1
|
Yazar G. A fundamental rheological approach to determine the optimum water absorption capacity of a model gluten-free dough system: soy flour dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4043-4050. [PMID: 39806834 DOI: 10.1002/jsfa.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU. RESULTS Among the LAOS parameters, large strain modulus (G'L) and large strain rate viscosity (η'L) were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough. Although soy flour dough with 160:100 (water: soy flour, v/w) and wheat flour dough had overlapping η*(ω) in the linear viscoelastic region, LAOS sweeps revealed similar tan δ, G'L and η'L values along with similar elastic and viscous Lissajous-Bowditch curves at γ0 = 200% for soy flour dough with 175:100 (water: soy flour, v/w) to those of wheat flour dough. CONCLUSION Considering the large deformations involved in breadmaking process and the poor capability of the linear viscoelastic measures to predict loaf volume, the present study suggests using the LAOS parameters to determine the optimum water absorption capacity and to optimize the strain-stiffening and shear-thinning behaviors of gluten-free flours to improve end-product quality. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gamze Yazar
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
2
|
Cagnin C, Morais DN, Prudencio SH. Structural, physicochemical and technofunctional properties of corn gluten meal modified by extrusion. Food Res Int 2024; 196:115067. [PMID: 39614497 DOI: 10.1016/j.foodres.2024.115067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
This study aimed to evaluate the influence of sample moisture, extrusion temperature, and extruder screw speed on the hydration properties of corn gluten meal (CG), optimize process condition for the highest protein solubility at pH 7 (PS7) and WAC, and assess the effect of the optimized extrusion process on the structural, chemical, physical, and technofunctional properties of CG proteins. Extrusion was carried out at different sample moisture (20%-40%), temperatures (120-160 °C), and screw speeds (33-117 rpm) using a complete factorial design with two central points. All extrusion conditions resulted in reduced hydration properties. Extrusion with 20% sample moisture, 120 °C and 117 rpm resulted in the lowest loss of water absorption capacity and protein solubility at pH 7 (optimized condition). After optimized extrusion, the GC became darker and showed greater activity and protein emulsifying capacity and lower foaming capacity. Furthermore, CG proteins had reduced solubility at different pHs. Changes in technofunctional properties resulted from changes in protein structure after extrusion. The new protein structure is stabilized by non-covalent bonds (hydrogen bonds and hydrophobic interactions) and disulfide bonds. Extruded corn gluten has the potential to be used as an ingredient in bakery, emulsified meat products, salad dressings, vegetable pates, and desserts.
Collapse
Affiliation(s)
- Caroline Cagnin
- Food Science and Technology, Universidade Estadual de Londrina, Celso Garcia Cid Highway, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil
| | - Danielly Nascimento Morais
- Food Science and Technology, Universidade Estadual de Londrina, Celso Garcia Cid Highway, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil
| | - Sandra Helena Prudencio
- Food Science and Technology, Universidade Estadual de Londrina, Celso Garcia Cid Highway, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil.
| |
Collapse
|
3
|
Rolandelli G, Ozturk OK, Giraldo AMV, Hamaker BR, Campanella OH. Textural improvement of pea protein-based high-moisture extrudates with corn zein and rice starch. Int J Biol Macromol 2024; 281:135960. [PMID: 39357732 DOI: 10.1016/j.ijbiomac.2024.135960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
High moisture extrusion allows the production of plant protein-based products, including meat analogues. Building upon our previous findings showing that zein mixed with rice starch provides the necessary textural properties to formulations, different pea protein-based formulations with varying amounts of zein and rice starch or wheat gluten (as control) were produced using high moisture extrusion and the rheological, textural, and microstructural characteristics were evaluated and associated with the secondary structure of proteins. Samples containing wheat gluten presented desirable rheological and mechanical properties in terms of texturization, which was evidenced by the generation of a layered and three-dimensional viscoelastic network. The addition of rice starch to zein significantly increased the viscoelasticity of the samples due to enhanced development of non-covalent interactions that led to higher and more stable β-sheets content and to the formation of a fibrous and layered microstructure and a 3D network nearly like those obtained with gluten. The sole replacement of pea protein by zein was not enough to develop these desired characteristics, demonstrating the importance of the non-covalent interactions between rice starch and zein for the generation of these properties. Overall, zein and rice starch improved texturization of pea protein-based gluten-free analogues made by high moisture extrusion.
Collapse
Affiliation(s)
- Guido Rolandelli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ). Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina; Department of Food Science and Technology, Ohio State University. 2015 Fyffe Road, Columbus, OH 43210, United States of America
| | - Oguz K Ozturk
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States of America.
| | - Ana Maria Velasquez Giraldo
- Department of Food, Agricultural and Biological Engineering, Ohio State University. 590 Woody Hayes Drive, Columbus, OH 43210, United States of America.
| | - Bruce R Hamaker
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States of America; Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States of America.
| | - Osvaldo H Campanella
- Department of Food Science and Technology, Ohio State University. 2015 Fyffe Road, Columbus, OH 43210, United States of America; Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
4
|
Zhang Y, Wu F, Wang J, Xu M, Cao S, Hu Y, Luan G. Impacts of ethanol-plasticization and extrusion on development of zein network and structure of zein-starch dough. Food Chem 2024; 433:137351. [PMID: 37688829 DOI: 10.1016/j.foodchem.2023.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/29/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
To improve the viscoelasticity of zein in gluten-free dough, ethanol-plasticization and extrusion modification were employed. The peak viscosity of UZS (unextruded zein-starch) flour and EZS (extruded zein-starch) flour with ethanol (10 %, v/v) increased from 1340.0 to 1996.5 mPa·s and 1336.3 to 2291.5 mPa·s, and the bound bromophenol blue increased from 7.1 μg to 10.6 μg and 5.3 μg to 5.9 μg, respectively. Ethanol-plasticization enhanced zein's hydrophobic interactions and promoted zein network development, thus improving dough compatibility. However, the dense structure of the extruded zein made ethanol inaccessible to the interior, and the structural improvement on extruded zein-starch dough was limited. A model was developed to explain the influences of extrusion and ethanol-plasticization on the behavior of zein in the dough. Extrusion reduces the fiber-forming ability of zein, while ethanol-plasticization facilitates extensive fibrous network formation. This study provides a sound basis for the development of zein in gluten-free foods.
Collapse
Affiliation(s)
- Yingying Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Fengyan Wu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jieru Wang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Miaojie Xu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shan Cao
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yayun Hu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, China
| | - Guangzhong Luan
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, China.
| |
Collapse
|
5
|
Zhang Y, Qin Y, Liang Q, Hu Y, Luan G. Breaking the temperature limitation of zein-rice starch dough by microwave pre-gelatinization: Morphological, structural and rheological properties of the dough. Food Res Int 2023; 173:113465. [PMID: 37803788 DOI: 10.1016/j.foodres.2023.113465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Zein has gluten-like viscoelasticity, but its use is limited due to high glass transition temperature (Tg). To break the temperature limitation of zein-starch dough, microwave heating was used to pre-gelatinize a partial of the starch with zein, and then the remaining was added and kneaded to form a dough. Pre-gelatinized doughs formed by rice starch (PRS), zein-starch (PUZS), and extruded zein-starch (PEZS) were included in this study. The thermal, morphological, rheological, and secondary structural properties of the dough were investigated. The results showed that zein and starch formed a composite gel network and firmly bound starch granules, which improved the dough properties with a smooth surface and compact internal structure, increased strain tolerance, and decreased stiffness. Unextruded zein was distributed uniformly and had strong interactions with the starch. Extruded zein tended to form large particles and had limited interaction with starch but improved dough extensibility. Microwave pre-gelatinization increased the stability of the secondary structure of zein and maintained the viscoelasticity of dough below zein's Tg, which provided a safe and effective way to break the temperature limitation of zein as a structural protein used in foods.
Collapse
Affiliation(s)
- Yingying Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yana Qin
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiuhong Liang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yayun Hu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Guangzhong Luan
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
6
|
Thadasack M, Chaunier L, Rabesona H, Viau L, De-Carvalho M, Bouchaud G, Lourdin D. Release kinetics of [lidocainium][ibuprofenate] as Active Pharmaceutical Ingredient-Ionic Liquid from a plasticized zein matrix in simulated digestion. Int J Pharm 2022; 629:122349. [DOI: 10.1016/j.ijpharm.2022.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
|
7
|
Zhang Y, Xu M, Zhang X, Li J, Wu C, Cao S, Hu Y, Luan G. Impacts of extrusion temperature and α-subunit content on structure of zein extrudate and viscoelasticity of the plasticized network. Food Res Int 2022; 162:112129. [DOI: 10.1016/j.foodres.2022.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
|
8
|
Application of zein in gluten-free foods: A comprehensive review. Food Res Int 2022; 160:111722. [DOI: 10.1016/j.foodres.2022.111722] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 01/11/2023]
|
9
|
Yazar G, Demirkesen I. Linear and Non-Linear Rheological Properties of Gluten-Free Dough Systems Probed by Fundamental Methods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Allai FM, Dar BN, Gul K, Adnan M, Ashraf SA, Hassan MI, Pasupuleti VR, Azad ZRAA. Development of Protein Rich Pregelatinized Whole Grain Cereal Bar Enriched With Nontraditional Ingredient: Nutritional, Phytochemical, Textural, and Sensory Characterization. Front Nutr 2022; 9:870819. [PMID: 35464008 PMCID: PMC9024333 DOI: 10.3389/fnut.2022.870819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
This study was aimed to use extrusion cooking as a pretreatment for non-conventional seeds (Indian horse chestnut flour) to blend them with whole grain flours (whole wheat flour, whole barley flour, and whole corn flour) for the development of a pregelatinized cereal bar (PCB). In this study, date paste (7.5-17.5%) and walnut grits (2.5-12.5%) were incorporated at varying levels to prepare PCB. The PCB was evaluated for its nutritional, color, textural (both three-point bending test and TPA), antioxidant activity, and sensory attributes. The flexural modulus, rupture stress, and fracture strain of PCB increased with the incorporation of a higher proportion of date paste. The protein and fiber content in PCB increased from 7.74 to 9.13% and 4.81 to 5.59% with the incorporation of walnut grits and date paste, respectively. The DPPH, total phenolic content, and water activity of PCB were determined, which progressively enhanced with increased levels of walnut grits and date paste. The correlation between sensory attributes and instrumental texture on PCB was also investigated. The correlation results showed a significant (p < 0.05) positive correlation between texture analysis and sensory hardness, springiness, adhesiveness, and negatively correlated to instrumental and sensory cohesiveness. For sensorial attributes, all PCB samples presented average scores of 7/10 and 4/5 for buying intention. Therefore, whole grain extrudates, date paste, and walnut grits can be efficiently used to develop PCB with improved nutritional, nutraceutical, and economic values.
Collapse
Affiliation(s)
- Farhana Mehraj Allai
- Department of Post-harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - B. N. Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Z. R. A. A. Azad
- Department of Post-harvest Engineering and Technology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Effects of Hydrothermal and Microwave Dual Treatment and Zein on the Enzymolysis of High Amylose Corn Starch. Gels 2022; 8:gels8010029. [PMID: 35049564 PMCID: PMC8775258 DOI: 10.3390/gels8010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/10/2022] Open
Abstract
Resistant starch (RS) type 2-high-amylose corn starch (HACS) was subjected to simultaneous hydrothermal (25% moisture content, 90 °C for 12 h) and microwave (35% moisture content, 40 W/g microwaving for 4 min) treatment and zein (at a zein to treated starch ratio of 1:5, 50 °C for 1 h) to improve its resistance to enzymolysis. Scanning electron microscopy (SEM) highlighted the aggregation and adhesion of the composite. The average particle size of the composite (27.65 μm) was exceeded that of both the HACS (12.52 μm) and the hydrothermal and microwave treated HACS (hydro-micro-HACS) (12.68 μm). The X-ray diffraction results revealed that the hydro-micro-HACS and composite remained B-type, while their crystallinity significantly decreased to 16.98% and 12.11%, respectively. The viscosity of the hydro-micro-HACS and composite at 50 °C was 25.41% and 35.36% lower than that of HACS. The differential scanning calorimetry (DSC) results demonstrated that the composite displayed a new endothermic peak at 95.79 °C, while the weight loss rate and decomposition temperature were 7.61% and 2.39% lower than HACS, respectively. The RS content in HACS, the hydro-micro-HACS, and composite was 47.12%, 57.28%, and 62.74%, respectively. In conclusion, hydrothermal and microwave treatment combined with zein provide an efficient physical strategy to enhance the RS type 2-HACS.
Collapse
|
12
|
Qian X, Gu Y, Sun B, Ma S, Tian X, Wang X. Improvement in quality of fast-frozen steamed bread by different gluten content and glutenin/gliadin ratio and its mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
|
14
|
Skendi A, Papageorgiou M, Varzakas T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods 2021; 10:1997. [PMID: 34574106 PMCID: PMC8468076 DOI: 10.3390/foods10091997] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
Gluten-free products have come into the market in order to alleviate health problems such as celiac disease. In this review, recent advances in gluten-free bread are described along with plant-based gluten-free proteins. A comparison with animal-based gluten-free proteins is made reporting on different high protein sources of animal origin. Sea microorganisms- and insect-based proteins are also mentioned, and the optimization of the structure of gluten-free bread with added high protein sources is highlighted along with protein digestibility issues. The latter is an issue for consideration that can be manipulated by a careful design of the mixture in terms of phenolic compounds, soluble carbohydrates and fibres, but also the baking process itself. Additionally, the presence of enzymes and different hydrocolloids are key factors controlling quality features of the final product.
Collapse
Affiliation(s)
- Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece;
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| |
Collapse
|
15
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
|
17
|
|
18
|
Song J, Sun C, Gul K, Mata A, Fang Y. Prolamin-based complexes: Structure design and food-related applications. Compr Rev Food Sci Food Saf 2021; 20:1120-1149. [PMID: 33569884 DOI: 10.1111/1541-4337.12713] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Prolamins are a group of safe food additives that are biocompatible, biodegradable, and sustainable. Zein, gliadin, kafirin, and hordein are common prolamins that have been extensively studied, particularly as these form colloidal particles because of their amphiphilic properties. Prolamin-based binary/ternary complexes, which have stable physicochemical properties and superior functionality, are formed by combining prolamins with polysaccharides, polyphenols, water-soluble proteins, and surfactants. Although the combination of prolamins with other components has received attention, the relationship between the structural design of prolamin-based complexes and their functionalities remains uncertain. This review discusses the production methods of prolamin-based complexes, the factors influencing their structural characteristics, and their applications in the food industry. Further studies are needed to elucidate the structure-function relationships between prolamins and other biopolymers, as well as the toxicological effects of these complexes in food.
Collapse
Affiliation(s)
- Jingru Song
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Espinoza-Herrera J, Martínez LM, Serna-Saldívar SO, Chuck-Hernández C. Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems. Foods 2021; 10:foods10010118. [PMID: 33429906 PMCID: PMC7826639 DOI: 10.3390/foods10010118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
The substitution of wheat gluten in the food industry is a relevant research area because the only known treatment for celiac disease is abstinence from this protein complex. The use of gluten-free cereals in dough systems has demonstrated that the viscoelastic properties of gluten cannot be achieved without the modification of the protein fraction. The quality of the final product is determined by the ability of the modification to form a matrix similar to that of gluten and to reach this, different methods have been proposed and tested. These procedures can be classified into four main types: chemical, enzymatic, physical, and genetic. This article provides a comprehensive review of the most recent research done in protein modification of cereal and pseudocereals for gluten substitution. The reported effects and methodologies for studying the changes made with each type of modification are described; also, some opportunity areas for future works regarding the study of the effect of protein modifications on gluten-free products are presented.
Collapse
|
20
|
Villanueva M, Abebe W, Collar C, Ronda F. Tef [Eragrostis tef (Zucc.) Trotter] variety determines viscoelastic and thermal properties of gluten-free dough and bread quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
A Systematic Review of Gluten-Free Dough and Bread: Dough Rheology, Bread Characteristics, and Improvement Strategies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186559] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-quality, gluten-free doughs and bakery products are clearly more difficult to produce than wheat flour-based products. The poor quality of the breads that are currently available demonstrates that manufacturing remains a significant technological problem. This is mainly due to the absence of gluten, which has a huge negative impact on dough rheology and bread characteristics. Gluten replacement is still the major challenge in the development of doughs and baked goods. The literature documents various improvement strategies. The most active approach seeks to identify alternative ingredients that can mimic the viscoelastic properties of the gluten network, notably hydrocolloids, enzymes, emulsifiers, and alternative sources of protein. However, other innovative strategies, such as high pressure, using heat to dry flour, and sourdough fermentation, have been investigated. In this context, the first aim of this review is to summarize current knowledge regarding gluten-free doughs, breads, and bakery products. Secondly, as it is clear that the manufacture of gluten-free products remains a key challenge, it suggests some improvement strategies that can boost their nutritional, technological, and sensorial characteristics.
Collapse
|
22
|
Kumar P, Kaur C, Sethi S, Kaur Jambh H. Effect of extruded finger millet on dough rheology and functional quality of pearl millet‐based unleavened flatbread. Cereal Chem 2020. [DOI: 10.1002/cche.10321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pankaj Kumar
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | - Charanjit Kaur
- Division of Food Science and Post‐Harvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Swati Sethi
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | - Harpreet Kaur Jambh
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| |
Collapse
|