, Buaboocha T, Chadchawan S. Genome-Wide Association Study of Starch Properties in Local Thai Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3290. [PMID: 37765454 PMCID: PMC10535886 DOI: 10.3390/plants12183290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Rice (Oryza sativa L.) is the main source of energy for humans and a staple food of high cultural significance for much of the world's population. Rice with highly resistant starch (RS) is beneficial for health and can reduce the risk of disease, especially type II diabetes. The identification of loci affecting starch properties will facilitate breeding of high-quality and health-supportive rice. A genome-wide association study (GWAS) of 230 rice cultivars was used to identify candidate loci affecting starch properties. The apparent amylose content (AAC) among rice cultivars ranged from 7.04 to 33.06%, and the AAC was positively correlated with RS (R2 = 0.94) and negatively correlated with rapidly available glucose (RAG) (R2 = -0.73). Three loci responsible for starch properties were detected on chromosomes 1, 6, and 11. On chromosome 6, the most significant SNP corresponded to LOC_Os06g04200 which encodes granule-bound starch synthase I (GBSSI) or starch synthase. Two novel loci associated with starch traits were LOC_Os01g65810 and LOC_Os11g01580, which encode an unknown protein and a sodium/calcium exchanger, respectively. The markers associated with GBSSI and LOC_Os11g01580 were tested in two independent sets of rice populations to confirm their effect on starch properties. The identification of genes associated with starch traits will further the understanding of the molecular mechanisms affecting starch in rice and may be useful in the selection of rice varieties with improved starch.
Collapse
Affiliation(s)
- Parama Praphasanobol
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Putut Rakhmad Purnama
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Bioinformatics and Computational Biology Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supaporn Junbuathong
- Pathum Thani Rice Research Center, Ministry of Agriculture and Cooperatives, Thanyaburi, Pathum Thani 12110, Thailand; (S.J.); (P.M.-N.)
| | - Somsong Chotechuen
- Division of Rice Research and Development, Rice Department, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Peerapon Moung-Ngam
- Pathum Thani Rice Research Center, Ministry of Agriculture and Cooperatives, Thanyaburi, Pathum Thani 12110, Thailand; (S.J.); (P.M.-N.)
| | - Waraluk Kasettranan
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (C.P.)
| | - Chanita Paliyavuth
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (C.P.)
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA;
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Yang Q, Yuan Y, Liu J, Han M, Li J, Jin F, Feng B. Transcriptome analysis reveals new insights in the starch biosynthesis of non-waxy and waxy broomcorn millet (Panicum miliaceum L.). Int J Biol Macromol 2023; 230:123155. [PMID: 36610580 DOI: 10.1016/j.ijbiomac.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Broomcorn millet is a popular cereal with health benefits, and its grains are rich in starch. However, the differences in the pathway and key genes involved in starch biosynthesis of waxy and non-waxy broomcorn millet grain remain unclear. Therefore, the grain and starch physicochemical index and transcriptomic analyses of two genotypes of broomcorn millet were conducted at 3, 6, 9, 12, 15, 18, and 21 days after pollination. The phenotypic and physiological results indicated that the starch synthetic process of non-waxy and waxy broomcorn millet was significantly different. The amylose, amylopectin, and total starch contents of non-waxy broomcorn millet were 1.99, 4.74, and 6.73 mg/grain, while those of waxy broomcorn millet were 0.34, 5.94, and 6.28 mg/grain, respectively. The transcriptomic analysis revealed that 106 differentially expressed genes were identified, which were mainly enriched in the "amino sugar and nucleotide sugar metabolism", "pyruvate metabolism", "galactose metabolism", and "starch and sucrose metabolism" pathways. The WGCNA suggested that a total of 31 hub genes were correlated with starch biosynthesis. These findings provide a new approach to studying the starch synthesis in broomcorn millet.
Collapse
Affiliation(s)
- Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jiajia Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Mengru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Sharma V, Jahan K, Kumar P, Puri A, Sharma VK, Mishra A, Bharatam PV, Sharma D, Rishi V, Roy J. Mechanistic insights into granule-bound starch synthase I (GBSSI.L539P) allele in high amylose starch biosynthesis in wheat (Triticum aestivum L.). Funct Integr Genomics 2022; 23:20. [PMID: 36564499 DOI: 10.1007/s10142-022-00923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Amylose fraction of grain starch is correlated with a type of resistant starch with better nutritional quality. Granule-bound starch synthase I (GBSSI) is the known starch synthase, responsible for elongation of linear amylose chains. GBSSI expression, activity, and binding to starch and other proteins are the key factors that can affect amylose content. Previously, a QTL, qhams7A.1 carrying GBSSI mutant allele, was identified through QTL mapping using F2 population of the high amylose mutant line, 'TAC 75'. This high amylose mutant line has >2-fold higher amylose content than wild variety 'C 306'. In this study, we characterized this novel mutant allele, GBSSI.L539P. In vitro starch synthase activity of GBSSI.L539P showed improved activity than the wild type (GBSSI-wt). When expressed in yeast glycogen synthase mutants (Δgsy1gsy2), GBSSI-wt and GBSSI.L539P partially complemented the glycogen synthase (gsy1gsy2) activity in yeast. Structural analysis by circular dichroism (CD) and homology modelling showed no significant structural distortion in the mutant enzyme. Molecular docking studies suggested that the residue Leu539 is distant from the catalytic active site (ADP binding pocket) and had no detectable conformational changes in active site. Both wild and mutant enzymes were assayed for starch binding in vitro, and demonstrating higher affinity of the GBSSI.L539P mutant for starch than the wild type. The present study indicated that distant residue (L539P) influenced GBSSI activity by affecting its starch-binding ability. Therefore, it may be a potential molecular target for enhanced amylose content in grain.
Collapse
Affiliation(s)
- Vinita Sharma
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Sector-81, Mohali, 140306, Punjab, India.,Department of Biological Sciences, Indian Institute of Science Education & Research (IISER) Mohali, SAS Nagar, Sector-81, Mohali, 140306, Punjab, India
| | - Kousar Jahan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Prashant Kumar
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Sector-81, Mohali, 140306, Punjab, India
| | - Anuradhika Puri
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Vishnu K Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Ankita Mishra
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Sector-81, Mohali, 140306, Punjab, India
| | - P V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Sector-67, Mohali, Punjab, 160062, India
| | - Deepak Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Sector-81, Mohali, 140306, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Sector-81, Mohali, 140306, Punjab, India.
| |
Collapse
|
7
|
Fu Y, Luo T, Hua Y, Yan X, Liu X, Liu Y, Liu Y, Zhang B, Liu R, Zhu Z, Zhu J. Assessment of the Characteristics of Waxy Rice Mutants Generated by CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2022; 13:881964. [PMID: 35755680 PMCID: PMC9226628 DOI: 10.3389/fpls.2022.881964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The cooking and eating quality of rice grains is a major focus from a consumer's perspective and is mainly determined by the apparent amylose content (AAC) of the starch. Waxy rice, a type of rice with an AAC of less than 2%, is an important goal for the breeding of high-quality rice. In recent years, the cloning of the Waxy (Wx) gene has revealed the molecular mechanism of the formation of waxy traits in rice. However, there have been limited studies on the physicochemical properties, such as gelatinization temperature, rapid viscosity analyzer profile, and amylopectin fine structure of wx mutants. In the current study, a rapid and highly efficient strategy was developed through the CRISPR/Cas9 gene-editing system for generating wx mutants in the background of five different rice varieties. The wx mutation significantly reduced the AAC and starch viscosity but did not affect the major agronomic traits (such as plant height, panicle number per plant, grain number per panicle, and seed-setting frequency). Incorporation of the wx mutation into varieties with low initial AAC levels resulted in further reduction in AAC, but without significantly affecting the original, desirable gelatinization traits and amylopectin structure types, suggesting that parents with low initial AAC should be preferred in breeding programs.
Collapse
Affiliation(s)
- Yuhao Fu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Luo
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yonghuan Hua
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xuehai Yan
- Leshan Municipal Bureau of Agriculture and Rural Affairs, Leshan, China
| | - Xu Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Baoli Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rui Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Zizhong Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Authentication of carnaroli rice by HRM analysis targeting nucleotide polymorphisms in the Alk and Waxy genes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Sandhu N, Singh J, Singh G, Sethi M, Singh MP, Pruthi G, Raigar OP, Kaur R, Kaur R, Sarao PS, Lore JS, Singh UM, Dixit S, Sagare DB, Singh S, Satturu V, Singh VK, Kumar A. Development and validation of a novel core set of KASP markers for the traits improving grain yield and adaptability of rice under direct-seeded cultivation conditions. Genomics 2022; 114:110269. [DOI: 10.1016/j.ygeno.2022.110269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/12/2021] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
|
10
|
Liu X, Ding Q, Wang W, Pan Y, Tan C, Qiu Y, Chen Y, Li H, Li Y, Ye N, Xu N, Wu X, Ye R, Liu J, Ma C. Targeted Deletion of the First Intron of the Wx b Allele via CRISPR/Cas9 Significantly Increases Grain Amylose Content in Rice. RICE (NEW YORK, N.Y.) 2022; 15:1. [PMID: 34982277 PMCID: PMC8727654 DOI: 10.1186/s12284-021-00548-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/28/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND The rice Waxy (Wx) gene plays a major role in seed amylose synthesis and consequently controls grain amylose content. Wx gene expression is highly regulated at the post-transcriptional level. In particular, the GT/TT polymorphism at the 5'splicing site of its 1st intron greatly affects this intron's splicing efficiency and defines two predominant Wx alleles, Wxa and Wxb. Wxa rice often harbours intermediate to high amylose contents, whereas Wxb rice exhibits low to intermediate amylose contents. By deleting the Wx 1st intron using CRISPR/Cas9 technology, we generate a completely novel Wx allele and further investigate how intron removal affects Wx gene expression and rice grain amylose content. RESULTS CRISPR/Cas9-mediated targeted deletion of the Wx 1st intron was performed on 4 rice inbred lines: KY131 (Wxb), X32 (Wxb), X35 (Wxa) and X55 (Wxlv). Deletion of the 1st intron occurred in 8.6-11.8% of the primary transformants of these 4 inbred lines. Compared to wild-type plants, amylose content was significantly increased from 13.0% to approximately 24.0% in KY131 and X32 mutant lines, which both carried the Wxb allele. However, no significant difference in amylose content was observed between wild-type plants and X35 and X55 mutant lines, which carried the Wxa and Wxlv alleles, respectively. Wx gene expression analysis of wild-type plants and mutants yielded results that were highly consistent with amylose content results. KY131 and X32 mutants accumulated increased levels of steady mRNA transcripts compared with wild-type plants, whereas steady mRNA levels were not altered in X35 and X55 mutants compared with wild-type plants. Grain quality, including appearance quality and eating and cooking quality, which are tightly associated with amylose content, was also assessed in wild-type and mutant plants, and data were presented and analysed. CONCLUSIONS This study presents a novel and rapid strategy to increase amylose content in inbred rice carrying a Wxb allele. Our data strongly suggest that the 1st intron of the Wx gene regulates Wx gene expression mainly at the post-transcriptional level in rice. This finding is in contrast to a previous hypothesis suggesting that it influences Wx gene transcription. In addition, removal of the first intron generates a completely novel Wx allele. Further studies on this new Wx allele will provide invaluable insights into the regulation of Wx gene expression, which will help researchers engineer new Wx alleles to facilitate the breeding of rice cultivars with better eating and cooking quality.
Collapse
Affiliation(s)
- Xingdan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Ding
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Wenshu Wang
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Yanling Pan
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Chao Tan
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Yingbo Qiu
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Ya Chen
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Hongjing Li
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Yinlong Li
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Naizhong Ye
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Nian Xu
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Xiao Wu
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Rongjian Ye
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China
| | - Jianfeng Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China.
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China.
| | - Chonglie Ma
- Life Science and Technology Center, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China.
- State Key Laboratory of Crop Breeding Technology Innovation and Integration, China National Seed Group Co., LTD, Wuhan, 430206, Hubei, China.
| |
Collapse
|
11
|
Cruz M, Arbelaez JD, Loaiza K, Cuasquer J, Rosas J, Graterol E. Genetic and phenotypic characterization of rice grain quality traits to define research strategies for improving rice milling, appearance, and cooking qualities in Latin America and the Caribbean. THE PLANT GENOME 2021; 14:e20134. [PMID: 34510797 DOI: 10.1002/tpg2.20134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Rice (Oryza sativa L.)grain quality is a set of complex interrelated traits that include grain milling, appearance, cooking, and edible properties. As consumer preferences in Latin America and the Caribbean evolve, determining what traits best capture regional grain quality preferences is fundamental for breeding and cultivar release. In this study, a genome-wide association study (GWAS), marker-assisted selection (MAS), and genomic selection (GS) were evaluated to help guide the development of new breeding strategies for rice grain quality improvement. For this purpose, 284 rice lines representing over 20 yr of breeding in Latin America and the Caribbean were genotyped and phenotyped for 10 different traits including grain milling, appearance, cooking, and edible quality traits. Genetic correlations among the 10 traits ranged from -0.83 to 0.85. A GWAS identified 19 significant marker/trait combinations associated with eight grain quality traits. Four functional markers, three located in the Waxy and one in the starch synthase IIa genes, were significantly associated with six grain-quality traits. These markers individually explained 51-75% of the phenotypic variance depending on the trait, clearly indicating their potential utility for MAS. Cross-validation studies to evaluate predictive abilities of four different GS models for each of the 10 quality traits were conducted and predictive abilities ranged from 0.3 to 0.72. Overall, the machine learning model random forest had the highest predictive abilities and was especially effective for traits where large effect quantitative trait loci were identified. This study provides the foundation for deploying effective molecular breeding strategies for grain quality in Latin American rice breeding programs.
Collapse
Affiliation(s)
- Maribel Cruz
- FLAR (Fondo Latinoamericano para Arroz de Riego), CIAT (International Center for Tropical Agriculture), Kilómetro 17 c, CP, Cali, Valle del Cauca, 763537, Colombia
| | - Juan David Arbelaez
- Dep. of Crop Sciences, Univ. of Illinois, Urbana-Champaign, Turner Hall N-211|1102 S. Goodwin Ave. | 046, Urbana, IL, 61801, USA
| | - Katherine Loaiza
- FLAR (Fondo Latinoamericano para Arroz de Riego), CIAT (International Center for Tropical Agriculture), Kilómetro 17 c, CP, Cali, Valle del Cauca, 763537, Colombia
| | - Juan Cuasquer
- CIAT (International Center for Tropical Agriculture), Kilómetro 17 Recta Cali, Palmira, CP, Cali, Valle del Cauca, 763537, Colombia
| | - Juan Rosas
- INIA (Instituto Nacional de Investigación Agropecuaria), Ruta 8 Km. 281/33000, Treinta y Tres, Uruguay
| | - Eduardo Graterol
- FLAR (Fondo Latinoamericano para Arroz de Riego), CIAT (International Center for Tropical Agriculture), Kilómetro 17 c, CP, Cali, Valle del Cauca, 763537, Colombia
| |
Collapse
|
12
|
KHARSHIING GAYLE, CHRUNGOO NIKHILK. Wx alleles in rice: relationship with apparent amylose content of starch and a possible role in rice domestication. J Genet 2021. [DOI: 10.1007/s12041-021-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Prathepha P. Unearthed New Indel in the Waxy Gene in Glutinous Rice Landraces from Thailand. Pak J Biol Sci 2021; 24:748-755. [PMID: 34486293 DOI: 10.3923/pjbs.2021.748.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Glutinous rice landraces have played important role in northeastern and northern region of Thailand and the Lao People's Democratic Republic (PDR) by ethnic groups in this area, both as staple food and ritual in rice culture since ancient times. At a present number of these rice, cultivars have decreased and disappeared from villages without considerations and/or explore DNA variation. This study compared target DNA sequences of <i>waxy</i> genes of a collection of glutinous rice landraces both upland and lowland rice. <b>Materials and Methods:</b> A collection of 50 glutinous rice landraces was explored DNA variation in the <i>Waxy</i> gene by re-sequencing DNA of the two segments (i.e., promoter, exon1 and intron1) of a gene. <b>Results:</b> New InDel of two deletion G at position 11 (GG-) and C at position 15 (CC-) were observed in DNA sequences of the promoter region and 5'untranslalted region of both upland and lowland rice accessions. Further, the (CT)<sub>17</sub> and (CT)<sub>18</sub> were two alleles in these glutinous rice landraces from northern and northeastern Thailand. All glutinous rice landraces exhibited a characteristic of low amylose content or glutinous rice: T Single Nucleotide Polymorphisms (SNP) (AGTTATA) in the first intron splice site. <b>Conclusion:</b> New InDel in DNA sequences of the promoter region of the <i>waxy</i> gene in glutinous rice landraces was first reported. This implies that it may reflect the status of genetic background in glutinous rice landraces in Thailand.
Collapse
|
14
|
Maung TZ, Yoo JM, Chu SH, Kim KW, Chung IM, Park YJ. Haplotype Variations and Evolutionary Analysis of the Granule-Bound Starch Synthase I Gene in the Korean World Rice Collection. FRONTIERS IN PLANT SCIENCE 2021; 12:707237. [PMID: 34504507 PMCID: PMC8421862 DOI: 10.3389/fpls.2021.707237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Granule-bound starch synthase I (GBSSI) is responsible for Waxy gene encoding the, which is involved in the amylose synthesis step of starch biosynthesis. We investigated the genotypic and haplotypic variations of GBSSI (Os06g0133000) gene, including its evolutionary relatedness in the nucleotide sequence level using single-nucleotide polymorphisms (SNPs), indels, and structural variations (SVs) from 475 Korean World Rice Collection (KRICE_CORE), which comprised 54 wild rice and 421 cultivated represented by 6 ecotypes (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture) or in another way by 3 varietal types (landrace, weedy, and bred). The results revealed that 27 of 59 haplotypes indicated a total of 12 functional SNPs (fSNPs), identifying 9 novel fSNPs. According to the identified novel fSNPs, we classified the entire rice collection into three groups: cultivated, wild, and mixed (cultivated and wild) rice. Five novel fSNPs were localized in wild rice: four G/A fSNPs in exons 2, 9, and 12 and one T/C fSNP in exon 13. We also identified the three previously reported fSNPs, namely, a G/A fSNP (exon 4), an A/C fSNP (exon 6), and a C/T fSNP (exon 10), which were observed only in cultivated rice, whereas an A/G fSNP (exon 4) was observed exclusively in wild rice. All-against-all comparison of four varietal types or six ecotypes of cultivated rice with wild rice showed that the GBSSI diversity was higher only in wild rice (π = 0.0056). The diversity reduction in cultivated rice can be useful to encompass the origin of this gene GBSSI during its evolution. Significant deviations of positive (wild and indica under balancing selection) and negative (temperate and tropical japonica under purifying selection) Tajima's D values from a neutral model can be informative about the selective sweeps of GBSSI genome insights. Despite the estimation of the differences in population structure and principal component analysis (PCA) between wild and subdivided cultivated subgroups, an inbreeding effect was quantified by F ST statistic, signifying the genetic relatedness of GBSSI. Our findings of a novel wild fSNPS can be applicable for future breeding of waxy rice varieties. Furthermore, the signatures of selective sweep can also be of informative into further deeper insights during domestication.
Collapse
Affiliation(s)
- Thant Zin Maung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Ji-Min Yoo
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Kyu-Won Kim
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| | - Ill-Min Chung
- Department of Applied Life Science, Konkuk University, Seoul, South Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan-gun, South Korea
| |
Collapse
|
15
|
Gann PJ, Esguerra M, Counce PA, Srivastava V. Genotype-dependent and heat-induced grain chalkiness in rice correlates with the expression patterns of starch biosynthesis genes. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2021; 2:165-176. [PMID: 37283703 PMCID: PMC10168090 DOI: 10.1002/pei3.10054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 06/08/2023]
Abstract
Starch biosynthesis is a complex process underlying grain chalkiness in rice in a genotype-dependent manner. Coordinated expression of starch biosynthesis genes is important for producing translucent rice grains, while disruption in this process leads to opaque or chalky grains. To better understand the dynamics of starch biosynthesis genes in grain chalkiness, six rice genotypes showing variable chalk levels were subjected to gene expression analysis during reproductive stages. In the chalky genotypes, peak expression of the large subunit genes of ADP-glucose pyrophosphorylase (AGPase), encoding the first key step in starch biosynthesis, occurred in the stages before grain filling commenced, creating a gap with the upregulation of starch synthase genes, granule bound starch synthase I (GBSSI) and starch synthase IIA (SSIIA). Whereas, in low-chalk genotypes, AGPase large subunit genes expressed at later stages, generally following the expression patterns of GBSSI and SSIIA. However, heat treatment altered the expression in a genotype-dependent manner that was accompanied by transformed grain morphology and increased chalkiness. The suppression of AGPase subunit genes during early grain filling stages was observed in the chalky genotypes or upon heat treatment, which could result in a limited pool of ADP-Glucose for synthesizing amylose and amylopectin, the major components of the starch. This suboptimal starch biosynthesis process could subsequently lead to inefficient grain filling and air pockets that contribute to chalkiness. In summary, this study suggests a mechanism of grain chalkiness based on the expression patterns of the starch biosynthesis genes in rice.
Collapse
Affiliation(s)
- Peter James Gann
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
| | | | - Paul Allen Counce
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Rice Research and Extension CenterStuttgartARUSA
| | - Vibha Srivastava
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Department of HorticultureUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
16
|
Adegoke TV, Wang Y, Chen L, Wang H, Liu W, Liu X, Cheng YC, Tong X, Ying J, Zhang J. Posttranslational Modification of Waxy to Genetically Improve Starch Quality in Rice Grain. Int J Mol Sci 2021; 22:4845. [PMID: 34063649 PMCID: PMC8124582 DOI: 10.3390/ijms22094845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
The waxy (Wx) gene, encoding the granule-bound starch synthase (GBSS), is responsible for amylose biosynthesis and plays a crucial role in defining eating and cooking quality. The waxy locus controls both the non-waxy and waxy rice phenotypes. Rice starch can be altered into various forms by either reducing or increasing the amylose content, depending on consumer preference and region. Low-amylose rice is preferred by consumers because of its softness and sticky appearance. A better way of improving crops other than downregulation and overexpression of a gene or genes may be achieved through the posttranslational modification of sites or regulatory enzymes that regulate them because of their significance. The impact of posttranslational GBSSI modifications on extra-long unit chains (ELCs) remains largely unknown. Numerous studies have been reported on different crops, such as wheat, maize, and barley, but the rice starch granule proteome remains largely unknown. There is a need to improve the yield of low-amylose rice by employing posttranslational modification of Wx, since the market demand is increasing every day in order to meet the market demand for low-amylose rice in the regional area that prefers low-amylose rice, particularly in China. In this review, we have conducted an in-depth review of waxy rice, starch properties, starch biosynthesis, and posttranslational modification of waxy protein to genetically improve starch quality in rice grains.
Collapse
Affiliation(s)
- Tosin Victor Adegoke
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Lijuan Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Huimei Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Wanning Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Xingyong Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Yi-Chen Cheng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (T.V.A.); (Y.W.); (L.C.); (H.W.); (W.L.); (X.L.); (Y.-C.C.); (X.T.); (J.Y.)
| |
Collapse
|
17
|
Differential expression of three key starch biosynthetic genes in developing grains of rice differing in glycemic index. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Roy S, Banerjee A, Basak N, Bagchi TB, Mandal NP, Patra BC, Misra AK, Singh SK, Rathi RS, Pattanayak A. Genetic diversity analysis of specialty glutinous and low-amylose rice (Oryza sativa L.) landraces of Assam based on Wx locus and microsatellite diversity. J Biosci 2020. [DOI: 10.1007/s12038-020-00059-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Morales KY, Singh N, Perez FA, Ignacio JC, Thapa R, Arbelaez JD, Tabien RE, Famoso A, Wang DR, Septiningsih EM, Shi Y, Kretzschmar T, McCouch SR, Thomson MJ. An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies. PLoS One 2020; 15:e0232479. [PMID: 32407369 PMCID: PMC7224494 DOI: 10.1371/journal.pone.0232479] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.
Collapse
Affiliation(s)
- Karina Y. Morales
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Namrata Singh
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Francisco Agosto Perez
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - John Carlos Ignacio
- Rice Breeeding Platform, International Rice Research Institute, Los Baños, Philippines
| | - Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Juan D. Arbelaez
- Rice Breeeding Platform, International Rice Research Institute, Los Baños, Philippines
| | - Rodante E. Tabien
- Texas A&M AgriLife Research Center, Beaumont, TX, United States of America
| | - Adam Famoso
- Louisiana State University Ag Center, H. Rouse Caffey Rice Research Station, Rayne, LA, United States of America
| | - Diane R. Wang
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Yuxin Shi
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Tobias Kretzschmar
- Rice Breeeding Platform, International Rice Research Institute, Los Baños, Philippines
| | - Susan R. McCouch
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MJT); (SRM)
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (MJT); (SRM)
| |
Collapse
|
20
|
Shao Y, Peng Y, Mao B, Lv Q, Yuan D, Liu X, Zhao B. Allelic variations of the Wx locus in cultivated rice and their use in the development of hybrid rice in China. PLoS One 2020; 15:e0232279. [PMID: 32369522 PMCID: PMC7199927 DOI: 10.1371/journal.pone.0232279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 12/02/2022] Open
Abstract
To make better use of global germplasm resources for improving the eating quality of hybrid rice, using the resequencing data from the 3,000 rice genomes project (3K RGP), the allelic variations of the rice Wx locus were analysed. With the exception of five rare alleles discovered for the first time in our study, most of these alleles were known alleles of Wx. Furthermore, a set of Kompetitive allele-specific PCR (KASP) markers based on these Wx alleles have been developed, and thirty-six main parents of hybrid rice from 1976 to 2018 were selected for Wx genotyping. The results showed that only three Wx alleles existed in the main parents of hybrids, and the allelic combination of the hybrids changed from Wxa/Wxb and Wxlv/Wxb to Wxb/Wxb with the development of hybrid rice. Wxb is widely used in the male parents of hybrid rice. Wxa and Wxlv were used in the female parents of early hybrid rice, and they were gradually replaced by Wxb. In the future, more favourable Wx alleles from cultivated rice should be identified, introduced, and effectively used to improve hybrid rice quality.
Collapse
Affiliation(s)
- Ye Shao
- College of Agronomy, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, China
| | - Yan Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, China
| | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, China
| | - Xionglun Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
- * E-mail: (XL); (BZ)
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, China
- * E-mail: (XL); (BZ)
| |
Collapse
|
21
|
do Carmo CD, Sousa MBE, Dos Santos Silva PP, Oliveira GAF, Ceballos H, de Oliveira EJ. Identification and validation of mutation points associated with waxy phenotype in cassava. BMC PLANT BIOLOGY 2020; 20:164. [PMID: 32293293 PMCID: PMC7160975 DOI: 10.1186/s12870-020-02379-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The granule-bound starch synthase I (GBSSI) enzyme is responsible for the synthesis of amylose, and therefore, its absence results in individuals with a waxy starch phenotype in various amylaceous crops. The validation of mutation points previously associated with the waxy starch phenotype in cassava, as well as the identification of alternative mutant alleles in the GBSSI gene, can allow the development of molecular-assisted selection to introgress the waxy starch mutation into cassava breeding populations. RESULTS A waxy cassava allele has been identified previously, associated with several SNPs. A particular SNP (intron 11) was used to develop SNAP markers for screening heterozygote types in cassava germplasm. Although the molecular segregation corresponds to the expected segregation at 3:1 ratio (dominant gene for the presence of amylose), the homozygotes containing the SNP associated with the waxy mutation did not show waxy phenotypes. To identify more markers, we sequenced the GBSS gene from 89 genotypes, including some that were segregated from a cross with a line carrying the known waxy allele. As a result, 17 mutations in the GBSSI gene were identified, in which only the deletion in exon 6 (MeWxEx6-del-C) was correlated with the waxy phenotype. The evaluation of mutation points by discriminant analysis of principal component analysis (DAPC) also did not completely discriminate the waxy individuals. Therefore, we developed Kompetitive Allele Specific PCR (KASP) markers that allowed discrimination between WX and wx alleles. The results demonstrated the non-existence of heterozygous individuals of the MeWxEx6-del-C deletion in the analyzed germplasm. Therefore, the deletion MeWxEx6-del-C should not be used for assisted selection in genetic backgrounds different from the original source of waxy starch. Also, the alternative SNPs identified in this study were not associated with the waxy phenotype when compared to a panel of accessions with high genetic diversity. CONCLUSION Although the GBSSI gene can exhibit several mutations in cassava, only the deletion in exon 6 (MeWxEx6-del-C) was correlated with the waxy phenotype in the original AM206-5 source.
Collapse
Affiliation(s)
- Cátia Dias do Carmo
- Universidade Federal do Recôncavo da Bahia, Campus Cruz das Almas, CEP, Cruz das Almas, BA, 44380-000, Brazil
| | - Massaine Bandeira E Sousa
- Universidade Federal do Recôncavo da Bahia, Campus Cruz das Almas, CEP, Cruz das Almas, BA, 44380-000, Brazil
| | | | | | - Hernán Ceballos
- International Center for Tropical Agriculture (CIAT), A.A 6713, Cali, Colombia
| | - Eder Jorge de Oliveira
- Embrapa Mandioca e Fruticultura, Rua da Embrapa, Caixa Postal 007, CEP, Cruz das Almas, BA, 44380-000, Brazil.
| |
Collapse
|
22
|
GWAS for Starch-Related Parameters in Japonica Rice ( Oryza sativa L.). PLANTS 2019; 8:plants8080292. [PMID: 31430915 PMCID: PMC6724095 DOI: 10.3390/plants8080292] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022]
Abstract
Rice quality is mainly related to the following two starch components, apparent amylose content (AAC) and resistant starch (RS). The former affects grain cooking properties, while RS acts as a prebiotic. In the present study, a Genome Wide Association Scan (GWAS) was performed using 115 rice japonica accessions, including tropical and temperate genotypes, with the purpose of expanding the knowledge of the genetic bases affecting RS and AAC. High phenotypic variation was recorded for the two traits, which positively correlated. Moreover, both the parameters correlated with seed length (positive correlation) and seed width (negative correlation). A correlational selection according to human preferences has been hypothesized for the two starch traits and grain size. In addition, human selection has been proposed as the causal agent even for the different phenotypes related to starch and grain size showed by the tropical and temperate japonica accessions utilized in this study. The present GWAS led to the identification of 11 associations for RS on seven chromosomes and five associations for AAC on chromosome 6. Candidate genes and co-positional relationships with quantitative trait loci (QTLs) previously identified as affecting RS and AAC were identified for 6 associations. The candidate genes and the new RS- and/or AAC-associated regions detected provide valuable sources for future functional characterizations and for breeding programs aimed at improving rice grain quality.
Collapse
|
23
|
Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S, Gu M, Liu Q. Wx lv, the Ancestral Allele of Rice Waxy Gene. MOLECULAR PLANT 2019; 12:1157-1166. [PMID: 31181338 DOI: 10.1016/j.molp.2019.05.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 05/07/2023]
Abstract
In rice grains, the Waxy (Wx) gene is responsible for the synthesis of amylose, the most important determinant for eating and cooking quality. The effects of several Wx alleles on amylose content and the taste of cooked rice have been elucidated. However, the relationship between artificial selection and the evolution of various Wx alleles as well as their distribution remain unclear. Here we report the identification of an ancestral allele, Wxlv, which dramatically affects the mouthfeel of rice grains by modulating the size of amylose molecules. We demonstrated that Wxlv originated directly from wild rice, and the three major Wx alleles in cultivated rice (Wxb, Wxa, and Wxin) differentiated after the substitution of one base pair at the functional sites. These data indicate that the Wxlv allele played an important role in artificial selection and domestication. The findings also shed light on the evolution of various Wx alleles, which have greatly contributed to improving the eating and cooking quality of rice.
Collapse
Affiliation(s)
- Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jihui Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Shengjie Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Xiaolei Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yan Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Min Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Chuandeng Yi
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shuzhu Tang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
24
|
Arbelaez JD, Dwiyanti MS, Tandayu E, Llantada K, Jarana A, Ignacio JC, Platten JD, Cobb J, Rutkoski JE, Thomson MJ, Kretzschmar T. 1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. RICE (NEW YORK, N.Y.) 2019; 12:55. [PMID: 31350673 PMCID: PMC6660535 DOI: 10.1186/s12284-019-0311-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND While a multitude of genotyping platforms have been developed for rice, the majority of them have not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and tailored for genomic prediction in elite indica rice breeding programs. RESULTS Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker repeatability and concordance rates of 99%. These technical properties were not affected when two common DNA extraction protocols were used. The average distance between SNPs in the 1k-RiCA was 1.5 cM, similar to the theoretical distance which would be expected between 1,000 uniformly distributed markers across the rice genome. The average minor allele frequencies on a panel of indica lines was 0.36 and polymorphic SNPs estimated on pairwise comparisons between indica by indica accessions and indica by japonica accessions were on average 430 and 450 respectively. The specific design parameters of the 1k-RiCA allow for a detailed view of genetic relationships and unambiguous molecular IDs within indica accessions and good cost vs. marker-density balance for genomic prediction applications in elite indica germplasm. Predictive abilities of Genomic Selection models for flowering time, grain yield, and plant height were on average 0.71, 0.36, and 0.65 respectively based on cross-validation analysis. Furthermore the inclusion of important trait markers associated with 11 different genes and QTL adds value to parental selection in crossing schemes and marker-assisted selection in forward breeding applications. CONCLUSIONS This study validated the marker quality and robustness of the 1k-RiCA genotypic platform for genotyping populations derived from indica rice subpopulation for genetic and breeding purposes including MAS and genomic selection. The 1k-RiCA has proven to be an alternative cost-effective genotyping system for breeding applications.
Collapse
Affiliation(s)
- Juan David Arbelaez
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | | | - Erwin Tandayu
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Krizzel Llantada
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Annalhea Jarana
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Carlos Ignacio
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Damien Platten
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Joshua Cobb
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Jessica Elaine Rutkoski
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Houston, TX 77843 USA
| | - Tobias Kretzschmar
- Southern Cross Plant Sciences, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia
| |
Collapse
|
25
|
Huggins TD, Chen MH, Fjellstrom RG, Jackson AK, McClung AM, Edwards JD. Association Analysis of Three Diverse Rice ( Oryza sativa L.) Germplasm Collections for Loci Regulating Grain Quality Traits. THE PLANT GENOME 2019; 12:170085. [PMID: 30951092 DOI: 10.3835/plantgenome2017.09.0085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rice ( L.) end-use cooking quality is vital for producers and billions of consumers worldwide. Grain quality is a complex trait with interacting genetic and environmental factors. Deciphering the complex genetic architecture associated with grain quality provides essential information for improved breeding strategies to enhance desirable traits that are stable across variable climatic and environmental conditions. In this study, genome-wide association (GWA) analysis of three rice diversity panels, the USDA rice core subset (1364 accessions), the minicore (MC) (173 accessions after removing non-), and the high density rice array-MC (HDMC) (383 accessions), with simple sequence repeats, single nucleotide polymorphic markers, or both, revealed large- and small-effect loci associated with known genes and previously uncharacterized genomic regions. Clustering of the significant regions in the GWA results suggests that multiple grain quality traits are inherited together. The 11 novel candidate loci for grain quality traits and the seven candidates for grain chalk identified are involved in the starch biosynthesis pathway. This study highlights the intricate pleiotropic relationships that exist in complex genotype-phenotypic associations and gives a greater insight into effective breeding strategies for grain quality improvement.
Collapse
|
26
|
Crofts N, Itoh A, Abe M, Miura S, Oitome NF, Bao J, Fujita N. Three Major Nucleotide Polymorphisms in the Waxy Gene Correlated with the Amounts of Extra-long Chains of Amylopectin in Rice Cultivars with S or L-type Amylopectin. J Appl Glycosci (1999) 2019; 66:37-46. [PMID: 34354518 PMCID: PMC8056923 DOI: 10.5458/jag.jag.jag-2018_005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
Extra-long chains (ELC) of amylopectin in rice endosperm are synthesized by granule-bound starch synthase I encoded by the Waxy (Wx) gene, which primarily synthesizes amylose. Previous studies showed that single nucleotide polymorphisms (SNP) in intron 1 and exon 6 of the Wx gene influences ELC amount. However, whether these SNPs are conserved among rice cultivars and if any other SNPs are present in the Wx gene remained unknown. Here, we sequenced the Wx gene from 17 rice cultivars with S or L-type amylopectin, including those with known ELC content and those originating in China with unique starch properties, as well as typical japonica and indica cultivars. In addition to the two SNPs described above, an additional SNP correlating with ELC content was found in exon 10. Low ELC cultivars (<3.0 %) had thymine at the splicing donor site of intron 1, Tyr224 in exon 6, and Pro415 in exon 10. Cultivars with moderate ELC content (4.1–6.9 %) had guanine at the splicing donor site of intron 1, Ser224 in exon 6, and Pro415 in exon 10. Cultivars with high ELC content (7.7–13.9 %) had guanine at the splicing donor site of intron 1, Tyr224 in exon 6, and Ser415 in exon 10. The chain length distribution pattern of amylopectin was correlated with the amounts of SSIIa found in starch granules and gelatinization temperature, but not with ELC content. The combinations of SNPs in the Wx gene found in this study may provide useful information for screening specific cultivars with different ELC content.
Collapse
Affiliation(s)
- Naoko Crofts
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Ayaka Itoh
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Misato Abe
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Satoko Miura
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Naoko F Oitome
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| | - Jinsong Bao
- 2 Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University
| | - Naoko Fujita
- 1 Laboratory of Plant Physiology, Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University
| |
Collapse
|
27
|
Butardo VM, Sreenivasulu N, Juliano BO. Improving Rice Grain Quality: State-of-the-Art and Future Prospects. Methods Mol Biol 2019; 1892:19-55. [PMID: 30397798 DOI: 10.1007/978-1-4939-8914-0_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rice grain quality encompasses complex interrelated traits that cover biochemical composition, cooking, eating, nutritional, and sensory properties. Because rice endosperm is composed mainly of starch, rice grain quality is traditionally defined by characterizing starch structure and composition, which is then subsequently correlated with functional properties of the grain. The current proxy tests routinely used to describe rice grain quality preferences are rather limited to the estimation of apparent amylose content, gelatinization temperature, and gel consistency. Additional tests that characterize starch property, viscoelasticity, grain texture, and aroma are also employed in more advanced laboratories. However, these tests are not routinely applied in breeding programs to distinguish cooking quality classes to reflect evolving consumer preference and market demand. As consumer preferences in Asia and all over the world are diverse due to varied demographics and culture, defining uniform attributes to capture regional grain quality preferences becomes more challenging. Hence, novel and innovative proxy tests are needed to characterize rice grain quality to meet the demand for consumer preferences of commercially-released cultivars. In this chapter, the current methods employed in rice grain quality monitoring are succinctly reviewed. Future prospects for improvement are identified, introducing cutting edge technologies that can facilitate high-throughput screening of rice diversity panels and breeding lines. Aside from addressing the requirements for quality improvement in the traditional inbred rice breeding programs, we also tackled the need to enhance grain quality in the hybrid rice sector.
Collapse
Affiliation(s)
- Vito M Butardo
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Nese Sreenivasulu
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| | | |
Collapse
|
28
|
Mogga M, Sibiya J, Shimelis H, Lamo J, Yao N. Diversity analysis and genome-wide association studies of grain shape and eating quality traits in rice (Oryza sativa L.) using DArT markers. PLoS One 2018; 13:e0198012. [PMID: 29856872 PMCID: PMC5983461 DOI: 10.1371/journal.pone.0198012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/11/2018] [Indexed: 11/18/2022] Open
Abstract
Microarray-based markers such as Diversity Arrays Technology (DArT) have become the genetic markers of choice for construction of high-density maps, quantitative trait loci (QTL) mapping and genetic diversity analysis based on their efficiency and low cost. More recently, the DArT technology was further developed in combination with high-throughput next-generation sequencing (NGS) technologies to generate the DArTseq platform representing a new sequencing tool of complexity-reduced representations. In this study, we used DArTseq markers to investigate genetic diversity and genome-wide association studies (GWAS) of grain quality traits in rice (Oryza sativa L.). The study was performed using 59 rice genotypes with 525 SNPs derived from DArTseq platform. Population structure analysis revealed only two distinct genetic clusters where genotypes were grouped based on environmental adaptation and pedigree information. Analysis of molecular variance indicated a low degree of differentiation among populations suggesting the need for broadening the genetic base of the current germplasm collection. GWAS revealed 22 significant associations between DArTseq-derived SNP markers and rice grain quality traits in the test genotypes. In general, 2 of the 22 significant associations were in chromosomal regions where the QTLs associated with the given traits had previously been reported, the other 20 significant SNP marker loci were indicative of the likelihood discovery of novel alleles associated with rice grain quality traits. DArTseq-derived SNP markers that include SNP12_100006178, SNP13_3052560 and SNP14_3057360 individually co-localised with two functional gene groups that were associated with QTLs for grain width and grain length to width ratio on chromosome 3, indicating trait dependency or pleiotropic-effect loci. This study demonstrated that DArTseq markers were useful genomic resources for genome-wide association studies of rice grain quality traits to accelerate varietal development and release.
Collapse
Affiliation(s)
- Maurice Mogga
- Ministry of Agriculture and Food Security, Juba, South Sudan
| | - Julia Sibiya
- African Centre for Crop Improvement, School of Agricultural Sciences and Agribusiness, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Hussein Shimelis
- African Centre for Crop Improvement, School of Agricultural Sciences and Agribusiness, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Jimmy Lamo
- Cereals Program, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Nasser Yao
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
| |
Collapse
|
29
|
Yang B, Xu S, Xu L, You H, Xiang X. Effects of Wx and Its Interaction With SSIII-2 on Rice Eating and Cooking Qualities. FRONTIERS IN PLANT SCIENCE 2018; 9:456. [PMID: 29692791 PMCID: PMC5902675 DOI: 10.3389/fpls.2018.00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/22/2018] [Indexed: 05/13/2023]
Abstract
The Wx gene encodes a granule-bound starch synthase (GBSS) and plays a key role in determining rice eating and cooking qualities (ECQs). SSIII-2 (SSIIIa), a member of the soluble starch synthases, is responsible for the synthesis of long chains of amylopectin. To investigate the effects of Wx and its interaction with SSIII-2 on grain ECQs, a population from a hybrid combination was established as a research material. The genotypes of SSIII-2 and the single nucleotide polymorphisms (SNPs) on intron1, exon6, and exon10 of Wx, and the physicochemical indicators and rapid visco analyzer (RVA) profile characteristics were analyzed. The results revealed various effects of SSIII-2 on rice quality under different backgrounds of Wx alleles. There was no obvious difference between different SSIII-2 alleles under the same background of Wxa , whereas there was a significant diversity under the same background of Wxb . Wxa had a dominant epistasis to SSIII-2 because the effect of SSIII-2 was masked by the massive synthesis of GBSS under Wxa . The apparent amylose content (AAC) was mainly controlled by the In1G/T SNP, and rice gel consistency (GC) was regulated by the Ex10C/T SNP. The combined effects of three SNPs had a significant influence on all ECQs and RVA profile parameters, except for gelatinization temperature. In1T-Ex6A-Ex10C and In1T-Ex6A-Ex10T were classified as being low AAC type. TT-AA-CC and TT-AA-TT had a low AAC and a soft GC. The combined effects of different SNPs of Wx are very important for rice quality breeding.
Collapse
Affiliation(s)
- Bowen Yang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Shunju Xu
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Liang Xu
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Hui You
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
| | - Xunchao Xiang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, Mianyang, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang, China
- *Correspondence: Xunchao Xiang
| |
Collapse
|
30
|
Wambugu P, Ndjiondjop M, Furtado A, Henry R. Sequencing of bulks of segregants allows dissection of genetic control of amylose content in rice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:100-110. [PMID: 28499072 PMCID: PMC5785344 DOI: 10.1111/pbi.12752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/25/2017] [Accepted: 05/01/2017] [Indexed: 05/03/2023]
Abstract
Amylose content (AC) is a key quality trait in rice. A cross between Oryza glaberrima (African rice) and Oryza sativa (Asian rice) segregating for AC was analysed by sequencing bulks of individuals with high and low AC. SNP associated with the granule bound starch synthase (GBSS1) locus on chromosome 6 were polymorphic between the bulks. In particular, a G/A SNP that would result in an Asp to Asn mutation was identified. This amino acid substitution may be responsible for differences in GBSS activity as it is adjacent to a disulphide linkage conserved in all grass GBSS proteins. Other polymorphisms in genomic regions closely surrounding this variation may be the result of linkage drag. In addition to the variant in the starch biosynthesis gene, SNP on chromosomes 1 and 11 linked to AC was also identified. SNP was found in the genes encoding the NAC and CCAAT-HAP5 transcription factors that have previously been linked to starch biosynthesis. This study has demonstrated that the approach of sequencing bulks was able to identify genes on different chromosomes associated with this complex trait.
Collapse
Affiliation(s)
- Peterson Wambugu
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQldAustralia
- Present address:
Kenya Agricultural and Livestock Research Organization (KALRO)Genetic Resources Research InstituteNairobiKenya
| | | | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQldAustralia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQldAustralia
| |
Collapse
|
31
|
Li K, Bao J, Corke H, Sun M. Association Analysis of Markers Derived from Starch Biosynthesis Related Genes with Starch Physicochemical Properties in the USDA Rice Mini-Core Collection. FRONTIERS IN PLANT SCIENCE 2017; 8:424. [PMID: 28421086 PMCID: PMC5376596 DOI: 10.3389/fpls.2017.00424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/13/2017] [Indexed: 05/05/2023]
Abstract
Rice eating and cooking quality is largely determined by starch physicochemical properties. The diverse accessions in the USDA rice mini-core collection (URMC) facilitate extensive association analysis of starch physicochemical properties with molecular markers specific to starch biosynthesis related genes. To identify significant trait-marker associations that can be utilized in rice breeding programs for improved starch quality, we conducted two association analyses between 26 molecular markers derived from starch biosynthesis related genes and 18 parameters measured of starch physicochemical properties in two sets of the mini-core accessions successfully grown in two environments in China. Many significant trait-marker associations (P < 0.001) were detected in both association analyses. Five markers of Waxy gene, including the (CT)n repeats, the G/T SNP of intron 1, the 23 bp sequence duplication (InDel) of exon 2, the A/C SNP of exon 6, and the C/T SNP of exon 10, were found to be primarily associated with starch traits related to apparent amylose content (AAC), and two markers targeting the 4,329-4,330 bp GC/TT SNPs and 4,198 bp G/A SNP of SSIIa gene were mainly associated with traits related to gelatinization temperature (GT). Two new haplotypes were found in the mini-core collection based on the combinations of the 23 bp InDel and three SNPs (G/T of intron 1, A/C of exon 6, and C/T of exon 10) of Waxy gene. Furthermore, our analyses indicated that the (CT)n polymorphisms of Waxy gene had a non-negligible effect on AAC related traits, as evidenced by significant variation in AAC related traits among rice accessions with the same Waxy SNPs but different (CT) n repeats. As the five Waxy markers and the two SSIIa markers showed consistent major effects on starch quality traits across studies, these markers should have priority for utilization in marker-assisted breeding.
Collapse
Affiliation(s)
- Kehu Li
- School of Biological Sciences, University of Hong KongHong Kong, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Harold Corke
- School of Biological Sciences, University of Hong KongHong Kong, China
- Department of Food Science and Engineering, Shanghai Jiao Tong UniversityShanghai, China
| | - Mei Sun
- School of Biological Sciences, University of Hong KongHong Kong, China
| |
Collapse
|
32
|
Xiang X, Kang C, Xu S, Yang B. Combined effects of Wx and SSIIa haplotypes on rice starch physicochemical properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1229-1234. [PMID: 27312246 DOI: 10.1002/jsfa.7854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Wx and SSIIa are central genes for determining starch physicochemical properties and rice endosperm starch is composed of linear amylose, which is entirely synthesized by granule bound starch synthase I (GBSSI, encoded by Wx) and branched amylopectin. In the present study, different haplotypes of rice were examined to investigate the combined effects of pivotal genes in the metabolic chain of starch, Wx and SSIIa. RESULTS Wx haplotypes differed in terms of apparent amylose content (AAC) and gel consistency (GC). The I-3 [haplotype I (Int1T/Ex10C) of Wx and haplotype 3 (A-G-TT) of SSIIa] and the I-4 combinations of rice had better eating and cooking qualities (ECQs) with lower AAC, lower gelatinization temperature (GT) and softer GC. CONCLUSION The characteristic parameters of Rapid Visco-analyser (RVA) could distinguish differences in AAC and GC but not GT. The I-3 and I-4 haplotype combinations of Wx and SSIIa represent key targets for the production of rice with better ECQs. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xunchao Xiang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, 59 Qinglong Road, Mianyang, 621010, China
| | - Cuifang Kang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Shunju Xu
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| | - Bowen Yang
- Laboratory of Plant Molecular Genetics and Breeding, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China
| |
Collapse
|
33
|
Shahid S, Begum R, Razzaque S, Jesmin, Seraj ZI. Variability in amylose content of Bangladeshi rice cultivars due to unique SNPs in Waxy allele. J Cereal Sci 2016. [DOI: 10.1016/j.jcs.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Biselli C, Bagnaresi P, Cavalluzzo D, Urso S, Desiderio F, Orasen G, Gianinetti A, Righettini F, Gennaro M, Perrini R, Ben Hassen M, Sacchi GA, Cattivelli L, Valè G. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. BMC Genomics 2015; 16:1091. [PMID: 26689934 PMCID: PMC4687084 DOI: 10.1186/s12864-015-2321-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Rice represents one the most important foods all over the world. In Europe, Italy is the first rice producer and Italian production is driven by tradition and quality. All main rice grain quality traits, like cooking properties, texture, gelatinization temperature, chalkiness and yield, are related to the content and composition of starch and seed-storage proteins in the endosperm and to grain shape. In addition, a number of nutraceutical compounds and allergens are known to have a significant effect on grain quality determination. To investigate the genetic bases underlying the qualitative differences that characterize traditional Italian rice cultivars, a comparative RNA-Seq-based transcriptomic analysis of developing caryopsis was conducted at 14 days after flowering on six popular Italian varieties (Carnaroli, Arborio, Balilla, Vialone Nano, Gigante Vercelli and Volano) phenotypically differing for qualitative grain-related traits. RESULTS Co-regulation analyses of differentially expressed genes showing the same expression patterns in the six genotypes highlighted clusters of loci up or down-regulated in specific varieties, with respect to the others. Among them, we detected loci involved in cell wall biosynthesis, protein metabolism and redox homeostasis, classes of genes affecting in chalkiness determination. Moreover, loci encoding for seed-storage proteins, allergens or involved in the biosynthesis of specific nutraceutical compounds were also present and specifically regulated in the different clusters. A wider investigation of all the DEGs detected in pair-wise comparisons revealed transcriptional variation, among the six genotypes, for quality-related loci involved in starch biosynthesis (e.g. GBSSI, starch synthases and AGPase), genes encoding for transcription factors, additional seed storage proteins, allergens or belonging to additional nutraceutical compounds biosynthetic pathways and loci affecting grain size. Putative functional SNPs associated to amylose content in starch, gelatinization temperature and grain size were also identified. CONCLUSIONS The present work represents a more extended phenotypic characterization of a set of rice accessions that present a wider genetic variability than described nowadays in literature. The results provide the first transcriptional picture for several of the grain quality differences observed among the Italian rice varieties analyzed and reveal that each variety is characterized by the over-expression of a peculiar set of loci affecting grain appearance and quality. A list of candidates and SNPs affecting specific grain properties has been identified offering a starting point for further works aimed to characterize genes and molecular markers for breeding programs.
Collapse
Affiliation(s)
- Chiara Biselli
- CREA- Council for Agricultural Research and Economics, Rice research unit, S. S. 11 to Torino Km 2,5, Vercelli, 13100, Italy. .,CREA - Council for Agricultural Research and Economics, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), 29017, Italy.
| | - Paolo Bagnaresi
- CREA - Council for Agricultural Research and Economics, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), 29017, Italy.
| | - Daniela Cavalluzzo
- CREA- Council for Agricultural Research and Economics, Rice research unit, S. S. 11 to Torino Km 2,5, Vercelli, 13100, Italy.
| | - Simona Urso
- CREA - Council for Agricultural Research and Economics, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), 29017, Italy.
| | - Francesca Desiderio
- CREA - Council for Agricultural Research and Economics, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), 29017, Italy.
| | - Gabriele Orasen
- CREA- Council for Agricultural Research and Economics, Rice research unit, S. S. 11 to Torino Km 2,5, Vercelli, 13100, Italy. .,DiSAA - Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, Milan, 20133, Italy.
| | - Alberto Gianinetti
- CREA - Council for Agricultural Research and Economics, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), 29017, Italy.
| | - Federico Righettini
- DiSAA - Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, Milan, 20133, Italy.
| | - Massimo Gennaro
- CREA- Council for Agricultural Research and Economics, Rice research unit, S. S. 11 to Torino Km 2,5, Vercelli, 13100, Italy.
| | - Rosaria Perrini
- CREA- Council for Agricultural Research and Economics, Rice research unit, S. S. 11 to Torino Km 2,5, Vercelli, 13100, Italy.
| | - Manel Ben Hassen
- CREA- Council for Agricultural Research and Economics, Rice research unit, S. S. 11 to Torino Km 2,5, Vercelli, 13100, Italy. .,DiSAA - Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, Milan, 20133, Italy.
| | - Gian Attilio Sacchi
- DiSAA - Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Via G. Celoria 2, Milan, 20133, Italy.
| | - Luigi Cattivelli
- CREA - Council for Agricultural Research and Economics, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), 29017, Italy.
| | - Giampiero Valè
- CREA- Council for Agricultural Research and Economics, Rice research unit, S. S. 11 to Torino Km 2,5, Vercelli, 13100, Italy. .,CREA - Council for Agricultural Research and Economics, Genomics Research Centre, Via S. Protaso 302, Fiorenzuola d'Arda (PC), 29017, Italy.
| |
Collapse
|
35
|
Bryant RJ, M. Yeater K, McClung AM. Effect of Nitrogen Rate and the Environment on Physicochemical Properties of Selected High-Amylose Rice Cultivars. Cereal Chem 2015. [DOI: 10.1094/cchem-02-15-0035-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rolfe J. Bryant
- Retired from U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A. Mention of a trademark or proprietary product in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA
| | | | - Anna M. McClung
- USDA, ARS, Dale Bumpers National Rice Research Center, 2890 Hwy 130 E., Stuttgart, AR 72160, U.S.A
| |
Collapse
|
36
|
Duitama J, Silva A, Sanabria Y, Cruz DF, Quintero C, Ballen C, Lorieux M, Scheffler B, Farmer A, Torres E, Oard J, Tohme J. Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection. PLoS One 2015; 10:e0124617. [PMID: 25923345 PMCID: PMC4414565 DOI: 10.1371/journal.pone.0124617] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 01/08/2023] Open
Abstract
Current advances in sequencing technologies and bioinformatics revealed the genomic background of rice, a staple food for the poor people, and provided the basis to develop large genomic variation databases for thousands of cultivars. Proper analysis of this massive resource is expected to give novel insights into the structure, function, and evolution of the rice genome, and to aid the development of rice varieties through marker assisted selection or genomic selection. In this work we present sequencing and bioinformatics analyses of 104 rice varieties belonging to the major subspecies of Oryza sativa. We identified repetitive elements and recurrent copy number variation covering about 200 Mbp of the rice genome. Genotyping of over 18 million polymorphic locations within O. sativa allowed us to reconstruct the individual haplotype patterns shaping the genomic background of elite varieties used by farmers throughout the Americas. Based on a reconstruction of the alleles for the gene GBSSI, we could identify novel genetic markers for selection of varieties with high amylose content. We expect that both the analysis methods and the genomic information described here would be of great use for the rice research community and for other groups carrying on similar sequencing efforts in other crops.
Collapse
Affiliation(s)
- Jorge Duitama
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
- * E-mail:
| | - Alexander Silva
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Yamid Sanabria
- Rice Research Station, Louisiana State University Agricultural Center, Rayne, Louisiana, United States of America
| | - Daniel Felipe Cruz
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Constanza Quintero
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Carolina Ballen
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - Mathias Lorieux
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
- Plant Diversity Adaptation and Development Research Unit, Institut de Recherche pour le Développement, Montpellier, France
| | - Brian Scheffler
- Genomics and Bioinformatics Research Unit, Agricultural Research Service, United States Department of Agriculture, Jamie Whitten Delta States Research Center, Stoneville, Mississippi, United States of America
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Edgar Torres
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| | - James Oard
- Rice Research Station, Louisiana State University Agricultural Center, Rayne, Louisiana, United States of America
| | - Joe Tohme
- Agrobiodiversity research area, International Center for Tropical Agriculture, Cali, Colombia
| |
Collapse
|
37
|
Hoai TTT, Matsusaka H, Toyosawa Y, Suu TD, Satoh H, Kumamaru T. Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars. BREEDING SCIENCE 2014; 64:142-8. [PMID: 24987300 PMCID: PMC4065321 DOI: 10.1270/jsbbs.64.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/23/2014] [Indexed: 05/07/2023]
Abstract
Amylose content is one of the most important factors influencing the physical and chemical properties of starch in rice. Analysis of 352 Vietnamese rice cultivars revealed a wide range of variation in apparent amylose content and the expression level of granule-bound starch synthase. On the basis of single-nucleotide polymorphisms (SNP) at the splicing donor site of the first intron and in the coding region of the granule-bound starch synthase I gene, Waxy gene, alleles can be classified into seven groups that reflect differences in apparent amylose content. The very low and low apparent amylose content levels were tightly associated with a G to T in the first intron whereas intermediate and high amylose was associated with a T genotype at SNP in exon 10. The correlation between the combination of T genotype at SNP in the first intron, C in exon 6, or C in exon 10 was predominant among low amylose rice varieties. Our analysis confirmed the existence of Wx (op) allele in Vietnamese rice germplasm. The results of this study suggest that the low amylose properties of Vietnamese local rice germplasm are attributable to spontaneous mutations at exons, and not at the splicing donor site.
Collapse
Affiliation(s)
- Tran Thi Thu Hoai
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University,
Fukuoka 812-8581,
Japan
- Plant Resources Center, Vietnamese Academy of Agricultural Science,
Ankhanh, Hoaiduc, Hanoi,
Vietnam
| | - Hiroaki Matsusaka
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University,
Fukuoka 812-8581,
Japan
| | - Yoshiko Toyosawa
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University,
Fukuoka 812-8581,
Japan
| | - Tran Danh Suu
- Plant Resources Center, Vietnamese Academy of Agricultural Science,
Ankhanh, Hoaiduc, Hanoi,
Vietnam
| | - Hikaru Satoh
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University,
Fukuoka 812-8581,
Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University,
Fukuoka 812-8581,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
38
|
Mo YJ, Jeung JU, Shin WC, Kim KY, Ye C, Redoña ED, Kim BK. Effects of allelic variations in starch synthesis-related genes on grain quality traits of Korean nonglutinous rice varieties under different temperature conditions. BREEDING SCIENCE 2014; 64:164-75. [PMID: 24987303 PMCID: PMC4065324 DOI: 10.1270/jsbbs.64.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/12/2014] [Indexed: 05/07/2023]
Abstract
Influences of allelic variations in starch synthesis-related genes (SSRGs) on rice grain quality were examined. A total of 187 nonglutinous Korean rice varieties, consisting of 170 Japonica and 17 Tongil-type varieties, were grown in the field and in two greenhouse conditions. The percentages of head rice and chalky grains, amylose content, alkali digestion value, and rapid visco-analysis characteristics were evaluated in the three different environments. Among the 10 previously reported SSRG markers used in this study, seven were polymorphic, and four of those showed subspecies-specific allele distributions. Six out of the seven polymorphic SSRG markers were significantly associated with at least one grain quality trait (R (2) > 0.1) across the three different environments. However, the association level and significance were markedly lower when the analysis was repeated using only the 170 Japonica varieties. Similarly, the significant associations between SSRG allelic variations and changes in grain quality traits under increased temperature were largely attributable to the biased allele frequency between the two subpopulations. Our results suggest that within Korean Japonica varieties, these 10 major SSRG loci have been highly fixed during breeding history and variations in grain quality traits might be influenced by other genetic factors.
Collapse
Affiliation(s)
- Young-Jun Mo
- National Institute of Crop Science, Rural Development Administration,
Suwon 441-857,
Republic of Korea
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration,
Suwon 441-857,
Republic of Korea
| | - Woon-Chul Shin
- National Institute of Crop Science, Rural Development Administration,
Suwon 441-857,
Republic of Korea
| | - Ki-Young Kim
- National Institute of Crop Science, Rural Development Administration,
Suwon 441-857,
Republic of Korea
| | - Changrong Ye
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| | - Edilberto D. Redoña
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| | - Bo-Kyeong Kim
- National Institute of Crop Science, Rural Development Administration,
Suwon 441-857,
Republic of Korea
| |
Collapse
|
39
|
FASAHAT PARVIZ, RAHMAN SADEQUR, RATNAM WICKNESWARI. Genetic controls on starch amylose content in wheat and rice grains. J Genet 2014; 93:279-92. [DOI: 10.1007/s12041-014-0325-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Biselli C, Cavalluzzo D, Perrini R, Gianinetti A, Bagnaresi P, Urso S, Orasen G, Desiderio F, Lupotto E, Cattivelli L, Valè G. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining. RICE (NEW YORK, N.Y.) 2014; 7:1. [PMID: 26055995 PMCID: PMC3904453 DOI: 10.1186/1939-8433-7-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/26/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Apparent Amylose Content (AAC), regulated by the Waxy gene, represents the key determinant of rice cooking properties. In occidental countries high AAC rice represents the most requested market class but the availability of molecular markers allowing specific selection of high AAC varieties is limited. RESULTS In this study, the effectiveness of available molecular markers in predicting AAC was evaluated in a collection of 127 rice accessions (125 japonica ssp. and 2 indica ssp.) characterized by AAC values from glutinous to 26%. The analyses highlighted the presence of several different allelic patterns identifiable by a few molecular markers, and two of them, i.e., the SNPs at intron1 and exon 6, were able to explain a maximum of 79.5% of AAC variation. However, the available molecular markers haplotypes did not provide tools for predicting accessions with AAC higher than 24.5%. To identify additional polymorphisms, the re-sequencing of the Waxy gene and 1kbp of the putative upstream regulatory region was performed in 21 genotypes representing all the AAC classes identified. Several previously un-characterized SNPs were identified and four of them were used to develop dCAPS markers. CONCLUSIONS The addition of the SNPs newly identified slightly increased the AAC explained variation and allowed the identification of a haplotype almost unequivocally associated to AAC higher than 24.5%. Haplotypes at the waxy locus were also associated to grain length and length/width (L/W) ratio. In particular, the SNP at the first intron, which identifies the Wxa and Wxb alleles, was associated with differences in the width of the grain, the L/W ratio and the length of the kernel, most likely as a result of human selection.
Collapse
Affiliation(s)
- Chiara Biselli
- Rice Research Unit, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, S.S. 11 to Torino, Km 2,5, 13100 Vercelli, Italy
- Genomics Research Centre, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Piacenza, Italy
| | - Daniela Cavalluzzo
- Rice Research Unit, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, S.S. 11 to Torino, Km 2,5, 13100 Vercelli, Italy
| | - Rosaria Perrini
- Rice Research Unit, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, S.S. 11 to Torino, Km 2,5, 13100 Vercelli, Italy
| | - Alberto Gianinetti
- Genomics Research Centre, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Piacenza, Italy
| | - Paolo Bagnaresi
- Genomics Research Centre, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Piacenza, Italy
| | - Simona Urso
- Genomics Research Centre, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Piacenza, Italy
| | - Gabriele Orasen
- Rice Research Unit, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, S.S. 11 to Torino, Km 2,5, 13100 Vercelli, Italy
| | - Francesca Desiderio
- Genomics Research Centre, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Piacenza, Italy
| | - Elisabetta Lupotto
- Department of Plant Biology and Crop Production, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Roma, Italy
| | - Luigi Cattivelli
- Genomics Research Centre, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Piacenza, Italy
| | - Giampiero Valè
- Rice Research Unit, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, S.S. 11 to Torino, Km 2,5, 13100 Vercelli, Italy
- Genomics Research Centre, CRA-Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Via S. Protaso 302, 29017 Fiorenzuola d’Arda, Piacenza, Italy
| |
Collapse
|
41
|
Hunt HV, Moots HM, Graybosch RA, Jones H, Parker M, Romanova O, Jones MK, Howe CJ, Trafford K. Waxy phenotype evolution in the allotetraploid cereal broomcorn millet: mutations at the GBSSI locus in their functional and phylogenetic context. Mol Biol Evol 2012; 30:109-22. [PMID: 22936718 PMCID: PMC3533377 DOI: 10.1093/molbev/mss209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Waxy mutants, in which endosperm starch contains ~100% amylopectin rather than the wild-type composition of ~70% amylopectin and ~30% amylose, occur in many domesticated cereals. The cultivation of waxy varieties is concentrated in east Asia, where there is a culinary preference for glutinous-textured foods that may have developed from ancient food processing traditions. The waxy phenotype results from mutations in the GBSSI gene, which catalyzes amylose synthesis. Broomcorn or proso millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, which spread across Eurasia early in prehistory. Recent phylogeographic analysis has shown strong genetic structuring that likely reflects ancient expansion patterns. Broomcorn millet is highly unusual in being an allotetraploid cereal with fully waxy varieties. Previous work characterized two homeologous GBSSI loci, with multiple alleles at each, but could not determine whether both loci contributed to GBSSI function. We first tested the relative contribution of the two GBSSI loci to amylose synthesis and second tested the association between GBSSI alleles and phylogeographic structure inferred from simple sequence repeats (SSRs). We evaluated the phenotype of all known GBSSI genotypes in broomcorn millet by assaying starch composition and protein function. The results showed that the GBSSI-S locus is the major locus controlling endosperm amylose content, and the GBSSI-L locus has strongly reduced synthesis capacity. We genotyped 178 individuals from landraces from across Eurasia for the 2 GBSSI and 16 SSR loci and analyzed phylogeographic structuring and the geographic and phylogenetic distribution of GBSSI alleles. We found that GBSSI alleles have distinct spatial distributions and strong associations with particular genetic clusters defined by SSRs. The combination of alleles that results in a partially waxy phenotype does not exist in landrace populations. Our data suggest that broomcorn millet is a system in the process of becoming diploidized for the GBSSI locus responsible for grain amylose. Mutant alleles show some exchange between genetic groups, which was favored by selection for the waxy phenotype in particular regions. Partially waxy phenotypes were probably selected against-this unexpected finding shows that better understanding is needed of the human biology of this phenomenon that distinguishes cereal use in eastern and western cultures.
Collapse
Affiliation(s)
- Harriet V Hunt
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|