1
|
Liu Y, Xiao N, Tang D, Li C, Liu X, Xiao F, Xia T. Transgenic rice with microbial high-temperature-resistant β-glucosidase gene significantly improved 2-acetyl-1-pyrroline content and edible quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1993-2001. [PMID: 39494976 DOI: 10.1002/jsfa.13975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The content of 2-acetyl-1-pyrroline (2-AP) directly affects the aroma and taste of rice. Δ1-Pyrroline and methylglyoxal are the precursors of 2-AP synthesis, and β-glucosidase plays an important role in the synthesis of methylglyoxal. In this study, β-glucosidase gene cloned from Pyrococcus furiosus was molecularly modified to obtain the high-temperature-resistant β-glucosidase gene 371-β-glucosidase (T371A), which was transformed into kitaake varieties (Oryza sativa L. subsp. japonica) by Agrobacterium-mediated transformation method, and transgenic rice with heterologous expression of T371A was obtained. Experiments were conducted in transgenic rice to investigate whether this gene had an effect on the synthesis of 2-AP. RESULTS Under the optimum reaction temperature of 50°C and cooking temperature of 100°C, the enzyme activity of β-glucosidase in transgenic rice seeds was prominently increased by 260-280% and 419-426% over that of the control, respectively. The content of 2-AP in transgenic rice seeds significantly increased by 75-105% under normal temperature and high-temperature cooking conditions compared with the control. It was also found that transgenic rice increased the content of methylglyoxal and decreased the expression of betaine aldehyde dehydrogenase (BADH2). CONCLUSION The high-temperature-tolerant β-glucosidase gene obtained in this study provides an innovative technical strategy for molecular breeding of high-edible aroma crops and has wide application potential. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yifan Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| | - Ning Xiao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| | - Dongqi Tang
- Center for Gene and Immunotherapy, Multidisciplinary Innovation Center for Nephrology
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| | - Xiao Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| | - Fang Xiao
- Department of Cadres Medical Care and Gerontology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Science), Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Science), Jinan, China
| |
Collapse
|
2
|
Zhang Y, He Z, Xing P, Luo H, Yan Z, Tang X. Effects of paclobutrazol seed priming on seedling quality, photosynthesis, and physiological characteristics of fragrant rice. BMC PLANT BIOLOGY 2024; 24:53. [PMID: 38229011 DOI: 10.1186/s12870-023-04683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Paclobutrazol is widely used in the agricultural field. This study investigated the effects of seed priming with different concentrations of paclobutrazol on seedling quality, 2-acetyl-1-pyrroline (2-AP, a key aroma component of fragrant rice) biosynthesis, and related physiological and biochemical indicators in fragrant rice seedlings. RESULTS The experiment is being conducted at the College of Agriculture, South China Agricultural University. In the experiment, three concentrations of paclobutrazol (Pac 1: 20 mg·L-1; Pac 2: 40 mg·L-1; Pac 3: 80 mg·L-1) were used to initiate the treatment of fragrant rice seeds, while water treatment was used as a control (CK). The results showed that compared with CK, paclobutrazol treatment reduced plant height, increased stem diameter, and increased fresh and dry weight of aromatic rice seedlings. Moreover, paclobutrazol treatment also increased the seedlings' photosynthetic pigment content and net photosynthetic rate. CONCLUSIONS This study demonstrates that paclobutrazol primarily increases the content of proline by reducing the content of glutamate and down-regulating the expression of P5CS2, thereby promoting the conversion of proline to the aromatic substance 2-AP. Under the appropriate concentration of paclobutrazol (40 mg·L-1~80 mg·L-1), the seedling quality, stress resistance, and aroma of fragrant rice can be improved.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Zhenzhen He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Zhuosheng Yan
- Guangzhou Golden Rice Agricultral Science and Technology Co, Ltd, Guangzhou, 510900, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Wang Q, Li MJ, Zhang JE, Liu ZQ, Yang K, Li HR, Luo MZ. Suitable stocking density of fish in paddy field contributes positively to 2-acetyl-1-pyrroline synthesis in grain and improves rice quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5126-5137. [PMID: 37005496 DOI: 10.1002/jsfa.12597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/28/2023] [Accepted: 04/02/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fragrant rice is increasingly popular with the public owing to its fresh aroma, and 2-acetyl-1-pyrroline (2-AP) is the main characteristic component of the aroma in fragrant rice. Rice-fish co-culture is an environmentally friendly practice in sustainable agriculture. However, the effect of rice-fish co-culture on 2-AP in grains has received little study. A conventional fragrant rice (Meixiangzhan 2) was used, and a related field experiment during three rice growing seasons was conducted to investigate the effects of rice-fish co-culture on 2-AP, as well as the rice quality, yield, plant nutrients, and precursors and enzyme activities of 2-AP biosynthesis in leaves. This study involved three fish stocking density treatments (i.e. 9000 (D1), 15 000 (D2), and 21 000 (D3) fish fries per hectare) and rice monocropping. RESULTS Rice-fish co-culture increased the 2-AP content in grains by 2.5-49.4% over that of the monocropping, with significant increases in the early and late rice seasons of 2020. Rice-fish co-culture treatments significantly promoted seed-setting rates by 3.39-7.65%, and improved leaf nutrients and rice quality. Notably, the D2 treatment significantly increased leaf total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents and the head rice rate at maturity stage, while significantly decreased chalkiness degree. There was no significant difference in rice yield. CONCLUSION Rice-fish co-culture had positive effects on 2-AP synthesis, rice quality, seed-setting rates, and plant nutrient contents. The better stocking density of field fish for rice-fish co-culture in this study was 15 000 fish ha-1 . © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Wang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
| | - Mei-Juan Li
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jia-En Zhang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zi-Qiang Liu
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Kai Yang
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
| | - Hong-Ru Li
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ming-Zhu Luo
- Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, China
- College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Imran M, Shafiq S, Ashraf U, Qi J, Mo Z, Tang X. Biosynthesis of 2-Acetyl-1-pyrroline in Fragrant Rice: Recent Insights into Agro-management, Environmental Factors, and Functional Genomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4201-4215. [PMID: 36880506 DOI: 10.1021/acs.jafc.2c07934] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rice is a staple food for more than half of the world's population, and rice fragrance is a key quality attribute which is highly desired by consumers and attracts premium prices in the international market. There are around 200 volatile compounds involved in rice fragrance, but 2-acetyl-1-pyrroline (2-AP) has been considered a master regulator of aroma in fragrant rice. Consequently, efforts were made to increase the 2-AP contents in the grain by managing agronomical practices or by using modern functional genomic tools, which successfully converted nonfragrant cultivars to fragrant rice. Furthermore, environmental factors were also reported to influence the 2-AP contents. However, a comprehensive analysis of 2-AP biosynthesis in response to agro-management practices, environmental factors, and the application of functional genomic tools for fragrant rice production was missing. In this Review, we summarize how micro/macronutrients, cultivation practices, amino acid precursors, growth regulators, and environmental factors, such as drought, salinity, light, and temperature, influence the 2-AP biosynthesis to modulate the aroma of fragrant rice. Furthermore, we also summarized the successful conversion of nonfragrant rice cultivars to fragrant rice using modern gene editing tools, such as RNAi, TALENS, and CRISPR-Cas9. Finally, we discussed and highlighted the future perspective and challenges related to the aroma of fragrant rice.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, P. R. China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond St., London, ON N6A5B8, Canada
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Jianying Qi
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| |
Collapse
|
5
|
Effects of Hevea brasiliensis Intercropping on the Volatiles of Pandanus amaryllifolius Leaves. Foods 2023; 12:foods12040888. [PMID: 36832964 PMCID: PMC9957087 DOI: 10.3390/foods12040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Pandanus amaryllifolius Roxb. is a special tropical spice crop resource with broad development prospects. It is widely cultivated under a Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg. canopy to improve the comprehensive benefits to Hevea brasiliensis plantations in Hainan Provence, China. However, the effects of intercropping with Hevea brasiliensis on the component number and relative contents of volatile substances in different categories in the Pandanus amaryllifolius leaves are still unknown. Therefore, a Hevea brasiliensis and Pandanus amaryllifolius intercropping experiment was set up to clarify the differences between several cultivated patterns on volatile substances in the Pandanus amaryllifolius leaves, and the key regulatory factors of volatile substances. The results showed that the soil pH was significantly decreased, while soil bulk density, alkali-hydrolyzable nitrogen and available phosphorus contents were significantly increased under the intercropping pattern. The component numbers of esters in volatile substances were increased by 6.20%, while the component numbers of ketones were decreased by 4.26% under the intercropping pattern. Compared with the Pandanus amaryllifolius monoculture, the relative contents of pyrroles, esters and furanones were significantly increased by 8.83%, 2.30% and 8.27%, respectively, while the relative contents of ketones, furans and hydrocarbons were decreased by 1.01%, 10.55% and 9.16% under the intercropping pattern, respectively. The relative contents of pyrroles, esters, furanones, ketones, furans and hydrocarbons were associated with changes in soil pH, soil available phosphorus content and air temperature. The results indicated that the reduction in soil pH and enhancement in soil-available phosphorus may be the main reasons for promoting the relative content of pyrroles and reducing the relative content of hydrocarbons under an intercropping pattern. Overall, Hevea brasiliensis intercropping with Pandanus amaryllifolius could not only improve soil properties, but also significantly increase the relative contents of the main volatile substances in Pandanus amaryllifolius leaves, which could provide a theoretical basis for the application and promotion of high-quality production patterns of Pandanus amaryllifolius.
Collapse
|
6
|
Ashraf U, Hussain S, Naveed Shahid M, Anjum SA, Kondo M, Mo Z, Tang X. Alternate wetting and drying modulated physio-biochemical attributes, grain yield, quality, and aroma volatile in fragrant rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13833. [PMID: 36437744 DOI: 10.1111/ppl.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Alternate wetting and drying (AWD) has been recognized as a water-saving technology in rice production systems; however, pre- and post-flowering AWD could induce changes in yield, quality and aroma biosynthesis in fragrant rice. In the present study, two fragrant rice cultivars (Guixiangzhan and Nongxiang-18) were subjected to AWD till soil water potential reached -25 to -30 kPa during vegetative stage (VS), reproductive stage (RS), and both stages (VS + RS). The AWD did not affect net photosynthesis and gas exchange significantly, while malondialdehyde (MDA), H2 O2 and electrolyte leakage (EL) were higher than in control plants. The AWD treatments variably affected soluble sugars, proline and protein accumulation as well as the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and reduced glutathione (GSH) contents. Moreover, filled grain percentage and 1000-grain weight in AWD treatments were found to be statistically similar (p > 0.05) to control, except grains panicle-1 under AWD-VS + RS that was reduced by 11% and 14% for Guixiangzhan and Nongxiang-18, respectively. On average, yield and related attributes in Guixiangzhan remained higher than in Nongxiang-18. In addition, the grain aroma volatile (2-acetyl-1-pyrroline, 2-AP) content increased by 8.79%, 14.45%, and 6.87% and 7.95%, 14.02%, and 5.04% under AWD-VS, AWD-RS, and AWD-VS + RS treatments, for Guixiangzhan and Nongxiang-18, respectively. Overall, AWD treatments, either at VS or RS, could promote rice aroma in terms of accumulation of 2AP, which might be linked with enhanced endogenous proline contents (a precursor for 2AP biosynthesis) without any severe consequences on rice yield and quality.
Collapse
Affiliation(s)
- Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naveed Shahid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | | | - Motohiko Kondo
- Department of Plant Production Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Cheng S, Li S, Liang Z, Huang F, Wu X, Han Z, Huang X, Huang X, Ren Y. Effect of application of iron (Fe) and α-ketoglutaric acid on growth, photosynthesis, and Fe content in fragrant rice seedlings. PHOTOSYNTHETICA 2022; 60:293-303. [PMID: 39650768 PMCID: PMC11558503 DOI: 10.32615/ps.2022.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/11/2024]
Abstract
At a three-leaf stage, two Fe treatments [0 mg kg-1 (Fe-) and 20 mg·kg-1 (Fe+) in the form of FeCl3] were used in the soil of the pot and then two concentrations of α-ketoglutaric acid [0 mg L-1 (A-) and 50 mg L-1 (A+)] were sprayed to the rice plants of Meixiangzhan and Yuxiangyouzhan cultivars. We showed that seedlings exhibited an increased length and fresh and dry mass of shoots and roots with treatments Fe+A- and Fe-A+, as well as the Fe content increased greatly. Both treatments increased the morphological characteristic values of roots and promoted photosynthesis. Interestingly, Fe+A+ notably affected the photosynthesis of fragrant rice seedlings; however, it exerted no significant differences on other parameters. Overall, Fe and α-ketoglutaric acid had the potential for improving the growth of fragrant rice seedlings. The interaction between Fe and α-ketoglutaric acid regulated photosynthesis in seedling leaves, which provided evidence for further improvement of rice cultivation.
Collapse
Affiliation(s)
- S.R. Cheng
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| | - S.S. Li
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.W. Liang
- Research Office of Yulin Normal University, Yulin, China
| | - F.C. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.Q. Wu
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Z.Y. Han
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.B. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - X.M. Huang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
| | - Y. Ren
- College of Biology and Pharmacy of Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, China
| |
Collapse
|
8
|
Luo H, Duan M, Kong L, He L, Chen Y, Wang Z, Tang X. The Regulatory Mechanism of 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice ( Oryza sativa L.) Under Different Soil Moisture Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:772728. [PMID: 34899799 PMCID: PMC8660968 DOI: 10.3389/fpls.2021.772728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
2-acetyl-1-pyrroline (2-AP) is the key compound of rice aroma. However, the responses of 2-AP biosynthesis in fragrant rice under different soil moisture and the corresponding mechanism are little known. The present study evaluated the effects of different soil moisture on 2-AP biosynthesis through a pot experiment. Four soil moisture contents, that is, 50% (SM50), 40% (SM40), 30% (SM30), and 20% (SM20), were adopted, and SM50 treatment was taken as control. The pots were weighed and watered to maintain the corresponding soil moisture content. The results showed no significant difference in growth parameters (plant height, stem diameter, and plant dry weight) among all treatments. Compared with SM50, SM40, SM30, and SM20 treatments significantly (p<0.05) increased 2-AP content by 32.81, 23.18, and 53.12%, respectively. Between 20 to 90% higher proline content was observed in SM40, SM30, and SM20 treatments than in SM50. Enzymes including proline dehydrogenase, ornithine transaminase, and 1-pyrroline-5-carboxylate synthetase exhibited lower activities with soil moisture declined. Higher diamine oxidase activity was observed in SM40, SM30, and SM20 treatments compared with SM50, and real-time PCR analyses showed that transcript level of DAO1 was greatly increased under low soil moisture treatments, especially in SM20 treatment. Transcript levels of PRODH, DAO2, DAO4, DAO5, OAT, P5CS1, and P5CS2 decreased or maintained in SM40, SM30, and SM20 treatments compared with SM50. We deduced that low soil moisture content enhanced 2-AP biosynthesis mainly by upregulating the expression of DAO1 to promote the conversion from putrescine to 2-AP.
Collapse
Affiliation(s)
- Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Leilei Kong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Longxin He
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Yulin Chen
- College of Natural Resources and Environment, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhimin Wang
- College of Engineering, South China Agricultural University, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| |
Collapse
|
9
|
Potcho PM, Okpala NE, Korohou T, Imran M, Kamara N, Zhang J, Aloryi KD, Tang X. Nitrogen sources affected the biosynthesis of 2-acetyl-1-pyrroline, cooked rice elongation and amylose content in rice. PLoS One 2021; 16:e0254182. [PMID: 34264963 PMCID: PMC8282057 DOI: 10.1371/journal.pone.0254182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
Many studies have been carried out on N sources effect on fragrant rice; however, their impact on rice grain quality is largely unclear. In this study, we evaluated the effects of different types of N sources on rice growth, yield, 2-acetyl-1-pyrroline (2AP), amylose and cooked rice elongation. Two indica rice cultivars, Basmati 385 (B385), Xiangyaxiangzhan (XYXZ) and two japonica cultivars, Yunjingyou (YJY), Daohuaxiang (DHX) were grown in experimental pots with six replications under four N sources: Potassium nitrate (KNO3), ammonium bicarbonate (NH4HCO3), urea (H2NCONH2) and sodium nitrate (NaNO3) in 2019 and 2020 early seasons. Our results showed that N dynamics regulated the number of panicles, 1000-grain weight, grain yield, 2-acetyl-1-pyrroline, amylose and cooked rice elongation across all the four treatments. The NH4HCO3 treatment significantly increased the number of panicles and grain yield across the four rice varieties compared with KNO3, H2NCONH2 and NaNO3 N sources in both 2019 and 2020 early season, The KNO3 treatment significantly showed higher 1000-grain weight in B-385, YJY, XYXZ and DHX compared to other N sources. Compared with other N sources treatment, the NH4HCO3 treatments significantly increased the 2AP contents in heading stage leaves, matured leaves and grains of B-385, YJY, XYXZ and DHX respectively. Cooked rice elongation percentage also showed significant difference in all treatments studied with KNO3 recorded the highest across the four varieties. Analysis of major enzymes and compounds such as P5C, P5CS, PDH, Pyrroline, proline and Methylglyoxal showed remarkable differences in each cultivar at heading and maturity stages with higher activity in NH4HCO3 and H2NCONH2 treatments. Similarly, in all treatments, we also observed significant increase in amylose content percentage, with NH4HCO3 having greater percentage of amylose.
Collapse
Affiliation(s)
- Pouwedeou Mouloumdema Potcho
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Nnaemeka Emmanuel Okpala
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Tchalla Korohou
- College of Engineering, Nanjing Agricultural University/Key Laboratory of Intelligent Agricultural Equipment of Jiangsu Province, Nanjing, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Nabieu Kamara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Sierra Leone Agricultural Research Institute (SLARI), Freetown, Sierra Leone
| | - Jisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Kelvin Dodzi Aloryi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
10
|
Xie W, Li Y, Li Y, Ma L, Ashraf U, Tang X, Pan S, Tian H, Mo Z. Application of γ-aminobutyric acid under low light conditions: Effects on yield, aroma, element status, and physiological attributes of fragrant rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:111941. [PMID: 33567358 DOI: 10.1016/j.ecoenv.2021.111941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Cloudy weather with low light is more common during rice growing season of South China which often leads reduced yield and aroma formations in fragrant rice. However, exogenous γ-aminobutyric acid (GABA) application could enhance the 2-acetyl-1-pyrroline (2AP) accumulations and yield of fragrant rice under low light conditions. Field and pot experiments were conducted with three fragrant rice cultivars i.e., Basmati and Yuxiangyouzhan (indica), and Yungengyou 14 (japonica) that were grown under three different treatments i.e., normal light + GABA 0 mg L-1 (CK), low light + GABA 0 mg L-1 (T1), and low light + GABA 250 mg L-1 (T2). The results revealed that the grain 2AP contents were increased by 14.67-34.83% and up to 29.34% under T1 and T2 treatments in pot and field experiments, respectively, as compared with CK. The T1 and T2 treatments improved aroma owing to regulation in the accumulation of micronutrients i.e., Na, Mn, and Fe and enzyme activities involved in 2AP biosynthesis. The grain yield was substantially reduced in T1 as compared with T2 treatment for all rice cultivars. On the other hand, GABA application improved the grain yield under low light conditions by regulating the plant growth, and related physiological and biochemical attributes in all rice cultivars. Thus, GABA could balance low light-induced 2AP content and grain yield by modulating morphological and yield related attributes as well as physio-biochemical responses of fragrant rice.
Collapse
Affiliation(s)
- Wenjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yanhong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Agro-innovative Demonstration Base Guangdong Academy of Agricultural Sciences, Guangzhou 510642, Guangdong, China.
| | - Yuzhan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Lin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Umair Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Punjab, Pakistan.
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| |
Collapse
|
11
|
Fu X, Ma L, Gui R, Ashraf U, Li Y, Yang X, Zhang J, Imran M, Tang X, Tian H, Mo Z. Differential response of fragrant rice cultivars to salinity and hydrogen rich water in relation to growth and antioxidative defense mechanisms. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1203-1211. [PMID: 33617358 DOI: 10.1080/15226514.2021.1889963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity negatively effects the growth and productivity of crop plants; however, the effects of hydrogen rich water (HRW) on the early growth of fragrant rice under salinity stress are rarely investigated. In present study, two HRW treatments: foliar application (F-HRW) and irrigation (I-HRW) were applied on the two fragrant rice cultivars, Yuxiangyouzhan and Xiangyaxiangzhan, grown under normal and salt stress conditions, i.e., 0 and 150 mmol NaCl L-1, respectively. Plants without HRW application were grown as control (CK). Results showed that the dry weight per unit plant height (mg cm-1) was increased by 12.6% and 23.0% in F-HRW and I-HRW, respectively under salt stress as compared with CK. Application of HRW, regardless of the application method, modulated the antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) while reduced malondialdehyde (MDA) contents under salt stress. Moreover, significant and positive relations were observed among total dry weight and shoot dry weight, dry weight per unit plant height, SOD and CAT activity in root. Overall, F-HRW application modulated the early growth and related physiological attributes in fragrant rice under salt stress whereas I-HRW was found to mitigate salt stress. Novelty statement: Involvement of endogenous H2 in plants for regulating various physiological functions is of great importance to stimulate and/or activate the antioxidant defense responses against oxidative stress; however, there is a lack of research in this aspect. The present study investigated the effects of hydrogen rich water (HRW) on the growth and physiological attributes of two fragrant rice cultivars grown under salt-stress. It was noteworthy to find that application of HRW either foliar application or irrigation improved the morphological characters, i.e., dry weight per unit plant height and enhanced the activities of antioxidants, i.e., peroxidase, superoxide dismutase and catalase whilst decreased the malonaldehyde content. Overall, the application of HRW modulates plant growth and physiological attributes in fragrant rice cultivars under salt-stress conditions. This study will be helpful in improving the early growth and/or stand establishment of fragrant rice nursery under saline conditions.
Collapse
Affiliation(s)
- Xiaomeng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Lin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Runfei Gui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, University of Education, Division of Science and Technology, Lahore, Pakistan
| | - Yuzhan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Jianwen Zhang
- Yunfu Bureau of Agriculture and Rural Affairs, Yunfu, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
12
|
Li Y, Liang L, Fu X, Gao Z, Liu H, Tan J, Potcho MP, Pan S, Tian H, Duan M, Tang X, Mo Z. Light and water treatment during the early grain filling stage regulates yield and aroma formation in aromatic rice. Sci Rep 2020; 10:14830. [PMID: 32908195 PMCID: PMC7481283 DOI: 10.1038/s41598-020-71944-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
The effect of light and water on aromatic rice remain largely unclear. A pot experiment was conducted to investigate the influences of light-water treatments (CK: natural light and well-watered conditions, WS: natural light and water-stressed conditions, LL: low light and well-watered conditions, LL-WS: low light and water-stressed treatment) on yield and 2-acetyl-1-pyrroline (2AP) formation in aromatic rice. Compared with CK, the light-water treatments decreased grain yield (10.32–39.19%) due to reductions in the filled grain percentage and total dry weight, in the regulation of biomass distribution, and in the attributes of gas exchange and antioxidant response parameters. The 2AP content in grains increased in the LL treatment (5.08–16.32%) but decreased in the WS treatment compared with that in CK. The changes in 2AP were associated with changes in 2AP formation-related traits and element content. Low light and water stress led to yield declines in aromatic rice, but low light alleviated the decrease in 2AP content caused by water stress.
Collapse
Affiliation(s)
- Yuzhan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Luxin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaomeng Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zifeng Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hecheng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiangtao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Mouloumdema Pouwedeou Potcho
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.,Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Liu X, Huang Z, Li Y, Xie W, Li W, Tang X, Ashraf U, Kong L, Wu L, Wang S, Mo Z. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110525. [PMID: 32224370 DOI: 10.1016/j.ecoenv.2020.110525] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 05/22/2023]
Abstract
Fragrant rice is a high-valued quality rice type which is gaining much popularity over the globe due to its better cooking qualities and special aromatic characteristics. Selenium (Se) and silicon (Si) could improve the growth and yield of rice; however, the combine effects of Se and Si (Se-Si treatments) on rice grain quality, aroma and lodging in fragrant rice were rarely investigated. The pot and field experiments were conducted with two fragrant rice cultivars i.e., Xiangyaxiangzhan and Yuxiangyouzhan, grown under three Se levels i.e., 0, 120, and 240 mg kg-1 of soil (for pot experiment) and 0, 300, and 600 kg ha-1 (for field experiment) regarded as LSe, MSe and HSe, respectively and two Si levels i.e., 0 and 60 mg kg-1 of soil (for pot experiment) and 0 and 150 kg ha-1 (for field experiment) regarded as -Si and +Si, respectively. Results depicted that the Se-Si treatments regulated head rice yield, grain yield and yield related traits and the HSe+Si treatment sustainably improved the grain yield and head rice yield by regulating plant growth, antioxidant response and malondialdehyde (MDA) contents in fragrant rice. The Se-Si treatments also improved the grain 2AP contents owing to regulation in the proline, pyrroline-5-carboxylate (P5C) and γ-aminobutyric acid (GABA) contents. Besides, Se-Si treatments also regulated the grain quality attributes and influenced the plant Se contents. Moreover, the Si mitigated Se-induced lodging resulted from changes in the lodging parameters i.e., lodging index, fresh weight per tiller, pushing resistance force, plant height and bending moment. Overall, the Se and Si application improved the grain yield and regulated the dry weight accumulation, antioxidant attributes and quality attributes. Meanwhile, the Si application mitigated the negative effect of Se-induced lodging in fragrant rice.
Collapse
Affiliation(s)
- Xuwei Liu
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuoli Huang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuzhan Li
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjun Xie
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wu Li
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, 510640, Guangdong, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture. PR China, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Leilei Kong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Longmei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shuli Wang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture. PR China, Guangzhou, 510642, China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture. PR China, Guangzhou, 510642, China; Center for International Field Agriculture Research & Education, Ibaraki University, Ami, Ibaraki, 300-0393, Japan.
| |
Collapse
|
14
|
Fragrant rice performances in response to continuous zero-tillage in machine-transplanted double-cropped rice system. Sci Rep 2020; 10:8326. [PMID: 32433497 PMCID: PMC7239914 DOI: 10.1038/s41598-020-65388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Zero-tillage is one of conservation tillage techniques. In order to investigate the effects of continuous zero-tillage on yield formation and grain 2-acetyl-1-pyrroline (2-AP, key component of fragrant rice aroma) content of fragrant rice, present study was conducted with a six-season field experiment from 2017 to 2019. The conventional tillage (twice puddling with rotary cultivator before transplanting) was set as control (CK) and zero-tillage was set as treatment (ZT). At the first year after applying zero-tillage, yield loss was observed in the ZT treatment which was attributed to the lower effective panicle number per area and grain number per panicle. However, from late season in 2018 to late season in 2019, significant higher grain yield was recorded in ZT than CK. ZT increased the net photosynthetic rate and chlorophyll content (SPAD value) by 6.81–20.77% and 7.23–23.80% in the last three cropping seasons compared with CK. Higher nitrogen, potassium and phosphorus accumulations in plant tissues were also recorded in ZT than CK from late season in 2018 to late season in 2019. Other hand, higher grain 2-AP content was recorded in ZT than CT in the whole six cropping seasons which might be related to the grain proline content. Furthermore, compared with CK, ZT significantly increased the soil organic matter content and the number of bacteria, fungi and actinomycetes in the last three cropping seasons. In conclusion, continuous zero-tillage could improve soil and increase the photosynthesis and nutrient accumulation and finally achieve the improvement of fragrant rice yield.
Collapse
|
15
|
Xie W, Kong L, Ma L, Ashraf U, Pan S, Duan M, Tian H, Wu L, Tang X, Mo Z. Enhancement of 2-acetyl-1-pyrroline (2AP) concentration, total yield, and quality in fragrant rice through exogenous γ-aminobutyric acid (GABA) application. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2019.102900] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Mo Z, Li Y, Nie J, He L, Pan S, Duan M, Tian H, Xiao L, Zhong K, Tang X. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. RICE (NEW YORK, N.Y.) 2019; 12:74. [PMID: 31583492 PMCID: PMC6776583 DOI: 10.1186/s12284-019-0328-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Water (W) and nitrogen (N) management generally cause regulations in the 2-acetyl-1-pyrroline (2AP) accumulation in fragrant rice; nevertheless, the feasibility of such management strategies at booting stage in improving 2AP accumulation has not been examined in details. METHODS Field experiments were conducted in the early season (March-July) and repeated in the late season (July-November) in 2013. The treatments were applied urea (90 kg ha- 1), calcium super phosphate (90 kg ha- 1) and potassium chloride (195 kg ha- 1) as basal fertilizer, and urea (65 kg ha- 1) at tillering stage. Three N levels i.e., 0 kg N ha- 1 (N1), 30 kg N ha- 1 (N2), and 60 kg N ha- 1 (N3) and three water levels i.e., W1 treatment (well-watered treatment with water layer of 2-4 cm), W2 treatment (soil water potential was - 15 ± 5 kPa), and W3 treatment (soil water potential was - 25 ± 5 kPa) at booting stage was set up for three rice varieties i.e., Nongxiang 18, Yungengyou 14 and Basmati. The grain yield, head milled rice yield, 2AP contents and the biochemical parameters related to 2AP formation were investigated. RESULTS Result indicated that W and N dynamics regulated the grain yield, head milled rice yield, and 2AP contents in brown rice across three varieties. The N2 and N3 treatment significantly increased the 2AP contents in brown rice by 9.54% and 11.95%, and 8.88% and 32.54% in the early and the late season, respectively; improved grain yield and head milled rice yield. The W3 treatment improved grain yield, head milled rice yield and 2AP content. Significant W and N interaction effect on 2AP content in brown rice was detected, where the W3 N3 treatment showed the strongest interaction regarding improvement of 2AP contents in brown rice. The 2AP accumulation and its related biochemical parameters and their relationships in different plant tissues at different growth stages under W and N treatments had also been assessed. The 2AP content, P5C content and DAO activity during grain filling periods was highly related to the 2AP content in brown rice. CONCLUSION This study revealed that the 60 kg N ha- 1 coupled with - 25 ± 5 kPa treatment showed the best positive effects on yield and aroma in fragrant rice, suggested that water and nitrogen management at booting stage can improve grain yield and fragrance in fragrant rice. However, further study to evaluate the metabolic and molecular basis of 2AP accumulation in fragrant rice is needed.
Collapse
Affiliation(s)
- Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Yanhong Li
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Agro-innovative Demonstration Base Guangdong Academy of Agricultural Sciences, Guangzhou, 510642 China
| | - Jun Nie
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Agro-innovative Demonstration Base Guangdong Academy of Agricultural Sciences, Guangzhou, 510642 China
| | - Longxin He
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Shenggang Pan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Meiyang Duan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Hua Tian
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Lizhong Xiao
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Keyou Zhong
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| |
Collapse
|