1
|
Maqbool Z, Khalid W, Mahum, Khan A, Azmat M, Sehrish A, Zia S, Koraqi H, AL‐Farga A, Aqlan F, Khan KA. Cereal sprout-based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Sci Nutr 2024; 12:707-721. [PMID: 38370091 PMCID: PMC10867502 DOI: 10.1002/fsn3.3830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Cereal grains are a good source of macronutrients and micronutrients that are required for metabolic activity in the human body. Sprouts have been studied to enhance the nutrient profile. Moreover, secondary metabolites are examined as green food engineering technology that is used in the pharmaceutical, functional ingredients, nutraceutical, and cosmetic industries. The sprout-based food is commonly used to enhance the quality of products by softening the structure of the whole grain and increasing the phytochemicals (nutritional value and bioactive compounds). These sprouting grains can be added to a variety of products including snacks, bakery, beverage, and meat. Consuming whole grains has been shown to reduce the incidence and mortality of a variety of chronic and noncommunicable diseases. Sprouting grains have a diversity of biological functions, including antidiabetic, antioxidant, and anticancer properties. Cereal sprout-based products are more beneficial in reducing the risk of cardiovascular diseases and gastrointestinal tract diseases. The novel extraction techniques (microwave-existed extraction, pulse electric field, and enzyme-associated) are applied to maintain and ensure the efficiency, safety, and nutritional profile of sprout. Nutrient-dense sprouts have a low environmental impact and are widely accepted by consumers. This review explores for the first time and sheds light on the antioxidant potential, sensory evaluation, industrial applications, and health perspective of cereal sprout-based food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Waseem Khalid
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Mahum
- Food Science and TechnologyMuhammad Nawaz Sharif University of AgricultureMultanPakistan
| | - Anosha Khan
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Maliha Azmat
- National Institute of Food Science and TechnologyUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Aqeela Sehrish
- Department of Plant and Soil ScienceTexas Tech UniversityLubbockTexasUSA
| | - Sania Zia
- University Institute of Food Science and TechnologyThe University of LahoreLahorePakistan
| | - Hyrije Koraqi
- Faculty of Food Science and BiotechnologyUBT‐Higher Education InstitutionPristinaKosovo
| | - Ammar AL‐Farga
- Department of Biochemistry, College of SciencesUniversity of JeddahJeddahSaudi Arabia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbbYemen
| | - Khalid Ali Khan
- Center of Bee Research and its Products/ Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
- Applied CollegeKing Khalid UniversityAbhaSaudi Arabia
| |
Collapse
|
2
|
Fairlie W, Norman A, Edwards J, Mather DE, Kuchel H. Genetic analysis of late-maturity α-amylase in twelve wheat populations. PLANTA 2024; 259:40. [PMID: 38265531 PMCID: PMC10808134 DOI: 10.1007/s00425-023-04319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
MAIN CONCLUSION Genetic loci, particularly those with an effect in the independent panel, could be utilised to further reduce LMA expression when used with favourable combinations of genes known to affect LMA. Late maturity α-amylase (LMA) is a grain quality defect involving elevated α-amylase within the aleurone of wheat (Triticum aestivum L.) grains. The genes known to affect expression are the reduced height genes Rht-B1 (chromosome 4B) and Rht-D1 (chromosome 4D), and an ent-copalyl diphosphate synthase gene (LMA-1) on chromosome 7B. Other minor effect loci have been reported, but these are poorly characterised and further genetic understanding is needed. In this study, twelve F4-derived populations were created through single seed descent, genotyped and evaluated for LMA. LMA-1 haplotype C and the Rht-D1b allele substantially reduced LMA expression. The alternative dwarfing genes Rht13 and Rht18 had no significant effect on LMA expression. Additional quantitative trait loci (QTL) were mapped at 16 positions in the wheat genome. Effects on LMA expression were detected for four of these QTL in a large independent panel of Australian wheat lines. The QTL detected in mapping populations and confirmed in the large independent panel provide further opportunity for selection against LMA, especially if combined with Rht-D1b and/or favourable haplotypes of LMA-1.
Collapse
Affiliation(s)
- William Fairlie
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
- Australian Grain Technologies, PO Box 341, Roseworthy, SA, 5371, Australia.
| | - Adam Norman
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
- Australian Grain Technologies, PO Box 341, Roseworthy, SA, 5371, Australia
| | - James Edwards
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
- Australian Grain Technologies, PO Box 341, Roseworthy, SA, 5371, Australia
| | - Diane E Mather
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
| | - Haydn Kuchel
- School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia
- Australian Grain Technologies, PO Box 341, Roseworthy, SA, 5371, Australia
| |
Collapse
|
3
|
Mencin M, Markanovič N, Mikulič Petkovšek M, Veberič R, Terpinc P. Bioprocessed Wholegrain Spelt Flour Improves the Quality and Physicochemical Characteristics of Wheat Bread. Molecules 2023; 28:molecules28083428. [PMID: 37110662 PMCID: PMC10146097 DOI: 10.3390/molecules28083428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, the partial substitution of common white wheat flour for a bread recipe with variously bioprocessed wholegrain spelt was investigated. The addition of 1% and pasteurised 5% "germinated + enzymatic treated" spelt flour to wheat flour significantly improved the specific volume of the bread, but their texture profile analysis and sensory evaluation were not satisfactory. A higher percentage of added bioprocessed spelt flour darkened the colour of the bread. Breads with the addition of more than 5% of bioprocessed spelt flour were unacceptable in terms of quality and sensory parameters. The highest extractable and bound individual phenolics were found in breads with 5% "germinated + fermented" spelt flour (GFB5) and 5% pasteurised "germinated + enzymatic treated" spelt flour (GEB5P). A strong positive correlation was determined between trans-ferulic acid and TPC and DPPH• radical scavenging activity. The GEB5P bread showed the highest increase in extractable and bound trans-ferulic acid content, by 320% and 137%, respectively, compared to the control bread. Principal component analysis showed differences between the control bread and enriched breads in terms of their quality, sensory and nutritional properties. Breads with 2.5% and 5% "germinated + fermented" spelt flour had the most acceptable rheological, technological and sensory characteristics, in addition to a substantial improvement in their antioxidant content.
Collapse
Affiliation(s)
- Marjeta Mencin
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | - Nika Markanovič
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | - Maja Mikulič Petkovšek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | - Robert Veberič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| | - Petra Terpinc
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1111 Ljubljana, Slovenia
| |
Collapse
|
4
|
AL-Ansi W, Fadhl JA, Abdullah AB, Al-Adeeb A, Mahdi AA, Al-Maqtari QA, Mushtaq BS, Fan M, Li Y, Qian H, Wang L. Effect of highland barely germination on thermomechanical, rheological, and micro-structural properties of wheat-oat composite flour dough-flour dough. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
End-use quality of wheat affected by late maturity α-amylase. J Cereal Sci 2023. [DOI: 10.1016/j.jcs.2022.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Yang L, Cai J, Qian H, Li Y, Zhang H, Qi X, Wang L, Cao G. Effect of cyclodextrin glucosyltransferase extracted from Bacillus xiaoxiensis on wheat dough and bread properties. Front Nutr 2022; 9:1026678. [PMID: 36386911 PMCID: PMC9664062 DOI: 10.3389/fnut.2022.1026678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, the cyclodextrin glucosyltransferase (CGTase) was extracted from Bacillus xiaoxiensis. CGTase had negative effects on dough viscoelastic properties and gluten strength but had positive effects on bread baking qualities and anti-staling properties. Adding an appropriate amount of CGTase (less than 0.3 U/g) could improve the specific volume, crumb texture, crust color, moisture content, and crumb hardness of bread. The bread crumb with 0.4 U/g CGTase (based on flour weight) had the lowest retrogradation enthalpy of 0.53 ± 0.10 J/g and the lowest relative crystallinity of 16.1%, which indicated the alleviating effect of amylopectin crystallization. Moreover, CGTase reduced the moisture from forming crystal lattices and limited starch molecule migration. The T2 transverse relaxation results showed that the increase of immobilized water content in the bread with CGTase was lower than the control after 5 days of storage, which implied the water-holding capacity of the bread was enhanced and provided information on the inhibition of water migration. Hence, the CGTase could be a potential bread improver.
Collapse
Affiliation(s)
- Lianzhan Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinxin Cai
- Lingquegu Biotechnology Co., Ltd., Quanzhou, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China,*Correspondence: Li Wang,
| | - Guoliang Cao
- Jiangsu Daddy Sweety Food Technology Co., Ltd., Wuxi, China,Guoliang Cao,
| |
Collapse
|
7
|
Influence of germination on bread-making behaviors, functional and shelf-life properties, and overall quality of highland barley bread. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Kweon M, Slade L, Levine H. Impacts of weathering/pre‐harvest sprouting in the field on the milling and flour quality of soft wheats, and resulting baking performance for soft wheat‐based baked products. Cereal Chem 2022. [DOI: 10.1002/cche.10534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Kweon
- Department of Food Science and Nutrition Pusan National University Busan South Korea
| | - L. Slade
- Food Polymer Science Consultancy Morris Plains New Jersey USA
| | - H. Levine
- Food Polymer Science Consultancy Morris Plains New Jersey USA
| |
Collapse
|
9
|
van Rooyen J, Simsek S, Oyeyinka SA, Manley M. Holistic View of Starch Chemistry, Structure and Functionality in Dry Heat-Treated Whole Wheat Kernels and Flour. Foods 2022; 11:foods11020207. [PMID: 35053938 PMCID: PMC8774515 DOI: 10.3390/foods11020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
Heat treatment is used as a pre-processing step to beneficially change the starch properties of wheat flour to enhance its utilisation in the food industry. Heat-treated wheat flour may provide improved eating qualities in final wheat-based products since flour properties predominantly determine the texture and mouthfeel. Dry heat treatment of wheat kernels or milled wheat products involves heat transfer through means of air, a fluidising medium, or radiation—often resulting in moisture loss. Heat treatment leads to changes in the chemical, structural and functional properties of starch in wheat flour by inducing starch damage, altering its molecular order (which influences its crystallinity), pasting properties as well as its retrogradation and staling behaviour. Heat treatment also induces changes in gluten proteins, which may alter the rheological properties of wheat flour. Understanding the relationship between heat transfer, the thermal properties of wheat and the functionality of the resultant flour is of critical importance to obtain the desired extent of alteration of wheat starch properties and enhanced utilisation of the flour. This review paper introduces dry heat treatment methods followed by a critical review of the latest published research on heat-induced changes observed in wheat flour starch chemistry, structure and functionality.
Collapse
Affiliation(s)
- Jana van Rooyen
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Senay Simsek
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Samson Adeoye Oyeyinka
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; or
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg 2001, South Africa
| | - Marena Manley
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Correspondence: ; Tel.: +27-21-808-3511
| |
Collapse
|
10
|
|
11
|
Yang B, Yin Y, Liu C, Zhao Z, Guo M. Effect of germination time on the compositional, functional and antioxidant properties of whole wheat malt and its end-use evaluation in cookie-making. Food Chem 2021; 349:129125. [PMID: 33535111 DOI: 10.1016/j.foodchem.2021.129125] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study investigated the effect of germination time on compositional changes and functionality of whole wheat malt flour (WMF) as well as its influence on cookie quality. The results illustrated that malting resulted in decreases of starch, protein, fat and ash, while it increased dietary fiber, carbohydrate and energy. Gel hydration, emulsifying and foaming ability, pasting viscosity decreased significantly, particularly during the first 2 days of germination. Both bound and immobilized water in WMF decreased with increasing germination time while the concentration and antioxidant capacity of extractable and hydrolyzable phenolic compounds (EPP and HPP) increased significantly in WMF and malt-based cookies. Flours changed from an integrated granular to an irregular tousy structure during germination. The incorporation of WMF induced a distorted "honey-like" comb structure to the cookies. Conclusively, controlled germination not only improves the physicochemical, functional properties of WMF but also increases nutrition value and technological performance of malt-based cookies.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjing Yin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Liu
- Shandong Taishan Beer Company, Tai'an 271000, China; Shandong Institute of Pomology, Tai'an 271018, Shandong, China
| | - Zhengtao Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Mengmeng Guo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
12
|
Alfeo V, Bravi E, Ceccaroni D, Sileoni V, Perretti G, Marconi O. Effect of Baking Time and Temperature on Nutrients and Phenolic Compounds Content of Fresh Sprouts Breadlike Product. Foods 2020; 9:E1447. [PMID: 33066003 PMCID: PMC7599486 DOI: 10.3390/foods9101447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Sprouting has received increasing attention because of the enhanced nutritional values of the derived products. Baking affects the nutrient availability of the end products. The aim of this study was to evaluate how different baking time and temperature affect the nutritional values of bakery products derived from fresh wheat sprouts. Results indicate that the breadlike products showed comparable total polyphenol content and the thermal processes affected the free and bound fractions. Low temperature and high exposure time appear to promote the availability of the free polyphenols and sugars, while high temperature and low exposure time appear to preserve bound polyphenols and starch. Sugar profiles were influenced by baking programs with a higher simple sugar content in the samples processed at low temperature. Phenolic acids showed a strong decrease following processing, and free and bound phenolic acids were positively influenced by high baking temperatures, while an opposite trend was detected at low temperatures. Significant differences in phenolic acid profiles were also observed with a redistribution of hydroxycinnamic acids among the bound and free fractions. It may be concluded that grain type, germination conditions, and the baking programs play a fundamental role for the production of high-nutritional-value bakery products.
Collapse
Affiliation(s)
- Vincenzo Alfeo
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Elisabetta Bravi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Dayana Ceccaroni
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
| | - Valeria Sileoni
- Department of Economics, Universitas Mercatorum, Piazza Mattei 10, 00186, Rome, Italy
| | - Giuseppe Perretti
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy; (V.A.); (E.B.); (D.C.); (G.P.); (O.M.)
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| |
Collapse
|
13
|
Neoh G, Tan X, Dieters M, Fox G, Gilbert R. Effects of cold temperature on starch molecular structure and gelatinization of late-maturity alpha-amylase affected wheat. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Poudel R, Finnie S, Rose DJ. Effects of wheat kernel germination time and drying temperature on compositional and end-use properties of the resulting whole wheat flour. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Olaerts H, Courtin CM. Impact of Preharvest Sprouting on Endogenous Hydrolases and Technological Quality of Wheat and Bread: A Review. Compr Rev Food Sci Food Saf 2018; 17:698-713. [PMID: 33350132 DOI: 10.1111/1541-4337.12347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 11/30/2022]
Abstract
The cereal-based food industry faces the challenge to produce food of high and uniform quality to meet consumer demands. However, adverse weather conditions, including prolonged and repeated rainfall, before harvest time evoke germination of the kernels in the ear of the parent plant, which is known as preharvest sprouting (PHS). PHS results in the production of several hydrolytic enzymes in the kernel, which decreases the technological quality of wheat and causes problems during processing of the flour into cereal-based products. Therefore, wheat that is severely sprouted in the field is less suitable for products for human consumption, and is often discounted to animal feed. Up till now, most knowledge on PHS is obtained by research on laboratory-sprouted wheat as a proxy for field-sprouted wheat. Knowledge on PHS in the field itself is more scarce. This review gives a comprehensive overview of the recent findings on PHS of wheat in the field, compared to knowledge on controlled sprouting. The physiological and functional changes occurring in wheat during PHS and their impact on wheat and bread quality are discussed. This review provides a useful background for further research concerning the potential of field-sprouted wheat to be used as raw material in the food industry.
Collapse
Affiliation(s)
- Heleen Olaerts
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|