1
|
Nikolić V, Žilić S, Simić M, Šavikin K, Stević T, Živković J, Sarić B, Milovanović D, Kandić Raftery V. Characterization and Potential Food Applications of Oat Flour and Husks from Differently Colored Genotypes as Novel Nutritional Sources of Bioactive Compounds. Foods 2024; 13:3853. [PMID: 39682925 DOI: 10.3390/foods13233853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Oats are gluten-free cereals rich in dietary fiber, β-glucans, phenolic acids, flavonoids, carotenoids, vitamin E, and phytosterols. They have been used in traditional medicine for centuries to treat hyperacidity, acute pancreatitis, burns, and skin inflammation. This study assessed the nutritional and phenolic profile of oat flour (OF) and ground oat husks (OHs) from white, brown, and black hulled oat genotypes, as well as the antioxidant and antimicrobial activity of their extracts. The extracts were tested on six strains of gastrointestinal tract pathogens. OF samples had, on average, a high protein content (15.83%), fat content (6.27%), and β-glucan content (4.69%), while OH samples were rich in dietary fiber. OHs had significantly higher average total phenolic compounds compared to OF and had twice as high antioxidant capacity. Ferulic acid was predominant in all samples, followed by p-coumaric, isoferulic, vanillic, and syringic acid. The traditionally prepared OH extracts manifested the best bactericidal activity against Listeria monocytogenes, Escherichia coli, and Staphylococcus haemolyticus, while Salmonella typhimurium was the least sensitive to the bactericidal effect of all the investigated samples. Both OF and powdered OHs have potential applications in the functional food industry and pharmacy due to their bioactive compounds, their biological activity, as well as their overall nutritional profile.
Collapse
Affiliation(s)
- Valentina Nikolić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Slađana Žilić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Marijana Simić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Katarina Šavikin
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Tatjana Stević
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute of Medicinal Plants Research, Dr. Josif Pančić, Tadeuša Koščuška 1, 11000 Belgrade, Serbia
| | - Beka Sarić
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Danka Milovanović
- Research Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| | - Vesna Kandić Raftery
- Breeding Department, Maize Research Institute, Zemun Polje, Slobodana Bajića 1, 11080 Belgrade, Serbia
| |
Collapse
|
2
|
Han N, Woo KS, Lee JY, Lee HG, Lee J, Lee YY, Kim M, Kang MS, Kim HJ. Comparative study on the effects of grain blending on functional compound content and in vitro biological activity. Sci Rep 2024; 14:12638. [PMID: 38825591 PMCID: PMC11144691 DOI: 10.1038/s41598-024-63660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
In this study, changes in bioactive compound contents and the in vitro biological activity of mixed grains, including oats, sorghum, finger millet, adzuki bean, and proso millet, with eight different blending ratios were investigated. The total phenolic compounds and flavonoid contents ranged from 14.43-16.53 mg gallic acid equivalent/g extract and 1.22-5.37 mg catechin equivalent/g extract, respectively, depending on the blending ratio. The DI-8 blend (30% oats, 30% sorghum, 15% finger millet, 15% adzuki bean, and 10% proso millet) exhibited relatively higher antioxidant and anti-diabetic effects than other blending samples. The levels of twelve amino acids and eight organic acids in the grain mixes were measured. Among the twenty metabolites, malonic acid, asparagine, oxalic acid, tartaric acid, and proline were identified as key metabolites across the blending samples. Moreover, the levels of lactic acid, oxalic acid, and malonic acid, which are positively correlated with α-glucosidase inhibition activity, were considerably higher in the DI-blending samples. The results of this study suggest that the DI-8 blend could be used as a functional ingredient as it has several bioactive compounds and biological activities, including anti-diabetic activity.
Collapse
Affiliation(s)
- Narae Han
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Koan Sik Woo
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan, 58545, Korea
| | - Jin Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, Seoul, 04763, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, 28644, Korea
| | - Yu-Young Lee
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Mihyang Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Moon Seok Kang
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea
| | - Hyun-Joo Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Korea.
| |
Collapse
|
3
|
Thiam EH, Dunn M, Jackson EW, Jellen EN, Nelson M, Rogers W, Wallace C, Ahlborn G, Mounir M, Yakovac T, Morris S, Benlhabib O. Quality Characteristics of Twelve Advanced Lines of Avena magna ssp. domestica Grown in Three Contrasting Locations in Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:294. [PMID: 38256847 PMCID: PMC10818295 DOI: 10.3390/plants13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The popularity of oats (Avena sativa) continues to increase in the cereal market due to their health benefits. The recent domestication of Avena magna, a Moroccan oat, presents an opportunity to enhance these benefits due to their higher nutritional composition. As the impact of microclimates on A. magna grain composition has not been explored, this study evaluates twelve A. magna ssp. domestica lines across three Moroccan locations, providing new data into microclimate effects on key grain characteristics. Significant variability is observed among lines and sites for nutrients, with mean protein, fat, and dietary fiber contents at 23.1%, 8.38%, and 7.23%, respectively. High protein levels, reaching 27.1% in Alnif and 26.5% in El Kbab, surpass the 'Avery' control (21.7% and 24.2%) in these environments. Groats from Bouchane exhibited elevated fat and fiber contents (10.2% and 9.94%) compared to the control (8.83% and 7.36%). While β-glucan levels remain consistent at 2.53%, a negative correlation between protein content, fat, and starch was observed. A. magna lines exhibited higher levels of iron (7.50 × 10-3 g/100 g DM) and zinc (3.40 × 10-3 g/100 g DM) compared to other cereals. Environmental conditions significantly influence grain quality, with El Kbab yielding higher protein and ash contents, as well as Bouchane having increased fat, fiber, and starch. Stability analysis indicates that fat content was more influenced by the environment, while 25% of protein variability is influenced by genetics. Lines AT3, AT5, AT6, AT13, and AT15 consistently exceeds both the mean for protein and fiber across all sites, emphasizing their potential nutritional value. This study highlights the potential of A. magna ssp. domestica to address nutritional insecurity, particularly for protein, iron, and zinc in domestic settings.
Collapse
Affiliation(s)
- El hadji Thiam
- Plant, Production, Protection and Biotechnology Department, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco;
| | - Michael Dunn
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, UT 84602, USA; (M.D.); (G.A.)
| | - Eric W. Jackson
- 25:2 Solutions LLC, 815 S First Ave Suite A, Pocatello, ID 83201, USA; (E.W.J.); (T.Y.); (S.M.)
| | - Eric N. Jellen
- Plant and Wildlife Sciences Department, Brigham Young University, Provo, UT 84602, USA;
| | - Mark Nelson
- Resourced Inc., 304 East Main Street #148, Mahomet, IL 61853, USA; (M.N.); (W.R.)
| | - Will Rogers
- Resourced Inc., 304 East Main Street #148, Mahomet, IL 61853, USA; (M.N.); (W.R.)
| | - Carol Wallace
- Resourced Inc., 304 East Main Street #148, Mahomet, IL 61853, USA; (M.N.); (W.R.)
| | - Gene Ahlborn
- Nutrition, Dietetics and Food Science Department, Brigham Young University, Provo, UT 84602, USA; (M.D.); (G.A.)
| | - Majid Mounir
- Food Science and Nutrition Department, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco;
| | - Teresa Yakovac
- 25:2 Solutions LLC, 815 S First Ave Suite A, Pocatello, ID 83201, USA; (E.W.J.); (T.Y.); (S.M.)
| | - Shane Morris
- 25:2 Solutions LLC, 815 S First Ave Suite A, Pocatello, ID 83201, USA; (E.W.J.); (T.Y.); (S.M.)
| | - Ouafae Benlhabib
- Plant, Production, Protection and Biotechnology Department, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco;
| |
Collapse
|
4
|
Lakhneko O, Stasik O, Škultéty Ľ, Kiriziy D, Sokolovska-Sergiienko O, Kovalenko M, Danchenko M. Transient drought during flowering modifies the grain proteome of bread winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1181834. [PMID: 37441186 PMCID: PMC10333505 DOI: 10.3389/fpls.2023.1181834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Drought is among the most limiting factors for sustainable agricultural production. Water shortage at the onset of flowering severely affects the quality and quantity of grain yield of bread wheat (Triticum aestivum). Herein, we measured oxidative stress and photosynthesis-related parameters upon applying transient drought on contrasting wheat cultivars at the flowering stage of ontogenesis. The sensitive cultivar (Darunok Podillia) showed ineffective water management and a more severe decline in photosynthesis. Apparently, the tolerant genotype (Odeska 267) used photorespiration to dissipate excessive light energy. The tolerant cultivar sooner induced superoxide dismutase and showed less inhibited photosynthesis. Such a protective effect resulted in less affected yield and spectrum of seed proteome. The tolerant cultivar had a more stable gluten profile, which defines bread-making quality, upon drought. Water deficit caused the accumulation of medically relevant proteins: (i) components of gluten in the sensitive cultivar and (ii) metabolic proteins in the tolerant cultivar. We propose specific proteins for further exploration as potential markers of drought tolerance for guiding efficient breeding: thaumatin-like protein, 14-3-3 protein, peroxiredoxins, peroxidase, FBD domain protein, and Ap2/ERF plus B3 domain protein.
Collapse
Affiliation(s)
- Olha Lakhneko
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Oleg Stasik
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ľudovit Škultéty
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dmytro Kiriziy
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | - Mariia Kovalenko
- Educational and Scientific Centre (ESC) “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Maksym Danchenko
- Institute of Plant Genetics and Biotechnology, Plant Science Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
5
|
Sargautis D, Kince T, Gramatina I. Characterisation of the Enzymatically Extracted Oat Protein Concentrate after Defatting and Its Applicability for Wet Extrusion. Foods 2023; 12:2333. [PMID: 37372544 DOI: 10.3390/foods12122333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
An oat protein concentrate (OC1) was isolated from oat flour through starch enzymatic hydrolysis, by subsequent defatting by ethanol and supercritical fluid extraction (SFE) reaching protein concentrations of 78% and 77% by weight in dry matter, respectively. The protein characterisation and functional properties of the defatted oat protein concentrates were evaluated, compared and discussed. The solubility of defatted oat protein was minor in all ranges of measured pH (3-9), and foamability reached up to 27%. Further, an oat protein concentrate defatted by ethanol (ODE1) was extruded by a single screw extruder. The obtained extrudate was evaluated by scanning electron microscope (SEM), texture and colour analysers. The extrudate's surface was well formed, smooth, and lacking a tendency to form a fibrillar structure. Textural analysis revealed a non-unform structure (fracturability 8.8-20.9 kg, hardness 26.3-44.1 kg) of the oat protein extrudate.
Collapse
Affiliation(s)
- Darius Sargautis
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Tatjana Kince
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Ilze Gramatina
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| |
Collapse
|
6
|
Sargautis D, Kince T. Effect of Enzymatic Pre-Treatment on Oat Flakes Protein Recovery and Properties. Foods 2023; 12:foods12050965. [PMID: 36900482 PMCID: PMC10001348 DOI: 10.3390/foods12050965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Oats are considered an exceptional source of high-quality protein. Protein isolation methods define their nutritional value and further applicability in food systems. The aim of this study was to recover the oat protein using a wet-fractioning method and investigate the protein functional properties and nutritional values among the processing streams. The oat protein was concentrated through enzymatic extraction, eliminating starch and non-starch polysaccharides (NSP), treating oat flakes with hydrolases, and reaching protein concentrations of up to about 86% in dry matter. The increased ionic strength from adding sodium chloride (NaCl) improved protein aggregation and resulted in increased protein recovery. Ionic changes improved protein recovery in provided methods by up to 24.8 % by weight. Amino acid (AA) profiles were determined in the obtained samples, and protein quality was compared with the required pattern of indispensable amino acids. Furthermore, functional properties of the oat protein, such as solubility, foamability, and liquid holding capacity, were investigated. The solubility of the oat protein was below 7 %; foamability averaged below 8%. The water and oil-holding reached a ratio of up to 3.0 and 2.1 for water and oil, respectively. Our findings suggest that oat protein could be a potential ingredient for food industries requiring a protein of high purity and nutritional value.
Collapse
|
7
|
Leišová-Svobodová L, Sovová T, Dvořáček V. Analysis of oat seed transcriptome with regards to proteins involved in celiac disease. Sci Rep 2022; 12:8660. [PMID: 35606450 PMCID: PMC9127096 DOI: 10.1038/s41598-022-12711-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Oat (Avena sativa L.) is considered to be a healthy food. In contrast to other grain crops, oat is high in protein, lipids, dietary fiber, antioxidants, and uniquely in avenanthramides. The question of whether it can also be consumed by people suffering from celiac disease is still unresolved. The main aim of this study was to extract and sequence genes for potentially harmful avenins, globulins, and α-amylase/trypsin inhibitors in six oat varieties and to establish their variability using PacBio sequencing technology of enriched libraries. The results were compared with sequences of the genes already present in databases. In total, 21 avenin, 75 globulin, and 25 α-amylase/trypsin inhibitor genes were identified and mapped in the hexaploid oat chromosomes. In all of the three gene families, only marginal sequence differences were found between the oat varieties within the individual genes. Avenin epitopes were found in all four types of avenin genes occurring in all oat varieties tested within this study. However, the number of avenin genes was nearly four times lower than of globulin genes and, on the protein level, formed only 10% of storage proteins. Therefore, the question of whether oat is safe to celiac disease people is a question of boundary values.
Collapse
Affiliation(s)
| | - Tereza Sovová
- Crop Research Institute, Drnovská 507, Prague 6, Ruzyne, Czech Republic
| | - Václav Dvořáček
- Crop Research Institute, Drnovská 507, Prague 6, Ruzyne, Czech Republic
| |
Collapse
|
8
|
Huang X, Ahola H, Daly M, Nitride C, Mills ENC, Sontag-Strohm T. Quantification of Barley Contaminants in Gluten-Free Oats by Four Gluten ELISA Kits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2366-2373. [PMID: 35156817 PMCID: PMC8880376 DOI: 10.1021/acs.jafc.1c07715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pure oats are generally accepted to be safe for most celiac patients, and consumption of oats provides advantageous dietary fibers. However, oats can be contaminated by gluten proteins from wheat, barley, and/or rye. The analytical challenge lies in the reliability of the quantification method and how to maintain the contamination level under a gluten-free food threshold of 20 mg/kg. In this study, we investigated barley-spiked oat flour samples at four levels using four gluten ELISA kits. The largest recovery variance was with the R5 kit that gave 5-6 times overestimation; the G12 kit cross-reacted with oat proteins and gave 4-5 times overestimation at all spiked levels. The Total Gluten and Morinaga kits gave satisfactory recoveries. Total barley hordeins were isolated and characterized to be used as a common calibrator in all four kits aiming at harmonizing the results and to test the kits' performance. Immunoblotting of total hordein isolate revealed that Total Gluten and Morinaga antibodies provided an overall detection, while R5 and G12 antibodies recognized specific hordein groups leading to a larger difference when wheat and barley were used as the calibrant. Calibration with total hordein isolate corrected the overestimation problem and decreased the variability between the four gluten kits.
Collapse
Affiliation(s)
- Xin Huang
- Department
of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hanna Ahola
- Department
of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Matthew Daly
- Manchester
Institute of Biotechnology, Division of Infection, Immunity and Respiratory
Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M17DN, U.K.
| | - Chiara Nitride
- Manchester
Institute of Biotechnology, Division of Infection, Immunity and Respiratory
Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M17DN, U.K.
- Department
of Agricultural Sciences, University of
Naples Federico II, 80055 Portici, Italy
| | - EN Clare Mills
- Manchester
Institute of Biotechnology, Division of Infection, Immunity and Respiratory
Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M17DN, U.K.
| | - Tuula Sontag-Strohm
- Department
of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
9
|
Dvořáček V, Kotrbová-Kozak A, Kozová-Doležalová J, Jágr M, Hlásná Čepková P, Vítámvás P, Kosová K. Specific Avenin Cross-Reactivity with G12 Antibody in a Wide Range of Current Oat Cultivars. Foods 2022; 11:foods11040567. [PMID: 35206043 PMCID: PMC8871486 DOI: 10.3390/foods11040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
Current clinical studies confirm that the consumption of oats for people suffering from celiac disease is safe. Some studies have confirmed different levels of immunoreactive gluten epitopes of oats in different cultivars, while others explain these differences due to contamination with gluten-rich species or as random cross-reactivity ELISA of homologous oat epitopes with anti-wheat gliadin antibodies. The aim of our two-year study was therefore to map cross-reactive oat epitopes in a set of 132 oat cultivars using a G12-based ELISA kit. The results were focused on the varietal and annual level of cross-reactivity (interference) of avenin epitopes with the G12 antibody on the identification of potential cultivars with significantly different interferences and assessing the degree of risk of possible false-contamination with external gluten. Although repeated evaluations confirmed high year-to-year variability (RSD ≥ 30%) in approximately 2/3 of the cultivars, the content of interfering avenin epitopes with G12 did not exceed the considered safe limit (20 mg·kg−1) for celiacs. At the same time, not only annual but, above all, significant cultivar dependences in the interference of avenins to the G12 antibody were demonstrated. Genetic dependence was further confirmed in connection with the proven avenin polymorphism as well as immunoblotting with the identification of interfering peptides with the G12 antibody in the 25 and 30 kDa regions. It was the occurrence of two bands around 30 kDa that predominantly occurred in oat cultivars with a relatively higher content of cross-reactive avenins (12–16 mg·kg−1). Due to the fact that the contents of interfering avenins ranged in several cultivars even over 16 mg·kg−1, the choice of a suitable oat cultivar may be crucial for gluten-free food producers, as it reduces the risk of a possible false-response of the commercial ELISA kits when checking the real-gluten contamination.
Collapse
|
10
|
Bouchard J, Valookaran AF, Aloud BM, Raj P, Malunga LN, Thandapilly SJ, Netticadan T. Impact of oats in the prevention/management of hypertension. Food Chem 2022; 381:132198. [PMID: 35123221 DOI: 10.1016/j.foodchem.2022.132198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Oats are a rich source of a soluble fibre, beta-glucan, phenolic compounds, as well as functional lipid and protein components that could potentially aid in preventing and managing hypertension. Processing techniques commonly used to manufacture oat based foods have been shown to improve its physiological efficacy. Hypertension is a common condition that is a risk factor for cardiovascular disease, a primary cause of mortality worldwide. Though exercise and pharmacological interventions are often used in the management of hypertension, diet is an incredibly important factor. One preclinical study and a handful of clinical studies have shown that oat components/products are effective in lowering blood pressure. However, research in this area is limited and more studies are needed to elucidate the anti-hypertensive potential of oats.
Collapse
Affiliation(s)
- Jenny Bouchard
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Aleena Francis Valookaran
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | | | - Pema Raj
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | - Lovemore Nkhata Malunga
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Sijo Joseph Thandapilly
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
11
|
Németh R, Turóczi F, Csernus D, Solymos F, Jaksics E, Tömösközi S. Characterization of chemical composition and techno‐functional properties of oat cultivars. Cereal Chem 2021. [DOI: 10.1002/cche.10470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Renáta Németh
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Budapest Hungary
| | - Fanni Turóczi
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Budapest Hungary
| | - Dorottya Csernus
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Budapest Hungary
| | - Fanni Solymos
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Budapest Hungary
| | - Edina Jaksics
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Budapest Hungary
| | - Sándor Tömösközi
- Research Group of Cereal Science and Food Quality Department of Applied Biotechnology and Food Science Budapest University of Technology and Economics Budapest Hungary
| |
Collapse
|
12
|
|