1
|
Jia H, Ren F, Liu H. Innovative non-thermal processing: Unraveling structural and functional transformations in food macromolecules-Starch, proteins, and lipids. Food Res Int 2025; 212:116500. [PMID: 40382054 DOI: 10.1016/j.foodres.2025.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Thermal processing is widely used to ensure food safety and extend shelf life by inactivating microorganisms and enzymes. However, it often leads to undesirable heat-induced degradation and molecular aggregation, compromising food quality. In response, the food industry is increasingly adopting non-thermal processing technologies-such as high-pressure processing, ultrasound, pulsed electric fields, cold atmospheric plasma, and supercritical carbon dioxide-as innovative strategies to preserve or enhance the sensory and nutritional attributes of food. This review critically examines the mechanisms and effects of these emerging technologies on the physicochemical properties of major food macromolecules, including starch, proteins, and lipids. These non-thermal methods induce structural and functional modifications at both the molecular and macrostructural levels, influencing texture, flavor, and nutritional profiles. Despite growing evidence of their impact, the mechanistic understanding of cross-interactions among starch, proteins, and lipids under non-thermal treatments remains limited. Elucidating these complex interactions is crucial for optimizing processing conditions and achieving targeted functionality in food matrices. This highlights a key research gap and underscores the need for advanced analytical approaches to fully exploit the potential of non-thermal technologies in food design.
Collapse
Affiliation(s)
- Hanbing Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hongzhi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Guizhou Institute of Technology (GIT), Guiyang 550025, China.
| |
Collapse
|
2
|
Zhang X, Shen Q, Sang L, Zhu Y, Xue Y, Zhao Q, Wang C. Differences in hydration between high hydrostatic pressure and heat gelatinization of rice starch. Carbohydr Polym 2025; 348:122798. [PMID: 39562074 DOI: 10.1016/j.carbpol.2024.122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 11/21/2024]
Abstract
The water distribution of high hydrostatic pressure-gelatinized rice starch (HHGS) and heat-gelatinized rice starch (HGS) were investigated under various DGs from 20 % to 100 %, and the effect of hydration on the packing of liquid-crystalline polymer, helix-coil transition, ordered structure change and thermal properties were illustrated. The T2 values at DG25%, the decreased characteristic dimensions of the lamellar structure, the increase of short chains, and the disappeared Maltese cross at DG50% for gelatinized rice starch indicated that the rice starch completed its hydration, which led to the entry of sufficient water to collapse of the crystalline lamellae and ordered structure. LF-NMR results showed that as DG increased, water molecules progressively entered into the tighter structure inside HHGS, and the T2 value decreased and reached a minimum (0.086 ms) at DG75%, while the T2 peak of HGS reached that position at DG25%. Therefore, the collapse of crystalline lamellae, the swelling of granules and the leaching of amylose of HHGS were limited, so the granules were more dispersed. The initial gelatinization temperature (To) and the wide flat DSC peak of HHGS were basically maintained as DG increased. However, the peak of HGS shifted toward higher temperatures and became sharpened and narrowed.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Demonstration Center for Experimental Food Science and Engineering Education (China Agricultural University), Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| |
Collapse
|
3
|
Zhang X, Wang C, Zhu Y, Sang L, Zhao Q, Shen Q. Mechanistic understanding of changes in physicochemical properties of different rice starches under high hydrostatic pressure treatment based on molecular and supramolecular structures. Food Chem 2025; 463:141421. [PMID: 39362093 DOI: 10.1016/j.foodchem.2024.141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The molecular and supramolecular structures of japonica and waxy rice starches under high hydrostatic pressure treatment (450 MPa) were studied and the changes in physicochemical properties were analyzed based on these structures. The molecular structures of japonica and waxy rice starch cause differences in the lamellar structure and physicochemical properties. The thickness of amorphous lamella of japonica rice starch increased at 5 min (2.95 nm) followed by a gradual collapse of lamellar structure. Whereas the thickness of crystalline lamellae of waxy rice starch increased at 15 min (5.92 nm) and the lamellae collapsed suddenly at 20 min. The pasting, rheological and textural characteristics of both starches increased significantly within 10 to 15 min. The decreasing onset temperature and enthalpy of high hydrostatic pressure-treated starches indicated easier gelatinization. High hydrostatic pressure-treatment offers potential for developing starch-based products with low swelling capacity, easy gelatinization, high viscosity and hardness.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| |
Collapse
|
4
|
Yan Q, Wang Y, Zhang W, Ma Y, Chen J. Impact of ultra-high pressure on the microstructure, emulsification, and physicochemical properties of rice starch. Int J Biol Macromol 2024; 283:137919. [PMID: 39577527 DOI: 10.1016/j.ijbiomac.2024.137919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Ultra-high pressure (UHP) treatment is considered a non-thermo physical treatment technology with a "clean label". Starch is an ideal stabilizer for food-grade Pickering emulsions. This study aimed to investigate the effects of ultra-high pressure (UHP) modification of rice starch on its structure, water/oil absorption, and emulsification properties under different pressure treatments (100-500 MPa), the results showed that the morphology of the starch granules and crystalline structure did not change significantly at lower pressures. Conversely, the particle size of starch increased significantly from 4.85 to 110.13 μm, the relative crystallinity (RC) obviously decreased from 18.89 % to 9.18 %, and the starch granules were destroyed and formed more fragments at higher pressure (500 MPa). The results of water/oil absorption indicated that the oil absorption slightly increased under UHP treatment, but water absorption intensively increased under higher pressure (500 MPa). The emulsifying capacity was significantly enhanced at 500 MPa after 8, 16, and 24 min. The UHP treatment induced swelling and disruption of starch granules at higher pressure (500 MPa). The starch fragments and the released starch molecules stabilized the droplets. This study provides a reference for the application of UHP processing in the starchy foods.
Collapse
Affiliation(s)
- Qing Yan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Almeida RLJ, Santos NC, da Silva Pedro M, de Souza Ferreira IL, da Silva Eduardo R, Muniz CES, de Andrade Freire V, Leite ACN, de Oliveira BF, da Silva PB, da Silva YTF, da Silva Freitas RV, de Sousa ABB, de Assis Cavalcante J, Sampaio PM, da Costa GA. Combined effects of high hydrostatic pressure and pulsed electric fields on quinoa starch: Analysis of microstructure, morphology, thermal, and pasting properties. Food Chem 2024; 460:140826. [PMID: 39167868 DOI: 10.1016/j.foodchem.2024.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
The aim of this study was to evaluate the impact of non-thermal methods, using high hydrostatic pressure (HHP) and pulsed electric field (PEF), on the dual modification of quinoa starch and to analyze the microstructural, morphological, thermal, pasting, and texture properties. Starch was treated with HHP at 400 MPa for 10 min, while PEF was applied using voltages of 10 and 30 kV cm-1 for a total time of 90s. The modification techniques were effective in breaking down amylose molecules and amylopectin branches, where for the dual treatment, higher values of DP6-12 were found. The average diameter and gelatinization temperatures were elevated after HHP, thus forming clusters that require more energy for paste formation. The use of 30 kV cm-1 and 400 MPa (HP30) in starch facilitates the creation of new food products with better texture, stability and nutritional value, making them suitable for use in food emulsions and the cosmetics industry.
Collapse
Affiliation(s)
| | - Newton Carlos Santos
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Marcelo da Silva Pedro
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Raphael da Silva Eduardo
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Cecilia Elisa Sousa Muniz
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Vitória de Andrade Freire
- Department of Chemical Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | - Ana Carolina Nóbrega Leite
- Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | | | | | | | | - Alison Bruno Borges de Sousa
- Department of Agroindustry, Federal Institute of Education, Science and Technology of Pernambuco, Belo Jardim, PE, Brazil
| | | | - Patrícia Marinho Sampaio
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB, Brazil
| | | |
Collapse
|
6
|
Rostamabadi H, Yildirim-Yalcin M, Demirkesen I, Toker OS, Colussi R, do Nascimento LÁ, Şahin S, Falsafi SR. Improving physicochemical and nutritional attributes of rice starch through green modification techniques. Food Chem 2024; 458:140212. [PMID: 38943947 DOI: 10.1016/j.foodchem.2024.140212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Rice, has long been an inseparable part of the human diet all over the world. As one of the most rapidly growing crops, rice has played a key role in securing the food chain of low-income food-deficit countries. Starch is the main component in rice granules which other than its nutritional essence, plays a key role in defining the physicochemical attributes of rice-based products. However, rice starch suffers from weak techno-functional characteristics (e.g., retrogradability of pastes, opacity of gels, and low shear/temperature resistibility. Green modification techniques (i.e. Non-thermal methods, Novel thermal (e.g., microwave, and ohmic heating) and enzymatic approaches) were shown to be potent tools in modifying rice starch characteristics without the exertion of unfavorable chemical reagents. This study corroborated the potential of green techniques for rice starch modification and provided deep insight for their further application instead of unsafe chemical methods.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Meral Yildirim-Yalcin
- Istanbul Aydin University, Engineering Faculty, Food Engineering Department, 34295, Istanbul, Turkey
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Omer Said Toker
- Yildiz Technical University, Chemical and Metallurgical Engineering Faculty, Food Engineering Department, 34210, Istanbul, Turkey
| | - Rosana Colussi
- Center for Pharmaceutical and Food Chemical Sciences, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Lucas Ávila do Nascimento
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, University Campus, s/n, 96010-900, Pelotas, RS, Brazil
| | - Selin Şahin
- Faculty of Engineering, Chemical Engineering Department, Division of Unit Operations and Thermodynamics, Istanbul University-Cerrahpaşa, Avcilar, 34320, Istanbul, Turkey
| | - Seid Reza Falsafi
- Food Science and Technology Division, Agricultural Engineering Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, (AREEO), Dezful, Iran.
| |
Collapse
|
7
|
Zhang X, Wang C, Sang L, Liu Z, Zhao L, Zhao Q, Shen Q. Investigation of starch hierarchical structure in relation to physicochemical properties and digestive behavior under different high hydrostatic pressure treatment time. Int J Biol Macromol 2024; 279:135208. [PMID: 39218176 DOI: 10.1016/j.ijbiomac.2024.135208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Changes and causal relationships in the hierarchical structure, thermal, pasting and rheological properties, as well as the digestive behavior of starch under different high hydrostatic pressure (HHP) treatment time were investigated. At 5 min, the thickness of amorphous lamellae increased (2.76 nm) and the content of B2 and B3 chains in the amorphous lamellae decreased significantly (10.78 % and 9.08 %). As the treatment time increased, the crystalline lamellae swelled and tightly arranged double helices located in the crystalline lamellae were disturbed, resulting in a decrease in the content of double helices (12.16 %) and relative crystallinity (16.96 %). Helix dissociation, crystal disruption, lamellar collapse and granule deformation were observed at 20 min. These structural changes were closely linked to variations in the physicochemical behaviors. The thermal parameters decreased gradually, accompanied by a decrease in double helix stability. The swollen crystalline lamellae provided more space for molecular stretching, thus enhancing the pasting characteristics. Regarding the digestive behavior, the swollen amorphous lamellae facilitated the invention of enzyme molecules to hydrolyze the starch at 5 min. The digestion rate coefficient and rapidly digestible starch content increased significantly until 15 min, which demonstrated that starch was more easily digested while retaining its intact granular form.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Chao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Luman Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Zhenyu Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Liangxing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China.
| |
Collapse
|
8
|
Yan X, McClements DJ, Luo S, Liu C, Ye J. Recent advances in the impact of gelatinization degree on starch: Structure, properties and applications. Carbohydr Polym 2024; 340:122273. [PMID: 38858001 DOI: 10.1016/j.carbpol.2024.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
During home cooking or industrial food processing operations, starch granules usually undergo a process known as gelatinization. The starch gelatinization degree (DG) influences the structural organization and properties of starch, which in turn alters the physicochemical, organoleptic, and gastrointestinal properties of starchy foods. This review summarizes methods for measuring DG, as well as the impact of DG on the starch structure, properties, and applications. Enzymatic digestion, iodine colorimetry, and differential scanning calorimetry are the most common methods for evaluating the DG. As the DG increases, the structural organization of the molecules within starch granules is progressively disrupted, the particle size of the granules is altered due to swelling and then disruption, the crystallinity is decreased, the molecular weight is reduced, and the starch-lipid complexes are formed. The impact of DG on the starch structure and properties depends on the processing method, operating conditions, and starch source. The starch DG affects the quality of many foods, including baked goods, fried foods, alcoholic beverages, emulsified foods, and edible inks. Thus, a better understanding of the changes in starch structure and function caused by gelatinization could facilitate the development of foods with novel or improved properties.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jiangping Ye
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Li Q, Guo A, Rao L, Zhao L, Wang Y, Liao X. Tunable interactions in starch-anthocyanin complexes switched by high hydrostatic pressure. Food Chem 2024; 436:137677. [PMID: 37839121 DOI: 10.1016/j.foodchem.2023.137677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
Native starches usually have poor polyphenol-binding efficiency despite remarkable architectural structures. In this study, the interaction between cyandin-3-O-glucose (C3G) and three starches under high hydrostatic pressure was investigated. Pressure (200-550 MPa) was found to promote the binding rate of potato starch from 31.6% to 47.0% but reduced that of corn and pea starch to below 10% at 550 MPa. Microscopy results showed that pressurized corn and pea starch-C3G complexes partially or completely lost spatial structures, whereas potato starch-C3G complexes retained structural integrity. The former had decreased zeta potentials and increased particle sizes at 550 MPa, suggesting surface charges and specific surface area losses caused poor binding. Potato starch-C3G complexes, however, exhibited unchanged zeta potential and particle size but the strongest fluorescence at 200 MPa, indicating a positive binding shift from surface to interior. Overall, high hydrostatic pressure can regulate the interactions of native starches with anthocyanins via spatial structural changes.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Aixin Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Centre for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
10
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
11
|
Wang N, Li C, Miao D, Hou H, Dai Y, Zhang Y, Wang B. The effect of non-thermal physical modification on the structure, properties and chemical activity of starch: A review. Int J Biol Macromol 2023; 251:126200. [PMID: 37567534 DOI: 10.1016/j.ijbiomac.2023.126200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Non-thermal physical treatments has obvious advantages in regulating the structure and properties of starch compared with chemical treatment. Hance, this article summarized and compared the effects of three kinds of non-thermal physical treatments including grinding and ball milling, high hydrostatic pressure and ultrasonic on the structure, properties and chemical activity of starches from different plants. The potential applications of non-thermal physical modified starch were introduced. And strategies to solve the problems in the current research were put forward. It is found that although starch has a dense structure, the starch granules could be deformed under three kinds of non-thermal physical treatments, which could damage the granule morphology, microstructure, and crystal structure of starch, reduce particle size, increase solubility and swelling power, and promote starch gelatinization. Three kinds of non-thermal physical treated starch could be used as flocculant thickener, starch based edible films and fat substitutes. Non-thermal physical treatments caused the structure of starch to undergo three stages, which were similar to mechanochemical effects. When starch was in the stress stage and the transition stage from aggregation to agglomeration, its active sites significantly increase and move inward, ultimately leading to a significant increase in the chemical activity of starch.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Chen Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Di Miao
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Yong Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Bin Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
12
|
Chen Z, Yang Q, Yang Y, Zhong H. The effects of high-pressure treatment on the structure, physicochemical properties and digestive property of starch - A review. Int J Biol Macromol 2023:125376. [PMID: 37327934 DOI: 10.1016/j.ijbiomac.2023.125376] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
High hydrostatic pressure (HHP) is a novel technology used in the food-processing industry. Starch is an important renewable natural resource. The applications of starch are determined by its properties, which in turn are determined by its structure. In this study, the effects of HHP treatment on starch structure (granular structure, crystalline structure, molecular structure, and molecular conformation) and properties (pasting, retrogradation, thermal, digestive, rheological, swelling, solubility, water absorption, and oil absorption properties) are summarised. Additionally, the mechanism of HHP-induced gelatinisation is discussed. First, the strong hydration ability of starch molecules under high pressure facilitates the binding of water molecules to starch molecules via hydrogen bonding. These bound water molecules may block the channels inside the starch granules, leading to the formation of a sealed space. Finally, the granules disintegrate because of the intra/extra pressure difference. This study provides a reference for the application of HHP to starch processing and modification.
Collapse
Affiliation(s)
- Zhiguang Chen
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Qi Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province 710021, China
| | - Yinshuang Yang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Haixia Zhong
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China.
| |
Collapse
|
13
|
Insights into high hydrostatic pressure pre-treatment generating a more efficient catalytic mode of maltogenic α-amylase: Effect of multi-level structure on retrogradation properties of maize starch. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Zhang H, He F, Wang T, Chen G. Insights into the interaction of CaCl 2 and potato starch: Rheological, structural and gel properties. Int J Biol Macromol 2022; 220:934-941. [PMID: 36007697 DOI: 10.1016/j.ijbiomac.2022.08.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/26/2022] [Accepted: 08/20/2022] [Indexed: 11/05/2022]
Abstract
High viscosity of starch greatly limit its application in some specific foods, in this work, a novel low-viscosity potato starch (PS) was developed via crosslinking between PS (3 %, w/v) and Ca2+ to investigate the effect of CaCl2 concentration (0.1-5 % CaCl2, w/v) on the rheological behaviors, structural and gel properties of PS. The results showed that peak viscosity (PV), trough viscosity (TV), final viscosity (FV), and breakdown viscosity (BD) of pasting curves of CaCl2-treated PS were significantly reduced compared with the native PS. The CaCl2 treatment also decreased the firmness of the PS gel and increased its pasting temperature (PT) and gelatinization enthalpy (∆H). Moreover, The CaCl2 treatment also led to more organized crystallites in the PS granules as affected by the slight increase in the ratio of 1044/1015 cm-1 in the FT-IR analysis, reduced the homogeneity of ordered structures inside granules as indicated by the increase in conclusion temperature (Tc)-onset temperature (To) in DSC analysis, and decreased relatively crystallinity revealed by XRD analysis. The findings of this study indicated CaCl2-treated PS could serve as food ingredients with reduced paste viscosity and regulated paste stability under shear during heating.
Collapse
Affiliation(s)
- Hongcai Zhang
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory of Aquatic Products Quality & Safety Risk Assessment (Shanghai) at China Ministry of Agriculture, Shanghai Ocean University, No 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Fuli He
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Tao Wang
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA
| | - Guibing Chen
- Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, Kannapolis, NC 28081, USA.
| |
Collapse
|
16
|
Four stages of multi-scale structural changes in rice starch during the entire high hydrostatic pressure treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Bajaj R, Singh N, Ghumman A, Kaur A, Mishra HN. Effect of High Pressure Treatment on Structural, Functional, and In‐Vitro Digestibility of Starches from Tubers, Cereals, and Beans. STARCH-STARKE 2021. [DOI: 10.1002/star.202100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ritika Bajaj
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Narpinder Singh
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Atinder Ghumman
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Amritpal Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar Punjab 143005 India
| | - Hari Niwas Mishra
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal 721302 India
| |
Collapse
|
18
|
Feng W, Fan D, Li K, Wang T, Zhang H, Zhou X, Wan J, Wang R. Removal of cadmium from rice grains by acid soaking and quality evaluation of decontaminated rice. Food Chem 2021; 371:131099. [PMID: 34537619 DOI: 10.1016/j.foodchem.2021.131099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023]
Abstract
Contamination of rice by cadmium (Cd) is threatening a large population in China. In this study, we report that soaking rice grains in a hydrochloric acid (HCl) solution can remove Cd to a desirable extent. The results indicated that the degree of Cd removal was up to 45%∼85% at different soaking times and concentrations of HCl (0.06 M ∼ 0.18 M), which was found to be logarithmically correlated with the reaction time at the optimized liquid-solid ratio of 1:2. Three HCl concentration-dependent mathematical models were established, which revealed various optimal soaking conditions depending on the initial Cd contamination. Four Cd-contaminated rice grain samples with different degrees of contamination were then tested based on the mathematical models, and the final Cd content was reduced to an acceptable extent. Moreover, the physicochemical and food properties of rice flours and rice grains after Cd removal were evaluated to highlight their potential applications.
Collapse
Affiliation(s)
- Wei Feng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, China; National Engineering Laboratory for Cereal Fermentation Technology, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Keqiang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, China; National Engineering Laboratory for Cereal Fermentation Technology, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, China; National Engineering Laboratory for Cereal Fermentation Technology, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, China; National Engineering Laboratory for Cereal Fermentation Technology, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianhua Wan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Baobao Suqian National Biotechnology Co. Ltd., Suqian 223800, China
| | - Ren Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, China; Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, China; National Engineering Laboratory for Cereal Fermentation Technology, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
19
|
Okur I, Sezer P, Oztop MH, Alpas H. Recent advances in gelatinisation and retrogradation of starch by high hydrostatic pressure. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ilhami Okur
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
- Department of Food Engineering Niğde Ömer Halisdemir University Niğde 51240 Turkey
| | - Purlen Sezer
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| | - Mecit Halil Oztop
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| | - Hami Alpas
- Department of Food Engineering Middle East Technical University Ankara 06800 Turkey
| |
Collapse
|