1
|
Li X, Fan W, Quan C, Xu M, Tang D. Identification of key modules and genes in response to high-temperature stress in Platostoma palustre based on WGCNA. BMC PLANT BIOLOGY 2025; 25:695. [PMID: 40419951 PMCID: PMC12105180 DOI: 10.1186/s12870-025-06686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Platostoma palustre (Blume) A. J. Paton is one of the important medicinal and edible plants in China, and it is widely cultivated in tropical and subtropical regions of southern China. In these areas, high-temperature stress (HTS) is often one of the unfavorable environmental factors affecting the growth and yield of P. palustre. Nevertheless, the molecular mechanism underlying the response of P. palustre to HTS remains unclear. In this study, we used two varieties of P. palustre, LSL and MDG, as experimental materials to identify key genes involved in the response of P. palustre to HTS by employing transcriptome sequencing technology, thereby revealing the molecular mechanism underlying its adaptation to HTS. The results showed that HTS significantly influenced the plant height, above-ground fresh weight, root fresh weight, root growth, chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid content of P. palustre plants. MDG exhibited stronger high-temperature tolerance compared to LSL. Under HTS, 8352 DEGs were up-regulated and 9201 DEGs were down-regulated in HT_LSL_vs_CK_LSL, while 5433 DEGs were up-regulated and 6325 DEGs were down-regulated in HT_MDG_vs_CK_MDG, suggesting a significant difference in gene expression levels between LSL and MDG under HTS. KEGG enrichment analysis showed the pathways possibly involved in HTS responses in P. palustre, such as plant hormone signal transduction, brassinosteroid biosynthesis, phenylpropanoid biosynthesis, pentose and glucuronate interconversions, diterpenoid biosynthesis, flavonoid biosynthesis, etc. Further weighted gene co-expression network analysis (WGCNA) identified 14 modules and 61 hub genes closely related to the response to HTS in P. palustre. The hub genes included peroxidase 51-like (TRINITY_DN34017_c0_g1), UDP-glucuronate 4-epimerase 1-like (GAE1, TRINITY_DN815_c0_g3), NAC domain-containing protein 1 (NAC, TRINITY_DN328_c0_g1), UGT73A13 (TRINITY_DN8437_c0_g2), universal stress protein 7 (USP7, TRINITY_DN6361_c0_g2), malonyl-coenzyme: anthocyanin 5-O-glucoside-6'''-O-malonyltransferase-like (5MaT1, TRINITY_DN3589_c0_g1), ent-kaurene synthase 5 (KSL5, TRINITY_DN5126_c0_g1), ABC transporter (TRINITY_DN39495_c0_g1, TRINITY_DN10383_c0_g1), etc. This study investigated the molecular mechanism of heat tolerance in P. palustre at the gene expression level, providing a scientific basis for heat-tolerant breeding of P. palustre.
Collapse
Affiliation(s)
- Xiufang Li
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
- College of Pharmacy, Guangxi Medical University, Nanning, 530200, China
| | - Wei Fan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Meihua Xu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
2
|
Ferioun M, Zouitane I, Bouhraoua S, Elouattassi Y, Belahcen D, Errabbani A, Louahlia S, Sayyed R, El Ghachtouli N. Applying microbial biostimulants and drought-tolerant genotypes to enhance barley growth and yield under drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1494987. [PMID: 39840355 PMCID: PMC11747827 DOI: 10.3389/fpls.2024.1494987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025]
Abstract
With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components. In this context, the present review aims to underscore the importance of selecting drought-tolerant barley genotypes and utilizing bio-inoculants constructed from beneficial microorganisms as an agroecological approach to enhance barley growth and production resilience under varying environmental conditions. Selecting barley genotypes with robust physiological and agronomic tolerance can mitigate losses under diverse environmental conditions. Plant Growth Promoting Rhizobacteria (PGPR) play a crucial role in promoting plant growth through nutrient solubilization, nitrogen fixation, phytohormone production, exopolysaccharide secretion, enzyme activity enhancement, and many other mechanisms. Applying drought-tolerant genotypes with bio-inoculants containing PGPR, improves barley's drought tolerance thereby minimizing losses caused by water scarcity.
Collapse
Affiliation(s)
- Mohamed Ferioun
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ilham Zouitane
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Bouhraoua
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yasmine Elouattassi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Douae Belahcen
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdellatif Errabbani
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Louahlia
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riyaz Sayyed
- Department of Biological Science and Chemistry, College of Arts and Science, University of Nizwa, Nizwa, Oman
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Slawin C, Ajayi O, Mahalingam R. Association mapping unravels the genetic basis for drought related traits in different developmental stages of barley. Sci Rep 2024; 14:25121. [PMID: 39448604 PMCID: PMC11502909 DOI: 10.1038/s41598-024-73618-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
Drought stress significantly reduces crop yields at all stages of plant development. Barley, known for its abiotic-stress adaptation among cereals was used to examine the genetic basis of drought tolerance. A population of 164 spring barley lines was subjected to polyethylene glycol (PEG) induced drought stress during germination and seedling development. Six traits were measured, including germination percentage and rate, seedling length and weight, and root-to-shoot ratios. Seedling area, volume, and root and shoot diameter was acquired with a flatbed scanner. This population was also subjected to short-term drought during the heading stage in the greenhouse. Root and shoot weight and grain yield data were collected from well watered and droughted plants. Significant variation within traits were observed and several of them exhibited strong correlations with each other. In this population, two genotypes had 100% germination under PEG-induced drought and drought tolerance throughout the heading stage of plant development. A genome-wide association scan (GWAS) revealed 64 significant marker-trait associations across all seven barley chromosomes. Candidate genes related to abiotic stress and germination were identified within a 0.5Mbp interval around these SNPs. In silico analysis indicated a high frequency of differential expression of the candidate genes in response to stress. This study enabled identification of barley lines useful for drought tolerance breeding and pinpointed candidate genes for enhancing drought resiliency in barley.
Collapse
Affiliation(s)
- Connor Slawin
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Oyeyemi Ajayi
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53726, USA
| | | |
Collapse
|
4
|
Quan W, Liu X. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. BMC Genomics 2024; 25:806. [PMID: 39192174 DOI: 10.1186/s12864-024-10702-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Drought stress restricts the growth, distribution and productivity of alfalfa (Medicago sativa L.). In order to study the response differences of alfalfa cultivars to drought stress, we previously carried out physiological and molecular comparative analysis on two alfalfa varieties with contrasting drought resistance (relatively drought-tolerant Longdong and drought-sensitive Algonquin). However, the differences in proteomic factors of the two varieties in response to drought stress still need to be further studied. Therefore, TMT-based quantitative proteomic analysis was performed using leaf tissues of the two alfalfa cultivars to identify and uncover differentially abundant proteins (DAPs). RESULTS In total, 677 DAPs were identified in Algonquin and 277 in Longdong under drought stress. Subsequently, we conducted various bioinformatics analysis on these DAPs, including subcellular location, functional classification and biological pathway enrichment. The first two main COG functional categories of DAPs in both alfalfa varieties after drought stress were 'Translation, ribosomal structure and biogenesis' and 'Posttranslational modification, protein turnover, chaperones'. According to KEGG database, the DAPs of the two alfalfa cultivars after drought treatment were differentially enriched in different biological pathways. The DAPs from Algonquin were enriched in 'photosynthesis' and 'ribosome'. The pathways of 'linoleic acid metabolism', 'protein processing in endoplasmic reticulum' and 'RNA transport' in Longdong were significantly enriched. Finally, we found significant differences in DAP enrichment and expression patterns between Longdong and Algonquin in glycolysis/glycogenesis, TCA cycle, photosynthesis, protein biosynthesis, flavonoid and isoflavonoid biosynthesis, and plant-pathogen interaction pathway after drought treatment. CONCLUSIONS The differences of DAPs involved in various metabolic pathways may explain the differences in the resistance of the two varieties to drought stress. These DAPs can be used as candidate proteins for molecular breeding of alfalfa to cultivate new germplasm with more drought tolerance to adapt to unfavorable environments.
Collapse
Affiliation(s)
- Wenli Quan
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xun Liu
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, China.
| |
Collapse
|
5
|
Feng Z, Admas T, Cheng B, Meng Y, Pan R, Zhang W. UGT gene family identification and functional analysis of HvUGT1 under drought stress in wild barley. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1225-1238. [PMID: 39184559 PMCID: PMC11341513 DOI: 10.1007/s12298-024-01487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/27/2024]
Abstract
Drought stress poses a significant threat to global agriculture, highlighting the urgent need to elucidate the molecular mechanisms underlying plant drought tolerance. The UDP-glycosyltransferase (UGT) gene family plays crucial roles in diverse biological processes in plants. In this study, we conducted a comprehensive analysis of the UGT gene family in wild barley EC_S1, focusing on gene characteristics, subcellular localization, phylogenetic relationships, and protein structure. A total of 175 UGT gene family members were identified, exhibiting diverse patterns in protein length, molecular weight, isoelectric point, hydrophilicity, and subcellular localization. Most genes are located at chromosome ends. Phylogenetic analysis grouped the UGT genes into seven clusters, with barley-specific group E. Expression analysis across barley tissues showed upregulation in roots and senescent leaves, implying diverse roles. Under drought stress, expression patterns varied, with drought-tolerant varieties showing fewer changes than sensitive ones. Clustering analysis revealed distinct expression patterns, suggesting regulatory functions in barley's drought response. As a case, the HvUGT1 was cloned. Overexpression of HvUGT1 in Arabidopsis enhanced drought tolerance, with increased water retention, reduced cell damage, and elevated flavonoid levels. Conversely, HvUGT1 silencing in wild barley decreased drought tolerance, accompanied by reduced antioxidant enzyme activity and flavonoid content. These results highlight HvUGT1's importance in enhancing plant drought tolerance, possibly through flavonoid-mediated ROS clearance. The research provides gene resources and valuable insights for the development of drought-resistant crops through targeted genetic manipulation strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01487-w.
Collapse
Affiliation(s)
- Zhenbao Feng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Tayachew Admas
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Bingyun Cheng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Yutong Meng
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
6
|
Robertson BC, Han Y, Li C. A Comparison of Different Stomatal Density Phenotypes of Hordeum vulgare under Varied Watering Regimes Reveals Superior Genotypes with Enhanced Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2840. [PMID: 37570994 PMCID: PMC10420674 DOI: 10.3390/plants12152840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Enhancing the water-use efficiency (WUE) of barley cultivars may safeguard yield deficits during periods of low rainfall. Reduced stomatal density is linked to enhanced WUE, leading to improved drought resistance across plant genera. In this study, 10 barley varieties exhibiting a range of stomatal density phenotypes were grown under differing soil water contents to determine whether stomatal density influences the capacity of genotypes to resist low water availability. The low-stomatal-density genotype Hindmarsh showed the least impact on biomass production during early development, with a 37.13% decrease in dry biomass during drought treatment. Low-stomatal-density genotypes additionally outcompeted high-stomatal-density genotypes under water-deprivation conditions during the reproductive phase of development, exhibiting 19.35% greater wilting resistance and generating 54.62% more heads relative to high-stomatal-density genotypes (p < 0.05). Finally, a correlation analysis revealed a strong negative linear relationship between stomatal density and the traits of head number (r = -0.71) and the number of days until wilting symptoms (r = -0.67) (p < 0.05). The combined results indicate that low-stomatal-density genotypes show promising attributes for high WUE, revealing novel barley varieties that may be useful to future breed improvement for drought tolerance.
Collapse
Affiliation(s)
- Brittany Clare Robertson
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Yong Han
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; (B.C.R.); (Y.H.)
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3-Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
7
|
Ajayi OO, Bregitzer P, Klos K, Hu G, Walling JG, Mahalingam R. QTL mapping of shoot and seed traits impacted by Drought in Barley using a recombinant inbred line Population. BMC PLANT BIOLOGY 2023; 23:283. [PMID: 37245001 DOI: 10.1186/s12870-023-04292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND With ongoing climate change, drought events are severely limiting barley production worldwide and pose a significant risk to the malting, brewing and food industry. The genetic diversity inherent in the barley germplasm offers an important resource to develop stress resiliency. The purpose of this study was to identify novel, stable, and adaptive Quantitative Trait Loci (QTL), and candidate genes associated with drought tolerance. A recombinant inbred line (RIL) population (n = 192) developed from a cross between the drought tolerant 'Otis' barley variety, and susceptible 'Golden Promise'(GP) was subjected to short-term progressive drought during heading in the biotron. This population was also evaluated under irrigated and rainfed conditions in the field for yields and seed protein content. RESULTS Barley 50k iSelect SNP Array was used to genotype the RIL population to elucidate drought-adaptive QTL. Twenty-three QTL (eleven for seed weight, eight for shoot dry weight and four for protein content) were identified across several barley chromosomes. QTL analysis identified genomic regions on chromosome 2 and 5 H that appear to be stable across both environments and accounted for nearly 60% variation in shoot weight and 17.6% variation in seed protein content. QTL at approximately 29 Mbp on chromosome 2 H and 488 Mbp on chromosome 5 H are in very close proximity to ascorbate peroxidase (APX) and in the coding sequence of the Dirigent (DIR) gene, respectively. Both APX and DIR are well-known key players in abiotic stress tolerance in several plants. In the quest to identify key recombinants with improved tolerance to drought (like Otis) and good malting profiles (like GP), five drought tolerant RILs were selected for malt quality analysis. The selected drought tolerant RILs exhibited one or more traits that were outside the realms of the suggested limits for acceptable commercial malting quality. CONCLUSIONS The candidate genes can be used for marker assisted selection and/or genetic manipulation to develop barley cultivars with improved tolerance to drought. RILs with genetic network reshuffling necessary to generate drought tolerance of Otis and favorable malting quality attributes of GP may be realized by screening a larger population.
Collapse
Affiliation(s)
- Oyeyemi O Ajayi
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53762, USA
| | - Phil Bregitzer
- Small Grains and Potato Germplasm Research, USDA-ARS, Aberdeen, ID, USA
| | - Kathy Klos
- Small Grains and Potato Germplasm Research, USDA-ARS, Aberdeen, ID, USA
| | - Gongshe Hu
- Small Grains and Potato Germplasm Research, USDA-ARS, Aberdeen, ID, USA
| | - Jason G Walling
- Cereal Crops Research Unit, USDA-ARS, 502 Walnut Street, Madison, WI, 53762, USA
| | | |
Collapse
|
8
|
Physiological and biochemical changes in Moroccan barley ( Hordeum vulgare L.) cultivars submitted to drought stress. Heliyon 2023; 9:e13643. [PMID: 36873157 PMCID: PMC9975271 DOI: 10.1016/j.heliyon.2023.e13643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Barley (Hordeum vulgare L.) is the second most consumed and cultivated cereal by the Moroccan population. However, it is predicted that frequent drought periods, caused by climate change, can cause problems in plant growth. Thus, the selection of drought-tolerant barley cultivars is essential to ensure the security of barley's needs. We aimed to screen drought stress tolerance in Moroccan barley cultivars. We tested the drought tolerance of nine Moroccan barley cultivars ('Adrar', 'Amalou', 'Amira', 'Firdaws', 'Laanaceur', 'Massine', 'Oussama', 'Taffa', and 'Tamellalt') based on physiological and biochemical parameters. Drought stress was applied by maintaining field capacity at 40% (90% for the control), and plants were randomly arranged in a greenhouse at 25 °C under natural light conditions. Drought stress decreased relative water content (RWC), shoot dry weight (SDW), and chlorophyll content (SPAD index), but significantly increased electrolyte leakage, hydrogen peroxide, malondialdehyde (MDA), water-soluble carbohydrates, and soluble protein contents, as well as catalase (CAT) and ascorbate peroxidase (APX) activities. High levels of SDW, RWC, CAT, and APX activities were recorded in 'Firdaws', 'Laanaceur', 'Massine', 'Taffa', and 'Oussama', which can be interpreted by high drought tolerance. On the other hand, 'Adrar', 'Amalou', 'Amira', and 'Tamellalt' showed higher values of MDA and H2O2 content, which can be linked with drought sensitivity. Physiological and biochemical parameter changes are discussed in terms of barley's tolerance to drought. Tolerant cultivars could be a good background for barley breeding in areas known for the alternative of long dry spells.
Collapse
|
9
|
Mahalingam R, Duhan N, Kaundal R, Smertenko A, Nazarov T, Bregitzer P. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1066421. [PMID: 36570886 PMCID: PMC9772561 DOI: 10.3389/fpls.2022.1066421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
Drought and heat stress substantially impact plant growth and productivity. When subjected to drought or heat stress, plants exhibit reduction in growth resulting in yield losses. The occurrence of these two stresses together intensifies their negative effects. Unraveling the molecular changes in response to combined abiotic stress is essential to breed climate-resilient crops. In this study, transcriptome profiles were compared between stress-tolerant (Otis), and stress-sensitive (Golden Promise) barley genotypes subjected to drought, heat, and combined heat and drought stress for five days during heading stage. The major differences that emerged from the transcriptome analysis were the overall number of differentially expressed genes was relatively higher in Golden Promise (GP) compared to Otis. The differential expression of more than 900 transcription factors in GP and Otis may aid this transcriptional reprogramming in response to abiotic stress. Secondly, combined heat and water deficit stress results in a unique and massive transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed unique and stress type-specific adjustments of gene expression. Weighted Gene Co-expression Network Analysis identified genes associated with RNA metabolism and Hsp70 chaperone components as hub genes that can be useful for engineering tolerance to multiple abiotic stresses. Comparison of the transcriptomes of unstressed Otis and GP plants identified several genes associated with biosynthesis of antioxidants and osmolytes were higher in the former that maybe providing innate tolerance capabilities to effectively combat hostile conditions. Lines with different repertoire of innate tolerance mechanisms can be effectively leveraged in breeding programs for developing climate-resilient barley varieties with superior end-use traits.
Collapse
Affiliation(s)
| | - Naveen Duhan
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, ID, United States
| |
Collapse
|
10
|
Bindereif SG, Rüll F, Kolb P, Köberle L, Willms H, Steidele S, Schwarzinger S, Gebauer G. Impact of Global Climate Change on the European Barley Market Requires Novel Multi-Method Approaches to Preserve Crop Quality and Authenticity. Foods 2021; 10:foods10071592. [PMID: 34359461 PMCID: PMC8303565 DOI: 10.3390/foods10071592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Most recently in 2018 and 2019, large parts of Europe were affected by periods of massive drought. Resulting losses in cereal yield pose a major risk to the global supply of barley, as more than 60% of global production is based in Europe. Despite the arising price fluctuations on the cereal market, authenticity of the crop must be ensured, which includes correct declaration of harvest years. Here, we show a novel approach that allows such differentiation for spring barley samples, which takes advantage of the chemical changes caused by the extreme drought. Samples from 2018 were successfully differentiated from those of 2017 by analysis of changes in near-infrared spectra, enrichment in the isotope 13C, and strong accumulation of the plant-physiological marker betaine. We demonstrate that through consideration of multiple modern analysis techniques, not only can fraudulent labelling be prevented, but indispensable knowledge on the drought tolerance of crops can be obtained.
Collapse
Affiliation(s)
- Stefan G. Bindereif
- BayCEER—Laboratory of Isotope Biogeochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany;
| | - Felix Rüll
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
| | - Peter Kolb
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
| | - Lucas Köberle
- ALNuMed GmbH, Gottlieb-Keim Straße 60, 95448 Bayreuth, Germany;
| | - Holger Willms
- IREKS GmbH, Lichtenfelser Straße 20, 95326 Kulmbach, Germany;
| | - Simon Steidele
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
| | - Stephan Schwarzinger
- NBNC—North Bavarian NMR Centre, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; (F.R.); (P.K.); (S.S.)
- Correspondence: (S.S.); (G.G.); Tel.: +49-(0)-9-2155-2046 (S.S.); +49-(0)-9-2155-2060 (G.G.)
| | - Gerhard Gebauer
- BayCEER—Laboratory of Isotope Biogeochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany;
- Correspondence: (S.S.); (G.G.); Tel.: +49-(0)-9-2155-2046 (S.S.); +49-(0)-9-2155-2060 (G.G.)
| |
Collapse
|
11
|
Jaeger A, Zannini E, Sahin AW, Arendt EK. Barley Protein Properties, Extraction and Applications, with a Focus on Brewers' Spent Grain Protein. Foods 2021; 10:foods10061389. [PMID: 34208463 PMCID: PMC8234785 DOI: 10.3390/foods10061389] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Barley is the most commonly used grain in the brewing industry for the production of beer-type beverages. This review will explore the extraction and application of proteins from barley, particularly those from brewers’ spent grain, as well as describing the variety of proteins present. As brewers’ spent grain is the most voluminous by-product of the brewing industry, the valorisation and utilisation of spent grain protein is of great interest in terms of sustainability, although at present, BSG is mainly sold cheaply for use in animal feed formulations. There is an ongoing global effort to minimise processing waste and increase up-cycling of processing side-streams. However, sustainability in the brewing industry is complex, with an innate need for a large volume of resources such as water and energy. In addition to this, large volumes of a by-product are produced at nearly every step of the process. The extraction and characterisation of proteins from BSG is of great interest due to the high protein quality and the potential for a wide variety of applications, including foods for human consumption such as bread, biscuits and snack-type products.
Collapse
Affiliation(s)
- Alice Jaeger
- School of Food and Nutritional Science, University College Cork, T12 K8AF Cork, Ireland; (A.J.); (E.Z.); (A.W.S.)
| | - Emanuele Zannini
- School of Food and Nutritional Science, University College Cork, T12 K8AF Cork, Ireland; (A.J.); (E.Z.); (A.W.S.)
| | - Aylin W. Sahin
- School of Food and Nutritional Science, University College Cork, T12 K8AF Cork, Ireland; (A.J.); (E.Z.); (A.W.S.)
| | - Elke K. Arendt
- School of Food and Nutritional Science, University College Cork, T12 K8AF Cork, Ireland; (A.J.); (E.Z.); (A.W.S.)
- APC Microbiome Institute, University College Cork, T12 K8AF Cork, Ireland
- Correspondence: ; Tel.: +353-021-490-2064
| |
Collapse
|
12
|
Wang J, Mao Y, Huang T, Lu W, Lu D. Water and heat stresses during grain formation affect the physicochemical properties of waxy maize starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1331-1339. [PMID: 32820541 DOI: 10.1002/jsfa.10743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/06/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maize is frequently subjected to simultaneous water (drought or waterlogging) and heat (HS) stresses during grain formation in southern China. This work examined the effect of high temperature combined with drought (HD) or waterlogging (HW) during grain formation on the starch physicochemical properties of two waxy maize hybrids, namely Suyunnuo5 (SYN5) and Yunuo7 (YN7). RESULTS Heat stress enlarged the starch granule size, and water stresses aggravated this effect. Heat stress reduced the ratio of small molecular weight fractions for both hybrids, and HD aggravated this reduction only in SYN5. Relative crystallinity in SYN5 was increased by stresses but in YN7 it was unaffected by HD, reduced by HS, and increased by HW. Fourier-transform infrared (FTIR) spectrometry results showed that the 1045/1022 cm-1 ratio in SYN5 was not influenced by HW but was increased by other stresses, and that in YN7 it was increased by all stresses, with the highest value induced by HW. Peak viscosity was decreased, whereas gelatinization temperatures and retrogradation percentage were increased by all of these stresses. These effects were exacerbated by combined heat and water stresses. The maximum decomposition rate was severely increased by HW. CONCLUSION Drought or waterlogging at grain formation stage aggravated the detrimental effects of HS on the starch physicochemical properties of waxy maize. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jue Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Yuxiang Mao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Tianqi Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Weiping Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| |
Collapse
|
13
|
Mahalingam R, Graham D, Walling JG. The Barley ( Hordeum vulgare ssp. vulgare) Respiratory Burst Oxidase Homolog (HvRBOH) Gene Family and Their Plausible Role on Malting Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:608541. [PMID: 33679826 PMCID: PMC7934426 DOI: 10.3389/fpls.2021.608541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/27/2021] [Indexed: 05/12/2023]
Abstract
Controlled generation of reactive oxygen species (ROS) is pivotal for normal plant development and adaptation to changes in the external milieu. One of the major enzymatic sources of ROS in plants are the plasma-membrane localized NADPH oxidases, also called as Respiratory Burst Oxidase Homologs (RBOH). In addition to the six previously reported, seven new members of RBOH gene family were identified in barley using in silico analysis. Conservation of genomic structure and key residues important for catalytic activity and co-factor binding was observed in barley RBOH genes. Phylogenetic analysis of plant RBOHs revealed distinct clades for monocot and dicot RBOH proteins. Hence, we propose to use the rice nomenclature for naming barley RBOH genes. Temporal changes in ROS profiles were observed during barley malting and was accompanied by changes in protein carbonylation, lipid peroxidation, and antioxidant capacity. Among the nine differentially expressed HvRBOHs during various malting stages, HvRBOHA and HvRBOHC showed most significant sustained changes in expression. RNAi knockdown lines with reduced expression of HvRBOHA/C gene exhibited genetic compensation via inducible expression of other gene family members during malting. However, the physiological consequence of reduced expression of HvRBOHA/C manifested as a poor malting quality profile attributable to low alpha-amylase activity and high levels of beta-glucan. We propose that the HvRBOHs play a critical role in modulating the redox milieu during the early stages of malting, which in turn can significantly impact carbohydrate metabolism.
Collapse
|
14
|
Qian J, Zhang X, Yan Y, Wang N, Ge W, Zhou Q, Yang Y. Unravelling the molecular mechanisms of abscisic acid-mediated drought-stress alleviation in pomegranate (Punica granatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:211-218. [PMID: 33120112 DOI: 10.1016/j.plaphy.2020.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Pomegranate (Punica granatum L.), a fruit tree of great economic and nutritional importance, is sensitive to drought stress, which largely affects its transplantation survival rate, fruit yield and quality. Abscisic acid (ABA) treatment can reduce the drought-induced adverse impacts on plants. However, our knowledge on the molecular mechanisms behind ABA-mediated drought tolerance in pomegranates is still limited. In this study, we treated the pomegranates under drought stress with exogenous ABA of different concentrations (30, 60 and 90 μM) and found that, compared to those without treatment, ABA can improve pomegranate's growth condition and related physiological responding processes. We also performed comparative transcriptome analysis between the ABA-treated and untreated pomegranates to reveal the ABA-induced mechanisms in response to drought-stress. Our results showed that exogenous ABA application substantially enhanced pomegranate drought resistance by strengthening some metabolic pathways, such as brassinosteroid synthesis, peroxisome biogenesis, photosynthesis and hemicelluloses synthesis. Furthermore, the over-dose treatment of exogenous ABA was found to trigger ABA degradation process and a feedback loop in pomegranate to balances the ABA accumulation that exceeds the optimal ABA requirement, at the cost of suppressed growth process and stress resistance. Our findings provide new insights into the molecular regulation mechanisms underlying the ABA-mediated drought-stress resistance in pomegranates.
Collapse
Affiliation(s)
- Jingjing Qian
- Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Xueping Zhang
- Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Yan Yan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ning Wang
- Huaiyuan China-Israel Agro-Tech Co., Ltd., Bengbu, Anhui, 233400, China
| | - Weiqiang Ge
- Huaiyuan China-Israel Agro-Tech Co., Ltd., Bengbu, Anhui, 233400, China
| | - Qian Zhou
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Post-Anthesis Water-stressed Barley Maintains Grain Specific Weight Through Altered Grain Composition and Plant Architecture. PLANTS 2020; 9:plants9111564. [PMID: 33202786 PMCID: PMC7698198 DOI: 10.3390/plants9111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022]
Abstract
Specific weight (SW) is a long-established measure used as a malting quality specification in barley, with an increased SW thought to result in a higher malt output. Specific weight is a product of individual grain density as determined by grain composition and structure, and grain packing efficiency in a container as determined by grain dimensions. We investigated the effect of moderate but prolonged post-anthesis water stress on barley plant and grain development using pots of cultivars with a known range of SWs to explore how altering plant growth influence SW. Water stress was expected to influence these grain characteristics through decreased photosynthetic capacity. We demonstrated that SW was maintained under water stress conditions through compensatory mechanisms such as increased tiller mortality which preserved grain physical parameters on the main shoots. However, water stress significantly affected plant development by reducing not only ear number and yield, but also grain filling duration, plant biomass and ear length. Grain composition was also altered, with water-stressed plants having reduced carbon:nitrogen. Therefore, although SW can be conserved under water-stressed conditions, grain composition and plant development are altered, producing smaller harvests with higher grain nitrogen content. This would result in bulks of malting barley having different malt outputs despite having the same SW.
Collapse
|
16
|
Lawas LMF, Li X, Erban A, Kopka J, Jagadish SVK, Zuther E, Hincha DK. Metabolic responses of rice cultivars with different tolerance to combined drought and heat stress under field conditions. Gigascience 2019; 8:giz050. [PMID: 31081890 PMCID: PMC6511916 DOI: 10.1093/gigascience/giz050] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Rice is susceptible to both drought and heat stress, in particular during flowering and grain filling, when both grain yield and quality may be severely compromised. However, under field conditions, these 2 stresses rarely occur separately. Under well-watered conditions, plants avoid heat stress by transpirational cooling, while this is not possible under drought conditions. Although investigating combined drought and heat stress is clearly more agronomically relevant than analyzing the effects of the single stresses, only a few studies of this stress combination, in particular under field conditions, have been published. RESULTS Three rice cultivars differing in drought and heat tolerance were grown in the field under control and drought conditions in 3 consecutive years. Drought was applied either during flowering or during early grain filling and resulted in simultaneous heat stress, leading to reduced grain yield and quality. Analysis by gas chromatography-mass spectrometry showed distinct metabolic profiles for the 3 investigated organs (flag leaves, flowering spikelets, developing seeds). The metabolic stress responses of the plants also strongly differed between cultivars and organs. Correlation analysis identified potential metabolic markers for grain yield and quality under combined drought and heat stress from both stress-regulated metabolites and from metabolites with constitutive differences between the cultivars. CONCLUSIONS Gas chromatography-mass spectrometry resolved metabolic responses to combined drought and heat stress in different organs of field-grown rice. The metabolite profiles can be used to identify potential marker metabolites for yield stability and grain quality that are expected to improve breeding efforts towards developing rice cultivars that are resilient to climate change.
Collapse
Affiliation(s)
- Lovely Mae F Lawas
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Xia Li
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - S V Krishna Jagadish
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- Department of Agronomy, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
17
|
Gomez-Sanchez A, Gonzalez-Melendi P, Santamaria ME, Arbona V, Lopez-Gonzalvez A, Garcia A, Hensel G, Kumlehn J, Martinez M, Diaz I. Repression of drought-induced cysteine-protease genes alters barley leaf structure and responses to abiotic and biotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2143-2155. [PMID: 30452688 DOI: 10.1093/jxb/ery410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/08/2018] [Indexed: 05/23/2023]
Abstract
To survive under water deficiency, plants alter gene expression patterns, make structural and physiological adjustments, and optimize the use of water. Rapid degradation and turnover of proteins is required for effective nutrient recycling. Here, we examined the transcriptional responses of the C1A cysteine protease family to drought in barley and found that four genes were up-regulated in stressed plants. Knock-down lines for the protease-encoding genes HvPap-1 and HvPap-19 showed unexpected changes in leaf cuticle thickness and stomatal pore area. The efficiency of photosystem II and the total amount of proteins were almost unaltered in stressed transgenic plants while both parameters decreased in stressed wild-type plants. Although the patterns of proteolytic activities in the knock-down lines did not change, the amino acid accumulation increased in response to drought, concomitant with a higher ABA content. Whilst jasmonic acid (JA) and JA-Ile concentrations increased in stressed leaves of the wild-type and the HvPap-1 knock-down lines, their levels were lower in the HvPap-19 knock-down lines, suggesting the involvement of a specific hormone interaction in the process. Our data indicate that the changes in leaf cuticle thickness and stomatal pore area had advantageous effects on leaf defense against fungal infection and mite feeding mediated by Magnaporthe oryzae and Tetranychus urticae, respectively.
Collapse
Affiliation(s)
- Andrea Gomez-Sanchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo Gonzalez-Melendi
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| | - Vicente Arbona
- Ecofisiologia i Biotecnologia, Dpt. Ciències Agràries i del Medi Natural, Universitat Jaume I - Campus Riu Sec, Castelló de la Plana, Spain
| | - Angeles Lopez-Gonzalvez
- Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad CEU San Pablo, Campus Monteprincipe, Boadilla del Monte, Madrid, Spain
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain
| |
Collapse
|
18
|
Mahalingam R, Bregitzer P. Impact on physiology and malting quality of barley exposed to heat, drought and their combination during different growth stages under controlled environment. PHYSIOLOGIA PLANTARUM 2019; 165:277-289. [PMID: 30238998 DOI: 10.1111/ppl.12841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 05/21/2023]
Abstract
Drought and heat stress are two major abiotic stresses that tend to co-occur in nature. Recent climate change models predict that the frequency and duration of periods of high temperatures and moisture-deficits are on the rise and can be detrimental to crop production and hence a serious threat for global food security. In this study we examined the impact of short-term heat, drought and combined heat and drought stress on four barley varieties. These stresses were applied during vegetative stage or during heading stages. The impact on root and shoot biomass as well as seed yields were analyzed. This study demonstrated that sensitivity to combined stress was generally greater than heat or drought individually, and greater when imposed at heading than at the vegetative stages. Micromalted seeds collected from plants stressed during heading showed differences in malt extract, beta-glucan content and percent soluble protein. Screening barley germplasm during heading stage is recommended to identify novel sources of tolerance to combined stress. Apart from seed yield, assessing the seed quality traits of concern for the stakeholders and/or consumers should be an integral part of breeding programs for developing new barley varieties with improved heat and drought stress tolerance.
Collapse
Affiliation(s)
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, ID, 83210 USA
| |
Collapse
|
19
|
Wang L, Liu L, Ma Y, Li S, Dong S, Zu W. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Comput Biol Chem 2018; 77:413-429. [PMID: 30476702 DOI: 10.1016/j.compbiolchem.2018.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/17/2022]
Abstract
Heat and drought are the two major abiotic stress limiting soybean growth and output worldwide. Knowledge of the molecular mechanisms underlying the responses to heat, drought, and combined stress is essential for soybean molecular breeding. In this study, RNA-sequencing was used to determine the transcriptional responses of soybean to heat, drought and combined stress. RNA-sequencing analysis demonstrated that many genes involved in the defense response, photosynthesis, metabolic process, etc. are differentially expressed in response to drought and heat. However, 1468 and 1220 up-regulated and 1146 and 686 down-regulated genes were confirmed as overlapping differentially expressed genes at 8 h and 24 h after treatment, and these genes are mainly involved in transport, binding and defense response. Furthermore, we compared the heat, drought and the combined stress-responsive genes and identified potential new targets for enhancing stress tolerance of soybean. Comparison of single and combined stress suggests the combined stress did not result in a simple additive response, and that there may be a synergistic response to the combination of drought and heat in soybean.
Collapse
Affiliation(s)
- Libin Wang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Lijun Liu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuling Ma
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Shuang Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Zu
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
Lawas LMF, Zuther E, Jagadish SK, Hincha DK. Molecular mechanisms of combined heat and drought stress resilience in cereals. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:212-217. [PMID: 29673612 DOI: 10.1016/j.pbi.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 05/22/2023]
Abstract
Global climate change leads to increased temperatures and decreased precipitation in many parts of the world. The simultaneous occurrence of high temperature and water deficit results in heat stress damage in plants. Cereals provide the majority of calories for human consumption, making this stress scenario particularly threatening for global food security. Several studies in both dicots and cereals indicate that the molecular reactions of plants to combined stresses cannot be predicted from reactions to single stresses. Recent results indicate that the regulation of heat shock proteins and of sugar transport and accumulation in flowers are crucial factors determining resilience of tolerant genotypes to combined heat and drought stress.
Collapse
Affiliation(s)
- Lovely Mae F Lawas
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | | | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|