1
|
Triterpenoid Saponins Isolated from Platycodon grandiflorum Inhibit Hepatitis C Virus Replication. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:560417. [PMID: 24489585 PMCID: PMC3893781 DOI: 10.1155/2013/560417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/09/2013] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of liver disease, including cirrhosis and hepatocellular carcinoma. Due to significant adverse effects and emergence of resistant strains of currently developed anti-HCV agents, plant extracts have been considered to be potential sources of new bioactive compounds against HCV. The aim of this study was to evaluate the functional effects of triterpenoid saponins contained in the root extract of Platycodon grandiflorum (PG) on viral enzyme activities and replication in both HCV replicon cells and cell culture grown HCV- (HCVcc-) infected cells. Inhibitory activities of triterpenoid saponins from PG were verified by NS5B RNA-dependent RNA polymerase assay and were further confirmed in the context of HCV replication. Six triterpenoid saponins (platycodin D, platycodin D2, platycodin D3, deapioplatycodin D, deapioplatycodin D2, and platyconic acid A), PG saponin mixture (PGSM), were identified as active components exerting anti-HCV activity. Importantly, PGSM exerted synergistic anti-HCV activity in combination with either interferon-α or NS5A inhibitors. We demonstrated that combinatorial treatment of PGSM and IFN-α efficiently suppressed colony formation with significant reduction in drug resistant variant of HCV. These data suggest that triterpenoid saponin may represent a novel anti-HCV therapeutic agent.
Collapse
|
2
|
Lu MC, El-Shazly M, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC. Recent research and development of Antrodia cinnamomea. Pharmacol Ther 2013; 139:124-56. [DOI: 10.1016/j.pharmthera.2013.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 12/20/2022]
|
3
|
Li J, Li B, Zhang J, Hou L, Yu C, Fu L, Song X, Yu T, Zhang J, Ren J, Xu C, Chen W. Preparation of CHO cell-derived rhIFN-ω-Fc with improved pharmacokinetics. Antiviral Res 2011; 89:199-203. [PMID: 21277904 DOI: 10.1016/j.antiviral.2011.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/29/2010] [Accepted: 01/17/2011] [Indexed: 11/25/2022]
Abstract
Interferon-omega (IFN-ω) may be a useful, promising and alternative antiviral agent, in addition to IFN-α-2a and IFN-α-2b. To improve the pharmacokinetics of IFN-ω for clinical use, the recombinant human IFN-ω-Fc fusion protein (rhIFN-ω-Fc) was expressed in a Chinese hamster ovary cell line (CHO-S), due to the longer serum half-life of rhIFN-ω-Fc compared to the native IFN-ω protein, and purified by affinity chromatography. Physicochemical characterization of the purified fusion protein was performed by SDS-PAGE electrophoresis, dot blot analysis and N-terminal amino acid sequence analysis. The results show that rhIFN-ω-Fc was highly expressed at the predicted size and with the N-terminal amino acid sequence. The antiviral activity was determined by the ability of IFNs to inhibit the cytopathic effects (CPEs) of vesicular stomatitis virus (VSV) on the human amnion WISH cells. The rhIFN-ω-Fc expressed in CHO-S cells has a specific activity of 1.6×10(7) IU/mg compared to rhIFN-ω expressed in yeast, which has a specific activity of 7×10(7) IU/mg. Equimolar concentrations of rhFN-ω and rhIFN-ω-Fc were administered to rabbits for pharmacokinetics comparison. The terminal half-life of rhIFN-ω-Fc was 35 times higher than that of rhIFN-ω. Thus, rhIFN-ω-Fc can be used as a prospective antiviral candidate especially for the treatment of chronic viral disease, such as hepatitis C virus (HCV) infection.
Collapse
Affiliation(s)
- Jianmin Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Castellanos M, Cinza Z, Dorta Z, Veliz G, Vega H, Lorenzo I, Ojeda S, Dueñas-Carrera S, Alvarez-Lajonchere L, Martínez G, Ferrer E, Limonta M, Linares M, Ruiz O, Acevedo B, Torres D, Márquez G, Herrera L, Arús E. Immunization with a DNA vaccine candidate in chronic hepatitis C patients is safe, well tolerated and does not impair immune response induction after anti-hepatitis B vaccination. J Gene Med 2010; 12:107-16. [PMID: 19866482 DOI: 10.1002/jgm.1407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the present study, we evaluated the safety of CIGB-230, a novel vaccine candidate based on the mixture of a plasmid for DNA immunization, expressing hepatitis C virus (HCV) structural antigens, with a recombinant HCV Core protein. METHODS Fifteen HCV chronically-infected volunteers with detectable levels of HCV RNA genotype 1b, who were nonresponders to previous treatment with interferon plus ribavirin, were intramuscularly injected with CIGB-230 on weeks 0, 4, 8, 12, 16 and 20. Individuals were also immunized at weeks 28, 32 and 36 with a recombinant vaccine against hepatitis B. Adverse events were recorded and analyzed. Blood samples were taken every 4 weeks up to month 12 for hematological, biochemical, virological and immunological analysis. RESULTS All patients completed the treatment with CIGB-230. Adverse events were only slight (83.6%) or moderate (16.4%). No significant differences in hematological and biochemical parameters, including serum aminotransferases, were detected between the baseline and post-treatment state. Induction of a CD4+ T lymphocyte response against a particular region in HCV E1, spanning amino acids 230-312 in HCV polyprotein, was detected in 42.8% of patients during treatment with CIGB-230. The ability of T cells to proliferate in response to mitogenic stimulation was not weakened. Most individuals (78.6%) were seroprotected after anti-hepatitis B vaccination and 42.8% were hyper-responders (antibody titers > 100 UI/ml). No anti-mitochondrial, anti-nuclear and anti-extractable nuclear antigen antibodies were generated during immunization with CIGB-230. CONCLUSIONS Vaccination with CIGB-230 in HCV chronically-infected individuals was safe, well tolerated and did not impair the ability to respond to non-HCV antigens.
Collapse
|
5
|
Kim PS, Ahmed R. Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 2010; 22:223-30. [PMID: 20207527 DOI: 10.1016/j.coi.2010.02.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/10/2010] [Indexed: 01/06/2023]
Abstract
Ever since T cell exhaustion was initially characterized and thoroughly analyzed in the murine LCMV model, such a functional impairment has been validated in other chronic viral infections such as HIV, HCV, and HBV. In tumor immunology, it has always been postulated that tumor-reactive T cells could also become functionally exhausted owing to the high tumor-antigen load and accompanying inhibitory mechanisms. However, the empirical evidences for this hypothesis have not been as extensive as in chronic infection perhaps because much of the focus on T cell dysfunction in tumor immunology has been, and appropriately so, on breaking or bypassing immune tolerance and anergy to tumor/self antigens. On the basis of recent reports, it is becoming clear that T cell exhaustion also plays a crucial role in the impairment of antitumor immunity. In this review, we will comparatively evaluate the T cell responses in cancer and chronic infection, and the therapeutic strategies and interventions for both diseases.
Collapse
Affiliation(s)
- Peter S Kim
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
6
|
Takeshita M, Ishida YI, Akamatsu E, Ohmori Y, Sudoh M, Uto H, Tsubouchi H, Kataoka H. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem 2009; 284:21165-76. [PMID: 19531480 DOI: 10.1074/jbc.m109.004945] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma. While searching for new natural anti-HCV agents in agricultural products, we found a potent inhibitor of HCV RNA expression in extracts of blueberry leaves when examined in an HCV subgenomic replicon cell culture system. This activity was observed in a methanol extract fraction of blueberry leaves and was purified by repeated fractionations in reversed-phase high-performance liquid chromatography. The final purified fraction showed a 63-fold increase in specific activity compared with the initial methanol extracts and was composed only of carbon, hydrogen, and oxygen. Liquid chromatography/mass-ion trap-time of flight analysis and butanol-HCl hydrolysis analysis of the purified fraction revealed that the blueberry leaf-derived inhibitor was proanthocyanidin. Furthermore, structural analysis using acid thiolysis indicated that the mean degree of polymerization of the purified proanthocyanidin was 7.7, consisting predominantly of epicatechin. Proanthocyanidin with a polymerization degree of 8 to 9 showed the greatest potency at inhibiting the expression of subgenomic HCV RNA. Purified proanthocyanidin showed dose-dependent inhibition of expression of the neomycin-resistant gene and the NS-3 protein gene in the HCV subgenome in replicon cells. While characterizing the mechanism by which proanthocyanidin inhibited HCV subgenome expression, we found that heterogeneous nuclear ribonucleoprotein A2/B1 showed affinity to blueberry leaf-derived proanthocyanidin and was indispensable for HCV subgenome expression in replicon cells. These data suggest that proanthocyanidin isolated from blueberry leaves may have potential usefulness as an anti-HCV compound by inhibiting viral replication.
Collapse
Affiliation(s)
- Masahiko Takeshita
- Research Division, Minami Nippon Dairy Co-op Co., Ltd., Miyazaki 885-0073, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rögnvaldsson T, Etchells TA, You L, Garwicz D, Jarman I, Lisboa PJG. How to find simple and accurate rules for viral protease cleavage specificities. BMC Bioinformatics 2009; 10:149. [PMID: 19445713 PMCID: PMC2698905 DOI: 10.1186/1471-2105-10-149] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/16/2009] [Indexed: 01/02/2023] Open
Abstract
Background Proteases of human pathogens are becoming increasingly important drug targets, hence it is necessary to understand their substrate specificity and to interpret this knowledge in practically useful ways. New methods are being developed that produce large amounts of cleavage information for individual proteases and some have been applied to extract cleavage rules from data. However, the hitherto proposed methods for extracting rules have been neither easy to understand nor very accurate. To be practically useful, cleavage rules should be accurate, compact, and expressed in an easily understandable way. Results A new method is presented for producing cleavage rules for viral proteases with seemingly complex cleavage profiles. The method is based on orthogonal search-based rule extraction (OSRE) combined with spectral clustering. It is demonstrated on substrate data sets for human immunodeficiency virus type 1 (HIV-1) protease and hepatitis C (HCV) NS3/4A protease, showing excellent prediction performance for both HIV-1 cleavage and HCV NS3/4A cleavage, agreeing with observed HCV genotype differences. New cleavage rules (consensus sequences) are suggested for HIV-1 and HCV NS3/4A cleavages. The practical usability of the method is also demonstrated by using it to predict the location of an internal cleavage site in the HCV NS3 protease and to correct the location of a previously reported internal cleavage site in the HCV NS3 protease. The method is fast to converge and yields accurate rules, on par with previous results for HIV-1 protease and better than previous state-of-the-art for HCV NS3/4A protease. Moreover, the rules are fewer and simpler than previously obtained with rule extraction methods. Conclusion A rule extraction methodology by searching for multivariate low-order predicates yields results that significantly outperform existing rule bases on out-of-sample data, but are more transparent to expert users. The approach yields rules that are easy to use and useful for interpreting experimental data.
Collapse
|
8
|
Phuong DT, Ma CM, Hattori M, Jin JS. Inhibitory effects of antrodins A-E from Antrodia cinnamomea and their metabolites on hepatitis C virus protease. Phytother Res 2009; 23:582-4. [PMID: 19003946 DOI: 10.1002/ptr.2657] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Antrodia cinnamomea is a highly valued folk medicine used for liver cancer, a disease often caused by the long term infection of hepatitis C virus (HCV). In the present study, the maleic and succinic acid constituents (antrodins A-E) of this medicinal fungus, the in vivo metabolites of antrodin C and the analogue of one of the metabolites were tested for their inhibitory activity on HCV protease. Most of the compounds showed potent inhibitory activity, with antrodin A being the most potent (IC(50) = 0.9 microg/mL). Antrodin A was isolated as one of the constituents of A. cinnamomea and was also detected as an in vivo metabolite of the major constituent antrodin C. The mode of inhibition for antrodin A on HCV protease was revealed by a Lineweaver-Burk plot as competitive inhibition. These results strongly support the use of this folk medicine for liver cancer and HCV infection which is a global problem.
Collapse
Affiliation(s)
- Do Thi Phuong
- Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
9
|
Schinazi RF, Coats SJ, Bassit LC, Lennerstrand J, Nettles JH, Hurwitz SJ. Approaches for the development of antiviral compounds: the case of hepatitis C virus. Handb Exp Pharmacol 2009:25-51. [PMID: 19048196 DOI: 10.1007/978-3-540-79086-0_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Traditional methods for general drug discovery typically include evaluating random compound libraries for activity in relevant cell-free or cell-based assays. Success in antiviral development has emerged from the discovery of more focused libraries that provide clues about structure activity relationships. Combining these with more recent approaches including structural biology and computational modeling can work efficiently to hasten discovery of active molecules, but that is not enough. There are issues related to biology, toxicology, pharmacology, and metabolism that have to be addressed before a hit compound becomes nominated for clinical development. The objective of gaining early preclinical knowledge is to reduce the risk of failure in Phases 1, 2, and 3, leading to the goal of approved drugs that benefit the infected individual. This review uses hepatitis C virus (HCV), for which we still do not have an ideal therapeutic modality, as an example of the multidisciplinary efforts needed to discover new antiviral drugs for the benefit of humanity.
Collapse
Affiliation(s)
- Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, VA Medical Center, Emory University School of Medicine, 1670 Clairmont Road, Decatur, GA 30033, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Herrine SK, Rossi S, Navarro VJ. INFECTIOUS HEPATITIS. PHARMACOLOGY AND THERAPEUTICS 2009:527-547. [DOI: 10.1016/b978-1-4160-3291-5.50039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Bassit L, Grier J, Bennett M, Schinazi RF. Combinations of 2'-C-methylcytidine analogues with interferon-alpha2b and triple combination with ribavirin in the hepatitis C virus replicon system. Antivir Chem Chemother 2008; 19:25-31. [PMID: 18610555 DOI: 10.1177/095632020801900104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) polymerase is an essential enzyme for HCV replication and has multiple inhibitor binding sites making it a major target for antiviral intervention. It is apparent that no single drug can inhibit HCV replication in humans. Hence, combinations of nucleoside analogues beta-D-2'-C-methylcytidine (2'-C-MeC; NM-107) or beta-D-2'-deoxy-2'-fluoro-2'-C-methyleytidine (2'-F-C-MeC; PSI-6130) with interferon-alpha2b (IFN-alpha2b) or triple combination with ribavirin (RBV) were evaluated. METHODS Huh-7 cells containing the self-replicating subgenomic HCV replicon (Clone B) were used for drug combination studies. After drug treatment for 5 days, total cellular RNA was then extracted and both ribosomal RNA and HCV replicon RNA were amplified in a single-step multiplex real-time PCR assay. Drug interaction analyses were performed using the CalcuSyn program. RESULTS Double combinations of 2'-C-MeC or 2'-F-C-MeC with IFN-alpha2b at all ratios tested had weighted average combination index (Cl(wt)) values <1 indicating synergistic inhibition of HCV replication in the replicon system. For the triple combinations of IFN-alpha2b plus RBV with either 2'-C-MeC or 2'-F-C-MeC, the Cl(wt) values at 1:1:1 ratio tested were 0.5 and 0.8, respectively, indicating synergistic antiviral effects. No apparent cytotoxicity effects were observed with any of the combinations tested. CONCLUSION These promising in vitro data warrant clinical investigation of the nucleosides analogues such as 2'-C-MeC or 2'-F-C-MeC in their prodrug forms, together with IFN-alphac2b and RBV, for successful treatment of HCV infections.
Collapse
Affiliation(s)
- Leda Bassit
- Department of Pediatrics, Emory University School of Medicine, Veterans Affairs Medical Centre, Decatur, Georgia 30033, USA
| | | | | | | |
Collapse
|
12
|
Ha SJ, West EE, Araki K, Smith KA, Ahmed R. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev 2008; 223:317-33. [PMID: 18613845 DOI: 10.1111/j.1600-065x.2008.00638.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
SUMMARY One potentially promising strategy to control chronic infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus is therapeutic vaccination, which aims to reduce persisting virus by stimulating a patient's own antiviral immune responses. However, this approach has fallen short of expectations, because antiviral T cells generated during chronic infections often become functionally exhausted and thus do not respond properly to therapeutic vaccination. Therefore, it is necessary to develop a therapeutic vaccine strategy to more effectively boost endogenous T-cell responses to control persistent viral infections. Studies to elucidate the cause of impaired T-cell function have pointed to sustained inhibitory receptor signaling through T-cell expression of programmed death 1 (PD-1). Recently, another inhibitory molecule, cytotoxic T lymphocyte antigen 4 (CTLA-4), and also an immunosuppressive cytokine, interleukin 10 (IL-10), have been reported to be potential factors of establishing immune suppression and viral persistence. Blocking these negative signaling pathways could restore the host immune system, enabling it to respond to further stimulation. Indeed, combining therapeutic vaccination along with the blockade of inhibitory signals could synergistically enhance functional CD8(+) T-cell responses and improve viral control in chronically infected mice, providing a promising strategy for the treatment of chronic viral infections. Furthermore, not only the ablation of negative signals but also the addition of stimulatory signals, such as interleukin 2 (IL-2), might prove to be a potentially promising strategy to augment the efficacy of therapeutic vaccination against chronic viral infections.
Collapse
Affiliation(s)
- Sang-Jun Ha
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
13
|
Relative replication capacity and selective advantage profiles of protease inhibitor-resistant hepatitis C virus (HCV) NS3 protease mutants in the HCV genotype 1b replicon system. Antimicrob Agents Chemother 2007; 52:1101-10. [PMID: 18086851 DOI: 10.1128/aac.01149-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the selective advantage profiles of a panel of hepatitis C virus (HCV) NS3 protease mutants with three HCV protease inhibitors (PIs), BILN-2061, ITMN-191, and VX-950, using a genotype 1b HCV replicon system. Selective advantage curves were generated by a novel mathematical method that factors in the degree of drug susceptibility provided by the mutation, the base-level replication capacity of the mutant in the absence of drugs, and the overall viral replication levels as a function of drug concentration. Most of the mutants showed significantly increased selective advantages over the wild-type species upon drug treatment. Each drug is associated with unique selective advantage profiles that reflect its antiviral activity and mutant susceptibility. Five mutants (R155K/Q, A156T, and D168A/V) showed significant levels of selective advantage after treatment with >10 nM ( approximately 7 times the wild-type 50% effective concentration [EC50]) of BILN-2061. R155K displayed dominant levels of selective advantage over the other mutants upon treatment with ITMN-191 over a broad range of concentrations. Upon VX-950 treatment, various mutants (A156T, A156S, R155K, T54A, V170A, V36M/R155K, and R155Q) exhibited high levels of selective advantage in different drug concentration ranges, with A156T and A156S being the dominant mutants at >3 microM ( approximately 10 times the wild-type EC50) of VX-950. This method provides more accurate estimates of the behavior of various mutants under drug pressure than replication capacity analysis. We noted that the R155K mutant shows reduced susceptibility to all three PIs and significant selective advantage, raising concern over the potential emergence of R155K as a multidrug-resistant, highly fit mutant in HCV patients treated with PIs.
Collapse
|
14
|
Lisker-Melman M, Sayuk GS. Defining Optimal Therapeutic Outcomes in Chronic Hepatitis. Arch Med Res 2007; 38:652-60. [PMID: 17613357 DOI: 10.1016/j.arcmed.2006.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 10/16/2006] [Indexed: 12/12/2022]
Abstract
The definition of optimal therapeutic response has been evolving concurrent with the advancement of diagnostic tests. What once was considered "therapeutic success" is considered now disease persistence or relapse. As the laboratory tools become increasingly sensitive, it follows that the criteria of successful therapeutic response are becoming more stringent. The main objectives of chronic hepatitis B and C treatment are to achieve eradication of the virus and, with this, reduction or prevention of hepatic injury and disease progression. However, in the case of hepatitis B, viral suppression is for the moment a more realistic therapeutic objective, although eradication still remains the ultimate goal. In chronic hepatitis C, sustained virologic response, defined as the absence of HCV RNA 6 months post-antiviral treatment completion, is within reach. Better test sensitivity allows for additional levels of confidence in the achievements of virus eradication in patients with hepatitis C. Challenges persist despite great advances in the treatment of chronic viral hepatitis. Now that clearer therapeutic outcomes have been refined, more efficacious, and better-tolerated drugs may change the current therapeutic landscape of chronic viral hepatitis B and C.
Collapse
MESH Headings
- Antiviral Agents/therapeutic use
- Carcinoma, Hepatocellular/prevention & control
- Disease Progression
- Drug Resistance, Viral
- Hepacivirus/physiology
- Hepatitis B virus/physiology
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/therapy
- Hepatitis C, Chronic/virology
- Humans
- Practice Guidelines as Topic
- Recurrence
- Treatment Outcome
Collapse
Affiliation(s)
- Mauricio Lisker-Melman
- Division of Gastroenterology, Hepatology Program, Washington University School of Medicine, St. Louis, Missouri 63110-1010, USA.
| | | |
Collapse
|
15
|
He Y, Duan W, Tan SL. Emerging host cell targets for hepatitis C therapy. Drug Discov Today 2007; 12:209-17. [PMID: 17331885 DOI: 10.1016/j.drudis.2007.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/03/2007] [Accepted: 01/24/2007] [Indexed: 12/23/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is a major burden on humanity. The current HCV therapy has limited efficacy, and there is pressing need for new and more effective therapies. Host cell factors that are required for HCV infection, replication and/or pathogenesis represent potential therapeutic targets. Of particular interest are cellular receptors that mediate HCV entry, factors that facilitate HCV replication and assembly, and intracellular pathways involving lipid biosynthesis, oxidative stress and innate immune response. A crucial challenge now is to manipulate such cellular targets pharmacologically for chronic HCV treatment, without being limited by side effects.
Collapse
Affiliation(s)
- Yupeng He
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | |
Collapse
|