1
|
Jiang J, Yang J, Fan X, Zhang Y, Li M, Zhang B, Guo B, Zhong G. Regulation of ice crystal growth in frozen dough: From the effect of gluten and starch fractions interaction on water binding - A review. Food Chem 2025; 476:143509. [PMID: 39999501 DOI: 10.1016/j.foodchem.2025.143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The formation and growth of ice crystals are critical factors affecting the quality of frozen dough. Gluten and starch are the primary components of dough, and their hydration properties and effects on dough structure are crucial in determining the type of ice crystals formed. Gliadins, glutenins, A-type starch, and B-type starch are their refined components, each with distinct hydration properties and impact on dough structure. This review examines the structural properties and hydration properties of protein and starch components in frozen dough, as well as their individual and interactive influences on water absorption and the structural properties of frozen dough. Additionally, it explores changes at different structural levels during the interaction between protein and starch components in frozen dough. The review provides theoretical support for wheat breeding aimed at frozen flour products, ultimately contributing to the improvement of frozen dough quality and final product outcomes.
Collapse
Affiliation(s)
- Jikai Jiang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Jingjie Yang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiangqi Fan
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yingquan Zhang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China
| | - Ming Li
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China
| | - Bo Zhang
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China
| | - Boli Guo
- Institute of Food Science and Technology CAAS/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453001, China.
| | - Geng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Wang J, Li Y, Guo X, Zhu K, Wu Z. A Review of the Impact of Starch on the Quality of Wheat-Based Noodles and Pasta: From the View of Starch Structural and Functional Properties and Interaction with Gluten. Foods 2024; 13:1507. [PMID: 38790811 PMCID: PMC11121694 DOI: 10.3390/foods13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Starch, as a primary component of wheat, plays a crucial role in determining the quality of noodles and pasta. A deep understanding of the impact of starch on the quality of noodles and pasta is fundamentally important for the industrial progression of these products. The starch structure exerts an influence on the quality of noodles and pasta by affecting its functional attributes and the interaction of starch-gluten proteins. The effects of starch structure (amylopectin structure, amylose content, granules size, damaged starch content) on the quality of noodles and pasta is discussed. The relationship between the functional properties of starch, particularly its swelling power and pasting properties, and the texture of noodles and pasta is discussed. It is important to note that the functional properties of starch can be modified during the processing of noodles and pasta, potentially impacting the quality of the end product, However, this aspect is often overlooked. Additionally, the interaction between starch and gluten is addressed in relation to its impact on the quality of noodles and pasta. Finally, the application of exogenous starch in improving the quality of noodles and pasta is highlighted.
Collapse
Affiliation(s)
- Jinrong Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiaona Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kexue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.G.); (K.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
- Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China
| |
Collapse
|
3
|
Zhang X, Tian Y, Xing J, Wang Q, Liang Y, Wang J. Effect of konjac glucomannan on aggregation patterns and structure of wheat gluten with different strengths. Food Chem 2023; 417:135902. [PMID: 36906944 DOI: 10.1016/j.foodchem.2023.135902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Konjac glucomannan (KGM) can act as a food additive to improve the quality of dough. The effects of KGM on the aggregation patterns and structural properties of weak, middle, and strong gluten were studied. We found that with a higher proportion of KGM substitution (10%), the aggregation energy of middle and strong gluten became lower than the control samples, while exceeding the control for weak gluten. With 10% KGM, aggregation of glutenin macropolymer (GMP) was enhanced for weak gluten, but suppressed for middle and strong gluten. The α-helix transferred to β-sheet in weak, but caused more random-coil structures for middle and strong gluten induced by 10% KGM. With 10% KGM, the network for weak gluten became more continuous, but severely disrupted for middle and strong gluten. Thus, KGM has distinct effects on weak, middle, and strong gluten, which related to the alteration of gluten secondary structures and GMP aggregation pattern.
Collapse
Affiliation(s)
- Xia Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yu Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jinjin Xing
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Qi Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
4
|
Saitta F, Apostolidou A, Papageorgiou M, Signorelli M, Mandala I, Fessas D. Influence of carob flour ingredients on wheat-based systems. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2023.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Molecular insights into the role of amylose/amylopectin ratio on gluten protein organization. Food Chem 2023; 404:134675. [DOI: 10.1016/j.foodchem.2022.134675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
6
|
Feng X, Rahman MM, Hu Q, Wang B, Karim H, Guzmán C, Harwood W, Xu Q, Zhang Y, Tang H, Jiang Y, Qi P, Deng M, Ma J, Lan J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. HvGBSSI mutation at the splicing receptor site affected RNA splicing and decreased amylose content in barley. FRONTIERS IN PLANT SCIENCE 2022; 13:1003333. [PMID: 36212333 PMCID: PMC9538149 DOI: 10.3389/fpls.2022.1003333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Granule-bound starch synthase I (HvGBSSI) is encoded by the barley waxy (Wx-1) gene and is the sole enzyme in the synthesis of amylose. Here, a Wx-1 mutant was identified from an ethyl methane sulfonate (EMS)-mutagenized barley population. There were two single-base mutations G1086A and A2424G in Wx-1 in the mutant (M2-1105). The G1086A mutation is located at the 3' splicing receptor (AG) site of the fourth intron, resulting in an abnormal RNA splicing. The A2424G mutation was a synonymous mutation in the ninth intron. The pre-mRNA of Wx-1 was incorrectly spliced and transcribed into two abnormal transcripts. The type I transcript had a 6 bp deletion in the 5' of fifth exon, leading to a translated HvGBSSI protein lacking two amino acids with a decreased starch-binding capacity. In the type II transcript, the fourth intron was incorrectly cleaved and retained, resulting in the premature termination of the barley Wx-1 gene. The mutations in the Wx-1 decreased the enzymatic activity of the HvGBSSI enzyme and resulted in a decreased level in amylose content. This work sheds light on a new Wx-1 gene inaction mechanism.
Collapse
Affiliation(s)
- Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Md. Mostafijur Rahman
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qian Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Cordoba, Spain
| | - Wendy Harwood
- John Innes Center, Norwich Research Park, Norwich, United Kingdom
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, SichuanChina
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Abstract
Waxy wheat offers unique benefits in food processing, including improving the smoothness and performance of the product. However, waxy wheat is not yet commercially available. The protein characteristics, including the protein content, subunit distribution, secondary structure, chemical interactions, and microstructure of the gluten, were explored to realize the full potential of waxy wheat. The results showed that the noodles prepared from waxy wheat had a gentle and glutinous texture compared with GY2018 and YM13. Partial-waxy and waxy wheat had a lower gluten index and glutenin macropolymer (GMP) content than GY2018, indicating a reduced gluten strength. Confocal laser scanning microscopy (CLSM) images showed that the starch granules were not securely attached to the partial-waxy and waxy wheat protein matrix. In addition, the waxy protein chains appeared more elongated and they weakened the protein network. In particular, HMW-GS subunit 2 + 12 may be the essential cause of the weak dough from SKN1. Compared with GY2018 and YM13, SKN1 had the highest number of free sulfhydryl groups. Rather than ionic bonds, hydrophobic interactions increased the gluten network in GY2018, YM13, and SKN1. The weak molecular forces in the gluten will result in a soft noodle texture.
Collapse
|
8
|
Cesevičienė J, Gorash A, Liatukas Ž, Armonienė R, Ruzgas V, Statkevičiūtė G, Jaškūnė K, Brazauskas G. Grain Yield Performance and Quality Characteristics of Waxy and Non-Waxy Winter Wheat Cultivars under High and Low-Input Farming Systems. PLANTS 2022; 11:plants11070882. [PMID: 35406861 PMCID: PMC9002724 DOI: 10.3390/plants11070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 12/03/2022]
Abstract
Waxy starch with a modified amylose-to-amylopectin ratio is desired for a range of applications in food and non-food industries; however, yield performance and grain quality characteristics of waxy wheat cultivars are usually inferior in comparison to advanced non-waxy cultivars. In this study, we compared waxy (‘Eldija’, ‘Sarta’) and non-waxy (‘Skagen’, ‘Suleva DS’) winter wheat cultivars grown under high and low-input farming systems over two cropping seasons by evaluating their yield and grain quality, including flour, dough, and starch physicochemical properties. The yield of waxy cv. ‘Sarta’ was significantly lower compared to the non-waxy cultivars across all trials; however, waxy cv. ‘Eldija’ had a similar yield as non-waxy cultivars (except under high-input conditions cv. ‘Skagen’). Moreover, no significant differences were observed between protein and gluten content of waxy and non-waxy cultivars. Low amylose content typical for waxy wheat cultivars highly correlated (r ≥ 0.8) with lower falling number, flour yield and sedimentation values, lower nitrogen % used for grain, higher flour water absorption and flour particle size index. In general, properties dependent on starch structure demonstrated consistent and significant differences between both starch types. The prevailing heat waves during the grain filling period decreased grain test weight but increased protein and gluten content and caused gluten to be weaker. Dough development time at these conditions became longer, dough softening lowered and starch content decreased, but A-starch, starch peak and final viscosity values increased. Low-input farming had a negative effect on grain yield, grain nitrogen uptake and grain test weight but increased phosphorus content in grain. The unique dough mixing properties of waxy cultivar ‘Eldija’ suggest that it could be used in mixtures along with non-waxy wheat for dough quality improvement.
Collapse
|
9
|
Impact of Thermal Treatment on the Starch-Protein Interplay in Red Lentils: Connecting Molecular Features and Rheological Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041266. [PMID: 35209055 PMCID: PMC8879514 DOI: 10.3390/molecules27041266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
Thermal treatments are widely applied to gluten-free (GF) flours to change their functionality. Despite the interest in using pulses in GF formulations, the effects of thermal treatment at the molecular level and their relationship with dough rheology have not been fully addressed. Raw and heat-treated red lentils were tested for starch and protein features. Interactions with water were assessed by thermogravimetric analysis and water-holding capacity. Finally, mixing properties were investigated. The thermal treatment of red lentils induced a structural modification of both starch and proteins. In the case of starch, such changes consequently affected the kinetics of gelatinization. Flour treatment increased the temperature required for gelatinization, and led to an increased viscosity during both gelatinization and retrogradation. Regarding proteins, heat treatment promoted the formation of aggregates, mainly stabilized by hydrophobic interactions between (partially) unfolded proteins. Overall, the structural modifications of starch and proteins enhanced the hydration properties of the dough, resulting in increased consistency during mixing.
Collapse
|
10
|
Li C, Ji Y, Li E. Understanding the Influences of Rice Starch Fine Structure and Protein Content on Cooked Rice Texture. STARCH-STARKE 2021. [DOI: 10.1002/star.202100253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Changfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Yi Ji
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| | - Enpeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops Yangzhou University Yangzhou 225009 China
| |
Collapse
|
11
|
Wang X, Peng P, Appels R, Tian L, Zou X. Macromolecular networks interactions in wheat flour dough matrices during sequential thermal-mechanical treatment. Food Chem 2021; 366:130543. [PMID: 34284193 DOI: 10.1016/j.foodchem.2021.130543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/04/2022]
Abstract
Differences in Mixolab measurements of dough processing were examined using, as a base, flour from pure breeding, isogenic, wheat lines carrying either the high molecular weight glutenin subunits 5 + 10 or 2 + 12. Before dough pasting, subunits 5 + 10 tend to form a stable gluten network relying mainly on disulfide bonds and hydrogen bonds, but 2 + 12 flour was prone to generating fragile protein aggregates dominated by disulfide bonds and hydrophobicity. During dough pasting, a broader protein network rich in un-extractable polymeric proteins, disulfide bonds and β-sheets was formed in the dough with subunits 5 + 10, thus resulting in an extensive and compact protein-starch complex which was characterized by high thermal stability and low starch gelatinization, while in the dough of the 2 + 12 line, a porous protein-starch gel with fragmented protein aggregates was controlled by the combination of disulfide bonds, hydrophobicity and hydrogen bonds that facilitated the formation of antiparallel β-sheets.
Collapse
Affiliation(s)
- Xiaolong Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710162, Shaanxi, China.
| | - Pai Peng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710162, Shaanxi, China
| | - Rudi Appels
- School of Agriculture and Food, University of Melbourne, Parkville 3010, Australia
| | - Linpei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710162, Shaanxi, China
| | - Xiaoyang Zou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710162, Shaanxi, China
| |
Collapse
|
12
|
Rumińska W, Markiewicz KH, Wilczewska AZ, Nawrocka A. Effect of oil pomaces on thermal properties of model dough and gluten network studied by thermogravimetry and differential scanning calorimetry. Food Chem 2021; 358:129882. [PMID: 33940294 DOI: 10.1016/j.foodchem.2021.129882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 11/26/2022]
Abstract
Thermal analyses were used to determine thermal properties and transitions in model dough and gluten network induced by five oil pomaces obtained from seeds of black seed, pumpkin, hemp, milk thistle and primrose. The model dough was supplemented with 3%, 6% and 9% of the pomaces. Analysis of TGA parameters of supplemented model dough and gluten showed that both objects were thermally stable. However, analysis of difference TGA thermograms indicated that samples supplemented with pomaces differ in thermal behaviour. The differences were confirmed by DSC results. In the case of model dough, supplementation caused appearance of two endothermic peaks at ca. 295 and 340 °C and significant increase in transition enthalpy. Modified gluten thermograms showed one exothermic peak at 280 °C which enthalpy changed slightly with increase in pomace content. The present results indicated that model dough is characterized by more ordered structure comparing to control and gluten samples.
Collapse
Affiliation(s)
- Weronika Rumińska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Karolina H Markiewicz
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Agnieszka Z Wilczewska
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Agnieszka Nawrocka
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
13
|
Szentmiklóssy M, Török K, Pusztai É, Kemény S, Tremmel-Bede K, Rakszegi M, Tömösközi S. Variability and cluster analysis of arabinoxylan content and its molecular profile in crossed wheat lines. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Chen G, Hu R, Li Y. Potassium bicarbonate improves dough and cookie characteristics through influencing physicochemical and conformation properties of wheat gluten. Food Chem X 2020; 5:100075. [PMID: 31891157 PMCID: PMC6928305 DOI: 10.1016/j.fochx.2019.100075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/01/2022] Open
Abstract
KHCO3 enhanced the macromolecular polymerization of wheat gluten. KHCO3 increased the content of β-sheet structure in gluten. Non-redox reaction may induce the increase of free SH group in gluten. Adding KHCO3 didn’t adversely affect baking and sensory properties of cookies.
Baking soda (NaHCO3) has critical technological functions in cookie products. Health concern on excessive sodium consumption is increasing; therefore, it is necessary to explore NaHCO3 alternatives, such as KHCO3, for bakery products. This study investigated the impact of KHCO3 on the technological behaviors of cookie dough and end-uses in comparison with control samples prepared with NaHCO3 and explore the changes of physicochemical and conformation properties of soft wheat gluten during the process. Dough rheological measurements demonstrated that addition of KHCO3 reduced dough stickiness, and adding KHCO3 achieved similar dough and baking performances as using NaHCO3, which were partially attributed to the decrease of gliadin to glutenin ratio, changes of secondary structure, and intensive aggregation of gluten by introducing KHCO3. Cookie sensory attributes were also not adversely affected by using KHCO3. Therefore, partially replacing NaHCO3 with KHCO3 in cookie products can be an effective approach for sodium reduction.
Collapse
|
15
|
Zheng M, Xiao Y, Yang S, Liu M, Feng L, Ren Y, Yang X, Lin N, Liu J. Effect of adding zein, soy protein isolate and whey protein isolate on the physicochemical and
in vitro
digestion of proso millet starch. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingzhu Zheng
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Yu Xiao
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Shuang Yang
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Meihong Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Ling Feng
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Yuhang Ren
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Xinbiao Yang
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Nan Lin
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| | - Jingsheng Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun Jilin 130118 China
| |
Collapse
|
16
|
Adlay starch-gluten composite gel: Effects of adlay starch on rheological and structural properties of gluten gel to molecular and physico-chemical characteristics. Food Chem 2019; 289:121-129. [DOI: 10.1016/j.foodchem.2019.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 01/29/2023]
|
17
|
Ohm J, Dykes L, Graybosch RA. Variation of protein molecular weight distribution parameters and their correlations with gluten and mixing characteristics for winter waxy wheat. Cereal Chem 2018. [DOI: 10.1002/cche.10124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jae‐Bom Ohm
- Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Laboratory, Edward T. Schafer Agricultural Research Center USDA‐ARS Fargo North Dakota
| | - Linda Dykes
- Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Laboratory, Edward T. Schafer Agricultural Research Center USDA‐ARS Fargo North Dakota
| | | |
Collapse
|
18
|
Chen G, Hu R, Li Y. Potassium chloride affects gluten microstructures and dough characteristics similarly as sodium chloride. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Rheological properties and baking performance of new waxy lines: Strengths and weaknesses. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|