1
|
Li D, Hao A, Shao W, Zhang W, Jiao F, Zhang H, Dong X, Zhan Y, Liu X, Mu C, Ding Z, Xue D, Chen J, Wang M. Maize kernel nutritional quality-an old challenge for modern breeders. PLANTA 2025; 261:43. [PMID: 39856412 DOI: 10.1007/s00425-025-04627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
MAIN CONCLUSION This article offers a comprehensive overview of the starch, protein, oil, and carotenoids content in maize kernels, while also outlining future directions for research in this area. Maize is one of the most important cereal crops globally. Maize kernels serve as a vital source of feed and food, and their nutritional quality directly impacts the dietary intake of both animals and humans. Maize kernels contain starch, protein, oil, carotenoids, and a variety of vitamins and minerals, all of which are important for maintaining life and promoting health. This review presents the current understanding of the content of starch, protein, amino acids, oil, and carotenoids in maize kernels, while also highlighting knowledge gaps that need to be addressed.
Collapse
Affiliation(s)
- Decui Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Anqi Hao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wen Shao
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Weiwei Zhang
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueyan Dong
- Shandong Seed Industry Group Yellow River Delta Co., Ltd, Dongying, 257000, China
| | - Yuan Zhan
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Liu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Chunhua Mu
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - Zhaohua Ding
- Shandong Academy of Agricultural Science, Jinan, 250100, China
| | - De Xue
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- Zibo Boxin Agricultural Technology Co., Ltd, Zibo, 255000, China.
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
He Z, Shang X, Jin X, Wang X, Xing Y. Calcium and Magnesium Regulation of Kernel Sugar Content in Maize: Role of Endogenous Hormones and Antioxidant Enzymes. Int J Mol Sci 2024; 26:200. [PMID: 39796058 PMCID: PMC11719980 DOI: 10.3390/ijms26010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
Ca and Mg are essential micronutrients for plant growth, and they play a crucial role in plant development and responses to adversity by influencing the activities of endogenous hormones and antioxidant enzymes. However, the specific mechanisms through which calcium (Ca) and magnesium (Mg) regulate the kernel sugar content through endogenous hormones and antioxidant enzymes remain unclear. In this study, we analyzed the impact of Ca and Mg on the physiology of maize leaves and kernel quality by determining the activities of antioxidant enzymes and endogenous hormones, and the kernel sugar content in maize leaves when supplemented with different levels of Ca and Mg. Our main findings were as follows: (1) Elevated Mg levels augmented superoxide dismutase (SOD) activity, bolstering antioxidant defenses, whereas low Ca and Mg levels diminished SOD activity. High Ca levels enhanced catalase (CAT) activity during kernel development. Low-Ca conditions stimulated gibberellin (GA) synthesis, while high-Ca and high-Mg conditions suppressed it. High Mg levels also elevated abscisic acid (ABA) levels, potentially improving stress tolerance. (2) High Ca levels increased the reducing sugar content in kernels, augmenting the energy supply, while both low and high Mg levels increased soluble sugars, with low Mg levels specifically enhancing the sucrose content, which is a critical energy reserve in plants. (3) CAT exerted a pivotal regulatory role in the sugar accumulation in maize kernels. GA, under the influence of Ca, modulated the sucrose and soluble sugar contents by inhibiting CAT, whereas ABA, under the influence of Mg, promoted CAT activity, thereby affecting the kernel sugar content. This study reveals a new mechanism through which the addition of Ca and Mg regulate the sugar content in maize kernels by affecting endogenous hormones and antioxidant enzyme activities. These findings not only enhance our understanding of the role of micronutrients in plant growth and development but also provide new strategies for improving crop yield and stress tolerance.
Collapse
Affiliation(s)
- Zhaoquan He
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| | - Xue Shang
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoze Jin
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| | - Xiukang Wang
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| | - Yingying Xing
- School of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an 716000, China
| |
Collapse
|
3
|
Mazumder S, Bhattacharya D, Lahiri D, Moovendhan M, Sarkar T, Nag M. Harnessing the nutritional profile and health benefits of millets: a solution to global food security problems. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39434598 DOI: 10.1080/10408398.2024.2417801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
India is dealing with both nutritional and agricultural issues. The maximum area of agricultural land with irrigation capabilities has been largely utilized, while the amount of dry land is expanding. The influence is distinct on farmer's livelihoods and earnings, which ultimately affects nutritional security. In order to attain nutritional security and the goal of SDG (Sustainable Development Goals), millets are sustainable solutions, with respect to high nutritional content, bioactive and medicinal properties, and climate resilience. The nutrient profile of millet includes 60%-70% carbohydrate content, 3.5%-5.2% fat, and 7.52%-12.1% protein sources. A wide spectrum of amino acids, including cysteine, isoleucine, arginine, leucine, tryptophan, lysine, histidine, methionine, tyrosine, phenylalanine, threonine, and valine are generally present in millets. Mineral content in millets includes calcium, phosphorus, potassium, sodium, and magnesium. Additionally, millets are an excellent source of bioactive molecules such as polyphenol, phenolic acid, flavonoids, active peptides, and soluble fiber, which have a wide range of therapeutic applications, including the prevention of free radical damage, diabetes, anti-microbial, anti- biofilm, and anti-cancer effects. This review will focus on the nutritional profile and health benefits of millet considering the present-day food security problems.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| | - Meivelu Moovendhan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata
| |
Collapse
|
4
|
Navarro-Leyva A, López-Angulo G, Delgado-Vargas F, López-Valenzuela JÁ. Antioxidant, anti-inflammatory, hypoglycemic, and anti-hyperglycemic activity of chickpea protein hydrolysates evaluated in BALB-c mice. J Food Sci 2023; 88:4262-4274. [PMID: 37589303 DOI: 10.1111/1750-3841.16744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Chickpea (ICC3761) protein hydrolysates have shown high in vitro antioxidant activity (AoxA) and antidiabetic potential. The aim of this study was to evaluate the in vivo activities (i.e., antioxidant, anti-inflammatory, hypoglycemic, and anti-hyperglycemic) of chickpea albumin hydrolysates (CAH) obtained with alcalase and pepsin-pancreatin (fractions ≤ 10 kDa). The CAH were analyzed for degree of hydrolysis (DH), electrophoretic and chromatographic profiles, and in vitro AoxA (2,2'-azino-bis(3-ethylbenzothiazolin)-6-sulfonic acid [ABTS], 2,2-diphenyl-1-pycrilhydrazyl [DPPH]). They were also evaluated for AoxA, anti-inflammatory and hypo- and anti-hyperglycemic activities in BALB-c mice. The DH was 20% for the alcalase CAH and 50% for the pepsin-pancreatin CAH, while the AoxA by ABTS (1 mg/mL) was 64.8% and 64.9% and by DPPH (5 mg/mL) was 48.0% and 31.1%. In the in vivo AoxA assay, mice of non-damaged control and those treated with both CAH showed similar alkaline phosphatase values, control and pepsin-pancreatin treated groups had similar malondialdehyde levels, while treated and non-damaged control groups had higher glutathione levels than the damaged control. Liver histopathology revealed that the pepsin-pancreatin CAH mitigated most of the pathological changes associated with the induced oxidative damage. Both CAH (2 mg/ear) reduced croton oil-induced ear edema in mice. The α-glucosidase inhibition of CAH (100 mg/mL) was 31.1% (alcalase) and 52.4% (pepsin-pancreatin). Mice treated with alcalase CAH (100 mg/mL) and glibenclamide exhibited similar hypoglycemic activities, whereas only those treated with the pepsin-pancreatin CAH (200 mg/kg body weight) showed anti-hyperglycemic activity. The results indicate that CAH can be used as a source of bioactive peptides with antioxidant, anti-inflammatory, hypoglycemic, and anti-hyperglycemic activities.
Collapse
Affiliation(s)
- Alicia Navarro-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán, Sinaloa, México
| | - Gabriela López-Angulo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán, Sinaloa, México
| | - Francisco Delgado-Vargas
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán, Sinaloa, México
| | - José Ángel López-Valenzuela
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán, Sinaloa, México
| |
Collapse
|
5
|
Mirzaee H, Ahmadi Gavlighi H, Nikoo M, Udenigwe CC, Khodaiyan F. Relation of amino acid composition, hydrophobicity, and molecular weight with antidiabetic, antihypertensive, and antioxidant properties of mixtures of corn gluten and soy protein hydrolysates. Food Sci Nutr 2023; 11:1257-1271. [PMID: 36911847 PMCID: PMC10003021 DOI: 10.1002/fsn3.3160] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
New mixed Alcalase-hydrolysates were developed using corn gluten meal (CP) and soy protein (SP) hydrolysates, namely CPH, SPH, SPH30:CPH70, SPH70:CPH30, and SPH50:CPH50. Amino acid profile, surface hydrophobicity (H 0), molecular weight (MW) distribution, antioxidant activity, angiotensin-converting enzyme (ACE), α-amylase, and α-glucosidase inhibitory activities, and functional characteristics of hydrolysates were determined. Hydrolysis changed the amount of hydrophilic and hydrophobic amino acid composition and significantly increased the H 0 values of hydrolysates, especially for CPH. The DPPH radical scavenging activity (RSA) was higher for CPH, SPH30:CPH70, and SPH50:CPH50 than SPH and SPH70:CPH30. Moreover, SPH, SPH70:CPH30, and SPH50:CPH50 showed lower MW than CPH, and this correlated with the higher hydrophilicity, and ABTS and hydroxyl RSA values obtained for SPH and the mixed hydrolysates with predominantly SPH. SPH70:CPH30 exhibited higher ACE, α-glucosidase, and α-amylase inhibitory activities among all samples due to its specific peptides with high capacity to interact with amino acid residues located at the enzyme active site and also low binding energy. At 15% degree of hydrolysis, both SPH and CPH showed enhanced solubility at pH 4.0, 7.0 and 9.0, emulsifying activity, and foaming capacity. Taken together, SPH70:CPH30 displayed strong antioxidant, antihypertensive, and antidiabetic attributes, emulsifying activity and stability indexes, and foaming capacity and foaming stability, making it a promising multifunctional ingredient for the development of functional food products.
Collapse
Affiliation(s)
- Homaira Mirzaee
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
- Institute for Natural Products and Medicinal PlantsTarbiat Modares UniversityTehranIran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research InstituteUrmia UniversityUrmiaIran
| | | | - Faramarz Khodaiyan
- Bioprocessing and Biodetection Laboratory, Department of Food Science and EngineeringUniversity of TehranKarajIran
| |
Collapse
|
6
|
Nikolić V, Simić M, Žilić S, Kravić N, Vančetović J, Sečanski M, Vasić M. Nutritional composition and bioactive properties of the wholegrain flour obtained from maize inbred lines. FOOD AND FEED RESEARCH 2023. [DOI: 10.5937/ffr0-41894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The aim of this study was to assess the chemical composition and bioactive properties of the wholegrain flour obtained from eleven maize inbred lines to identify genotypes with increased potential for the development of hybrids with high nutritional and functional value, suitable for food production. The maize inbreds, including seven standard yellow, two QPM (quality protein maize) and two lines for red kernel hybrids, were grown in the experimental field of the Maize Research Institute at the location of Zemun Polje, Serbia. Wholegrain maize flour was got by grinding the maize grain in a laboratory mill. The assessment of the chemical composition and content of certain bioactive compounds, as well as the total antioxidant capacity, was conducted using standard laboratory procedures. The highest starch content (73.73%) was determined in line L8, while line L10 had the highest protein content (12.82%). Among soluble proteins, the a-zein fraction was dominant in most of the lines, ranging from 0.92% to 3.57%. The highest content of total fibres (NDF) was determined in red kernel line L9 (15.77%). Line L8 was the richest in total carotenoids (21.08 mg bCE/g d.m.), while line L7 had the highest total antioxidant capacity (34.30 mmol Trolox/kg d.m.), which can be explained by the presence of anthocyanins in the red grain. Line L1 had the highest content of total sugars (3.36%), and line L4 had the lowest (1.44%). Most of the samples of inbred lines investigated in this study showed good quality parameters regarding chemical composition and bioactive properties. The obtained results may provide some valuable guidelines needed in the following stages of maize breeding and open up various possibilities for the utilization of wholegrain maize flour in the food industry.
Collapse
|
7
|
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022; 48:972-992. [PMID: 36161374 PMCID: PMC9828255 DOI: 10.1002/biof.1889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
The search for bioactive components for the development of functional foods and nutraceuticals has received tremendous attention. This is due to the increasing awareness of their therapeutic potentials, such as antioxidant, anti-inflammatory, antihypertensive, anti-cancer properties, etc. Food proteins, well known for their nutritional importance and their roles in growth and development, are also sources of peptide sequences with bioactive properties and physiological implications. Cereal and legume grains are important staples that are processed and consumed in various forms worldwide. However, they have received little attention compared to other foods. This review therefore is geared towards surveying the literature for an appraisal of research conducted on bioactive peptides in cereal and legume grains in order to identify what the knowledge gaps are. Studies on bioactive peptides from cereal and legume grains are still quite limited when compared to other food items and most of the research already carried out have been done without identifying the sequence of the bioactive peptides. However, the reports on the antioxidative, anticancer/inflammatory, antihypertensive, antidiabetic properties show there is much prospect of obtaining potent bioactive peptides from cereal and legume grains which could be utilized in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, School of Agriculture and Agricultural TechnologyThe Federal University of TechnologyAkureNigeria
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
8
|
Sharma S, Pradhan R, Manickavasagan A, Thimmanagari M, Dutta A. Corn distillers solubles as a novel bioresource of bioactive peptides with ACE and DPP IV inhibition activity: characterization, in silico evaluation, and molecular docking. Food Funct 2022; 13:8179-8203. [PMID: 35829682 DOI: 10.1039/d1fo04109f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the biological potential of underutilized and low-value corn distillers solubles, containing a unique unexplored blend of heat-treated corn and yeast proteins, from the bioethanol industries, by bioinformatic and biochemical approaches. Protein hydrolysates were produced by applying four commercially accessible proteases, among which alcalase provided the best results in terms of yield, degree of hydrolysis, molecular weight, number of proteins, bioactive peptides, and deactivation against anti-angiotensin I-converting enzyme (ACE) and anti-dipeptidyl peptidase IV (DPP IV). The optimal conditions to produce anti-ACE and anti-DPP IV peptides were using alcalase for 10.82 h and an enzyme : substrate ratio of 7.90 (%w/w), with inhibition values for ACE and DPP IV of 98.76 ± 1.28% and 34.99 ± 1.44%, respectively. Corn (α-zein) and yeast (glyceraldehyde-3-phosphate dehydrogenase) proteins were mainly suitable, upon enzymolysis, for the release of bioactive peptides. The peptides DPANLPWG, FDFFDNIN, WNGPPGVF, and TPPFHLPPP inhibited ACE more effectively as verified with binding energies of -11.3, -11.6, -10.5, and -11.6 kcal mol-1, respectively, as compared to captopril (-6.38 kcal mol-1). Compared with the binding energy of sitagliptin (-8.6 kcal mol-1), WNGPPGVF (-9.6 kcal mol-1), WPLPPFG (-9.8 kcal mol-1), LPPYLPS (-9.7 kcal mol-1), TPPFHLPPP (-10.1 kcal mol-1), and DPANLPWG peptides (-10.1 kcal mol-1) had greater inhibition potential against DPP IV. The peptides impeded ACE and DPP IV majorly via hydrophobic and hydrogen linkage interactions. The key amino acids TYR523, GLU384, and HIS353 were bound to the catalytic sites of ACE and GLN553, GLU206, PHE364, VAL303, and THR304 were bound to the DPP IV enzyme. The PHs can be used as ingredients in the feed or food industries with possible health advantages.
Collapse
Affiliation(s)
- Sonu Sharma
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - Ranjan Pradhan
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1. .,Shrimp Canada, 67 Watson Rd. S (Unit-2), Guelph, Ontario, N1L 1 E3, Canada
| | | | - Mahendra Thimmanagari
- Food and Rural Affairs, Ontario Ministry of Agriculture, 1 Stone Road West, Guelph N1G 4Y1, Ontario, Canada
| | - Animesh Dutta
- School of Engineering, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
9
|
Joshi S, Sharma R, Sharma S, Gupta A, Singh B. Quality protein maize: nutritional and bioactive composition, technological attributes and potential food applications. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Swati Joshi
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Rajan Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Savita Sharma
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Antima Gupta
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| | - Baljit Singh
- Department of Food Science and Technology Punjab Agricultural University Ludhiana 141004 India
| |
Collapse
|
10
|
Durand E, Beaubier S, Ilic I, fine F, Kapel R, Villeneuve P. Production and antioxidant capacity of bioactive peptides from plant biomass to counteract lipid oxidation. Curr Res Food Sci 2021; 4:365-397. [PMID: 34142097 PMCID: PMC8187438 DOI: 10.1016/j.crfs.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Preventing lipid oxidation, especially with the polyunsaturated fat-based products, is a major concern in sectors as agri-food and cosmetic. Even though the efficiency of synthetic antioxidants has been recognized, both consumers and manufacturers are looking for more innovative, healthy and quality products while rejecting synthetic additives due to their concern about safety, along with their environmental impact issues. In this context, plant biomass, which have shown to be rich in compounds, have raised interest for the isolation of novel naturally occurring antioxidants. Among their myriad of molecules, bioactive peptides, which are biologically active sequence of amino acid residues of proteins, seem to be of a great interest. Therefore, the number of identified amino acids sequences of bioactive peptides from plant biomass with potential antioxidant action is progressively increasing. Thus, this review provides a description of 129 works that have been made to produce bioactive peptides (hydrolysate, fraction and/or isolate peptide) from 55 plant biomass, along with the procedure to examine their antioxidant capacity (until 2019 included). The protein name, the process, and the method to concentrate or isolate antioxidant bioactive peptides, along with their identification and/or specificity were described. Considering the complex, dynamic and multifactorial physico-chemical mechanisms of the lipid oxidation, an appropriate in-vitro methodology should be better performed to efficiently probe the antioxidant potential of bioactive peptides. Therefore, the results were discussed, and perspective for antioxidant applications of bioactive peptides from plant biomass was argued.
Collapse
Affiliation(s)
- Erwann Durand
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Sophie Beaubier
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Isidora Ilic
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Frederic fine
- TERRES INOVIA, Parc Industriel – 11 Rue Monge, 33600 Pessac, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés, UMR CNRS-7274, plateforme SVS, 13 rue du bois de la Champelle, Vandœuvre-lès-Nancy, F-54500, France
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, Montpellier, F-34398, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
11
|
Trigui I, Yaich H, Sila A, Cheikh-Rouhou S, Krichen F, Bougatef A, Attia H, Ayadi MA. Physical, techno-functional and antioxidant properties of black cumin seeds protein isolate and hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
dos Santos-Donado PR, Donado-Pestana CM, Kawahara R, Rosa-Fernandes L, Palmisano G, Finardi-Filho F. Comparative analysis of the protein profile from biofortified cultivars of quality protein maize and conventional maize by gel-based and gel-free proteomic approaches. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Gao Z, Chen G, Lu W, Wu Y, Hu B, Xu L, Fang Y, Nishinari K, Phillips GO. Interfacial and emulsion-stabilizing properties of zein nanoparticles: differences among zein fractions (α-, β-, and γ-zein). Food Funct 2021; 12:1361-1370. [PMID: 33449061 DOI: 10.1039/d0fo02536d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
According to the solubility in the binary solvent of ethanol water, zein can be classified into α-, β-, γ-, and δ-zein, and the difference in amino acid compositions of these fractions is believed to affect their physicochemical properties and functionalities. This research comparatively analyzed main zein fractions, namely the α-zein fraction, β-zein fraction, and γ-zein fraction, on the formation, surface adsorption, and emulsifying properties of their anti-solvent-induced particles. Results showed that all zein fractions were able to form spherical particles through an anti-solvent procedure, and formed particles possessed different surface charge and surface hydrophobicity. γ-Zein fraction particles had the biggest size and lowest surface hydrophobicity, the highest interfacial adsorption speed, and formed the strongest viscoelastic interfacial film, as analyzed through the interfacial rheology results, while β-zein fraction particles exhibited the poorest interfacial activity. These physicochemical differences were reflected in their emulsifying properties, whereby the γ-zein fraction particle-stabilized emulsion had the maximum tolerance to salt (50, 100, and 200 mM NaCl) and pH (4.0, 7.0, and 9.0). The excellent interfacial properties of the γ-zein fraction presented in this research would afford a new strategy for the effective application of zein.
Collapse
Affiliation(s)
- Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
| | - Gaiting Chen
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
| | - Wei Lu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
| | - Yuehan Wu
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
| | - Bing Hu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| | - Longquan Xu
- China Tobacco Guizhou Industrial Co., Ltd., Kaifa Avenue, Guiyang, 550000, P. R. China
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China. and Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
| | - Glyn O Phillips
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Nanli Road, Wuhan 430068, P. R. China.
| |
Collapse
|
14
|
Cizeikiene D, Gaide I, Basinskiene L. Effect of Lactic Acid Fermentation on Quinoa Characteristics and Quality of Quinoa-Wheat Composite Bread. Foods 2021; 10:171. [PMID: 33467006 PMCID: PMC7830237 DOI: 10.3390/foods10010171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 01/16/2023] Open
Abstract
The application of selected starter cultures with specific properties for fermentation may determine steady lactic acid bacteria (LAB) variety and the characteristics of fermented products that influence nutritional value, the composition of biologically active compounds and quality. The aim of this research was to evaluate the influence of different LAB on the biochemical characteristics of fermented quinoa. Moreover, total phenolic content (TPC), and the antimicrobial and antioxidant activities of protein fractions isolated from quinoa previously fermented with LAB were investigated. Quinoa additives, including quinoa fermented with Lactobacillus brevis, were incorporated in a wheat bread recipe to make nutritionally fortified quinoa-wheat composite bread. The results confirmed that L. plantarum, L. brevis, and L. acidophilus were well adapted in quinoa medium, confirming its suitability for fermentation. LAB strains influenced the acidity, L/D-lactic acid content, enzyme activity, TPC and antioxidant activity of fermented quinoa. The maximum phytase activity was determined in quinoa fermented with L. brevis. The results obtained from the ABTS radical scavenging assay of protein fractions confirmed the influence of LAB strain on the antioxidant activity of protein fractions. The addition of 5 and 10% of quinoa fermented with L. brevis did not affect the total titratable acidity of wheat bread, while 10% of fermented quinoa with L. brevis resulted in a higher specific volume. Fermented quinoa additives increased the overall acceptability of bread compared with unfermented seed additives.
Collapse
Affiliation(s)
| | | | - Loreta Basinskiene
- Department of Food Science and Technology, Kaunas University of Technology, Radvilenu Rd. 19, 50254 Kaunas, Lithuania; (D.C.); (I.G.)
| |
Collapse
|
15
|
Díaz-Gómez JL, Neundorf I, López-Castillo LM, Castorena-Torres F, Serna-Saldívar SO, García-Lara S. In Silico Analysis and In Vitro Characterization of the Bioactive Profile of Three Novel Peptides Identified from 19 kDa α-Zein Sequences of Maize. Molecules 2020; 25:E5405. [PMID: 33227894 PMCID: PMC7699256 DOI: 10.3390/molecules25225405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, we characterized three novel peptides derived from the 19 kDa α-zein, and determined their bioactive profile in vitro and developed a structural model in silico. The peptides, 19ZP1, 19ZP2 and 19ZP3, formed α-helical structures and had positive and negative electrostatic potential surfaces (range of -1 to +1). According to the in silico algorithms, the peptides displayed low probabilities for cytotoxicity (≤0.05%), cell penetration (10-33%) and antioxidant activities (9-12.5%). Instead, they displayed a 40% probability for angiotensin-converting enzyme (ACE) inhibitory activity. For in vitro characterization, peptides were synthesized by solid phase synthesis and tested accordingly. We assumed α-helical structures for 19ZP1 and 19ZP2 under hydrophobic conditions. The peptides displayed antioxidant activity and ACE-inhibitory activity, with 19ZP1 being the most active. Our results highlight that the 19 kDa α-zein sequences could be explored as a source of bioactive peptides, and indicate that in silico approaches are useful to predict peptide bioactivities, but more structural analysis is necessary to obtain more accurate data.
Collapse
Affiliation(s)
- Jorge L. Díaz-Gómez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| | - Ines Neundorf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, D-50674 Köln, Germany;
| | - Laura-Margarita López-Castillo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| | | | - Sergio O. Serna-Saldívar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| | - Silverio García-Lara
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| |
Collapse
|
16
|
Hu R, Chen G, Li Y. Production and Characterization of Antioxidative Hydrolysates and Peptides from Corn Gluten Meal Using Papain, Ficin, and Bromelain. Molecules 2020; 25:E4091. [PMID: 32906778 PMCID: PMC7571122 DOI: 10.3390/molecules25184091] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 12/03/2022] Open
Abstract
There has been a growing interest in developing natural antioxidants with high efficiency and low cost. Bioactive protein hydrolysates could be a potential source of natural and safer antioxidants. The objectives of this study were to hydrolyze corn gluten meal using three plant-derived proteases, namely papain, ficin, and bromelain, to produce antioxidative hydrolysates and peptides and to characterize the antioxidant performances using both chemical assays and a ground meat model. The optimum hydrolysis time for papain was 3 h, and for ficin and bromelain was 4 h. The hydrolysates were further separated by sequential ultrafiltration to 5 hydrolysate fractions named F1 to F5 from low molecular weight (MW) (<1 kDa) to high MW range (>10 kDa), which were further characterized for TPC, free radical scavenging capacity against DPPH and ABTS, and metal chelating activity. The fraction F4 produced by papain (CH-P4), F1 produced by ficin (CH-F1), and F3 produced by bromelain (CH-B3) showed the strongest antioxidant activity and yield, respectively. These three fractions were incorporated into ground pork to determine their inhibition effects on lipid oxidation during a 16-day storage period. The inhibition effect was enhanced with the addition of higher amount of hydrolysate (e.g., 1000 vs. 500 mg/kg). The CH-P4 reduced lipid oxidation in ground meat by as much as 30.45%, and CH-B3 reduced oxidation by 27.2% at the same level, but the inhibition was only 13.83% with 1000 mg/kg of CH-F1. The study demonstrated that CGM protein hydrolysates and peptides could be used as naturally derived antioxidant in retarding lipid oxidation and improving product storage stability.
Collapse
Affiliation(s)
| | | | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; (R.H.); (G.C.)
| |
Collapse
|
17
|
Modulating functional and antioxidant properties of proteins from defatted garden cress (Lepidium sativum) seed meal by Alcalase hydrolysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00248-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
|
19
|
Zhu B, He H, Hou T. A Comprehensive Review of Corn Protein-derived Bioactive Peptides: Production, Characterization, Bioactivities, and Transport Pathways. Compr Rev Food Sci Food Saf 2018; 18:329-345. [DOI: 10.1111/1541-4337.12411] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Biyang Zhu
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Hui He
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Tao Hou
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| |
Collapse
|