1
|
Boone I, Rosner B, Lachmann R, D'Errico ML, Iannetti L, Van der Stede Y, Boelaert F, Ethelberg S, Eckmanns T, Stark K, Haller S, Wilking H. Healthcare-associated foodborne outbreaks in high-income countries: a literature review and surveillance study, 16 OECD countries, 2001 to 2019. Euro Surveill 2021; 26:2001278. [PMID: 34651575 PMCID: PMC8518306 DOI: 10.2807/1560-7917.es.2021.26.41.2001278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
BackgroundHealthcare-associated foodborne outbreaks (HA-FBO) may have severe consequences, especially in vulnerable groups.AimThe aim was to describe the current state of HA-FBO and propose public health recommendations for prevention.MethodsWe searched PubMed, the Outbreak Database (Charité, University Medicine Berlin), and hand-searched reference lists for HA-FBO with outbreak onset between 2001 and 2018 from Organisation for Economic Co-operation and Development (OECD) countries and HA-FBO (2012-2018) from the German surveillance system. Additionally, data from the European Food Safety Authority were analysed.ResultsThe literature search retrieved 57 HA-FBO from 16 OECD countries, primarily in the US (n = 11), Germany (n = 11) and the United Kingdom (n = 9). In addition, 28 HA-FBO were retrieved from the German surveillance system. Based on the number of outbreaks, the top three pathogens associated with the overall 85 HA-FBO were Salmonella (n = 24), norovirus (n = 22) and Listeria monocytogenes (n = 19). Based on the number of deaths, L. monocytogenes was the main pathogen causing HA-FBO. Frequently reported implicated foods were 'mixed foods' (n = 16), 'vegetables and fruits' (n = 15) and 'meat and meat products' (n = 10). Consumption of high-risk food by vulnerable patients, inadequate time-temperature control, insufficient kitchen hygiene and food hygiene and carriers of pathogens among food handlers were reported as reasons for HA-FBO.ConclusionTo prevent HA-FBO, the supply of high-risk food to vulnerable people should be avoided. Well working outbreak surveillance facilitates early detection and requires close interdisciplinary collaboration and exchange of information between hospitals, food safety and public health authorities.
Collapse
Affiliation(s)
- Idesbald Boone
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Bettina Rosner
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Raskit Lachmann
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Michele Luca D'Errico
- Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, National Reference Laboratory for Listeria monocytogenes, Teramo, Italy
| | | | | | - Steen Ethelberg
- Statens Serum Institut, Infectious Disease Epidemiology and Prevention, Copenhagen, Denmark
| | - Tim Eckmanns
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Klaus Stark
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Sebastian Haller
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Hendrik Wilking
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| |
Collapse
|
2
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
3
|
Tinker RJ, da Costa AC, Tahmasebi R, Milagres FADP, Dos Santos Morais V, Pandey RP, José-Abrego A, Brustulin R, Rodrigues Teles MDA, Cunha MS, Araújo ELL, Gómez MM, Deng X, Delwart E, Sabino EC, Leal E, Luchs A. Norovirus strains in patients with acute gastroenteritis in rural and low-income urban areas in northern Brazil. Arch Virol 2021; 166:905-913. [PMID: 33462673 DOI: 10.1007/s00705-020-04944-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/13/2020] [Indexed: 01/24/2023]
Abstract
From 2010-2016, a total of 251 stool samples were screened for norovirus using next-generation sequencing (NGS) followed by phylogenetic analysis to investigate the genotypic diversity of noroviruses in rural and low-income urban areas in northern Brazil. Norovirus infection was detected in 19.9% (50/251) of the samples. Eight different genotypes were identified: GII.4_Sydney[P31] (64%, 32/50), GII.6[P7] (14%, 7/50), GII.17[P17] (6%, 3/50), GII.1[P33] (6%, 3/50), GII.3[P16] (4%, 2/50), GII.2[P16] (2%, 1/50), GII.2[P2] (2%, 1/50), and GII.4_New Orleans[P4] (2%, 1/50). Distinct GII.6[P7] variants were recognized, indicating the presence of different co-circulating strains. Elucidating norovirus genetic diversity will improve our understanding of their potential health burden, in particular for the GII.4_Sydney[P31] variant.
Collapse
Affiliation(s)
- Rory J Tinker
- Instituto de Medicina Tropical, Universidade de São Paulo, Sao Paulo, Brasil
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Roozbeh Tahmasebi
- Instituto de Medicina Tropical, Universidade de São Paulo, Sao Paulo, Brasil
| | | | | | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development, SRM University Delhi NCR, Sonepat, India
| | - Alexis José-Abrego
- Department of Molecular Biology in Medicine, Civil Hospital of Guadalajara, "Fray Antonio Alcalde", Guadalajara, Mexico
| | - Rafael Brustulin
- Federal University of Tocantins, Tocantins, Brazil
- Public Health Laboratory of Tocantins State (LACEN/TO), Tocantins, Brazil
| | | | - Mariana Sequetin Cunha
- Vectorborne Disease Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Emerson Luiz Lima Araújo
- General Coordination of Public Health Laboratories of the Strategic Articulation Department of the Health Surveillance Secretariat of the Ministry of Health (CGLAB/DAEVS/SVS-MS), Brasília, Brazil
| | - Mariela Martínez Gómez
- Molecular and Genetic Biology Division, Department of Molecular Biology, Clemente Estable Biological Research Institute, Montevideo, Uruguay
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | | | - Elcio Leal
- Institute of Biological Sciences, Federal University of Pará, Pará, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Av. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brazil.
| |
Collapse
|
4
|
Molecular Characterization of Norovirus Strains Isolated from Older Children and Adults in Impoverished Communities of Vhembe District, South Africa. Adv Virol 2020; 2020:8436951. [PMID: 32684935 PMCID: PMC7341391 DOI: 10.1155/2020/8436951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background Human norovirus (NoV) is an etiological agent associated with acute gastroenteritis (AGE) in both children and adults worldwide. However, very few studies have been reported on the prevalence and genetic diversity of NoV strains in children older than 5 years of age and adults with little or inadequate water and sanitation conditions. Objectives The aim of this study was assessing the prevalence of the human norovirus in older children and adults suffering with diarrhoea from rural communities in the Vhembe district, Limpopo province. Methods Between August 2017 and October 2018, stool samples were collected from outpatients suffering from AGE and screened for NoV strains using the RIDA©GENE norovirus I and II real-time one-step RT-PCR. RNA extracts of NoV-positive samples were subjected to RT-PCR amplification and nucleotide sequencing to genotype the positive NoV strains. Results Out of 80 collected stool samples, 13 (16%) were tested positive for norovirus. Genogroup GII was identified in 6/13 (46%) samples and genogroup GI in 7/13 (54%) samples. The sequence analyses showed multiple genotypes including GII.Pg, GII.1, GII.2, GII.4, and GI.3. Phylogenetic analysis revealed the relatedness of NoV genotypes identified with other strains reported globally. Conclusion Continued systematic surveillance to evaluate norovirus association with diarrhoea is needed to assist with epidemiological surveillance and disease burden in people of all the age groups.
Collapse
|
5
|
Quantitation of norovirus-specific IgG before and after infection in immunocompromised patients. Braz J Microbiol 2019; 51:183-187. [PMID: 31656022 DOI: 10.1007/s42770-019-00176-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/12/2019] [Indexed: 01/09/2023] Open
Abstract
Noroviruses (NoV) cause the majority of non-bacterial gastroenteritis cases worldwide, with genotype II.4 being the most common. The aim of our study was to quantitate norovirus-specific IgG in immunocompromised patients before and after laboratory-confirmed norovirus infection. A quantitative ELISA was developed by coating ELISA plates with recombinantly expressed P domain of GII.1 capsid protein. After testing mouse sera drawn before and after immunization with GII.1- and GII.4 P domain, sera from GII.1- and GII.4 infected patients were tested. The assay reliably detected preexisting NoV-specific IgG antibodies. Sera drawn after infection showed increased antibody concentrations. Antibodies elicited by GII.1- and GII.4 infections could be detected with coated GII.1 capsid protein. IgG levels remained constant during the first week and then increased in the second week after laboratory diagnosis. The results show that immunocompromised patients elicited IgG responses to NoV infections that could be reliably detected with our quantitative ELISA.
Collapse
|
6
|
Nirwati H, Donato CM, Mawarti Y, Mulyani NS, Ikram A, Aman AT, Peppelenbosch MP, Soenarto Y, Pan Q, Hakim MS. Norovirus and rotavirus infections in children less than five years of age hospitalized with acute gastroenteritis in Indonesia. Arch Virol 2019; 164:1515-1525. [PMID: 30887229 DOI: 10.1007/s00705-019-04215-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/18/2019] [Indexed: 01/19/2023]
Abstract
Rotaviruses and noroviruses are the most important viral causes of acute gastroenteritis in children. While previous studies of acute gastroenteritis in Indonesia mainly focused on rotavirus, here, we investigated the burden and epidemiology of norovirus and rotavirus disease. Children less than five years of age hospitalized with acute gastroenteritis were enrolled in this study from January to December 2015 at three participating hospitals. Rotavirus was detected by enzyme immunoassay (EIA), followed by genotyping by reverse transcription PCR (RT-PCR). Norovirus genogroups were determined by TaqMan-based quantitative RT-PCR. Among 406 enrolled children, 75 (18.47%), 223 (54.93%) and 29 (7.14%) cases were positive for norovirus, rotavirus and both viruses (mixed infections), respectively. Most cases clinically presented with fever, diarrhea, vomiting and some degree of dehydration. The majority (n = 69/75 [92%]) of the noroviruses identified belonged to genogroup II, and several genotypes were identified by sequencing a subset of samples. Among 35 samples tested for rotavirus genotype, the most prevalent genotype was G3P[8] (n = 30/35 [85.6%]). Our study suggests that the burden of norovirus diseases in Indonesian children should not be underestimated. It also shows the emergence of rotavirus genotype G3P[8] in Indonesia.
Collapse
Affiliation(s)
- Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Celeste M Donato
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Enteric Virus Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Yuli Mawarti
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nenny S Mulyani
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aqsa Ikram
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.,Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yati Soenarto
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia. .,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Zhirakovskaia E, Tikunov A, Tymentsev A, Sokolov S, Sedelnikova D, Tikunova N. Changing pattern of prevalence and genetic diversity of rotavirus, norovirus, astrovirus, and bocavirus associated with childhood diarrhea in Asian Russia, 2009-2012. INFECTION GENETICS AND EVOLUTION 2018; 67:167-182. [PMID: 30414977 DOI: 10.1016/j.meegid.2018.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
This hospital-based surveillance study was carried out in Novosibirsk, Asian Russia from September 2009 to December 2012. Stool samples from 5486 children with diarrhea and from 339 healthy controls were screened for rotavirus, norovirus, astrovirus, and bocavirus by RT-PCR. At least one enteric virus was found in 2075 (37.8%) cases with diarrhea and 8 (2.4%) controls. In the diarrhea cases, rotavirus was the most commonly detected virus (24.9%), followed by norovirus (13.4%), astrovirus (2.8%) and bocavirus (1.1%). Mixed viral infections were identified in 4.3% cases. The prevalence of enteric viruses varied every season. Rotavirus infection was distributed in a typical seasonal pattern with a significant annual increase from November to May, while infections caused by other viruses showed no apparent seasonality. The most common rotavirus was G4P[8] (56%), followed by G1P[8] (20.1%), G3P[8] (5.5%), G9P[8], G2P[4] (each 1.3%), six unusual (1.2%), and five mixed strains (0.5%). Norovirus GII.3 (66.5%) was predominant, followed by GII.4 (27.3%), GII.6 (3.7%), GII.1 (1.6%), and four rare genotypes (totally, 0.9%). Re-infection with noroviruses of different genotypes was observed in four children. The classic human astrovirus belonged to HAstV-1 (82%), HAstV-5 (8%), HAstV-4 (4.7%), HAstV-3 (4%) and HAstV-2 (1.3%). Consecutive episodes of HAstV-1 and HAstV-4 infections were detected in one child with an 8-month interval. Bocavirus strains were genotyped as HBoV2 (56.5%), HBoV1 (38.7%), HBoV4 (3.2%) and HBoV3 (1.6%). In the controls, norovirus strains belonged to GII.4 (n = 4), GII.1, GII.3, and GII.6, and HBoV2 strain were detected. Most of the detected virus isolates were characterized by a partial sequencing of the genomes. The genotype distribution of most common enteric viruses found in the Asian part of Russia did not differ considerably from their distribution in European Russia in 2009-2012.
Collapse
Affiliation(s)
- Elena Zhirakovskaia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander Tymentsev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Sokolov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Russia
| | - Daria Sedelnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
8
|
Ludwig-Begall LF, Mauroy A, Thiry E. Norovirus recombinants: recurrent in the field, recalcitrant in the lab - a scoping review of recombination and recombinant types of noroviruses. J Gen Virol 2018; 99:970-988. [PMID: 29906257 DOI: 10.1099/jgv.0.001103] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Intragenotypic recombination has long been postulated to be a driving force of GII.4 noroviruses, the predominant genotype circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007 Journal of General Virology research article 'Norovirus recombination' reported an assembly of 20 hitherto unclassified intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of intergenogroup, intergenotype, intragenotype and 'obligatory' norovirus recombinants as detected via in silico methods in the field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given. Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and norovirus zoonosis risk is examined.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| | - Axel Mauroy
- 2Staff direction for risk assessment, Control Policy, Federal Agency for the Safety of the Food Chain, Blv du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Etienne Thiry
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| |
Collapse
|
9
|
Kauppinen A, Miettinen IT. Persistence of Norovirus GII Genome in Drinking Water and Wastewater at Different Temperatures. Pathogens 2017; 6:pathogens6040048. [PMID: 29019921 PMCID: PMC5750572 DOI: 10.3390/pathogens6040048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 12/15/2022] Open
Abstract
Human norovirus (NoV) causes waterborne outbreaks worldwide suggesting their ability to persist and survive for extended periods in the environment. The objective of this study was to determine the persistence of the NoV GII genome in drinking water and wastewater at three different temperatures (3 °C, 21 °C, and 36 °C). The persistence of two NoV GII inoculums (extracted from stool) and an indigenous NoV GII were studied. The samples were collected for up to one year from drinking water and for up to 140 days from wastewater. Molecular methods (RT-qPCR) were used to assess the decay of the NoV genome. Decay rate coefficients were determined from the fitted decay curves using log-linear and/or non-linear model equations. Results showed significant differences in the decay kinetics of NoV genome between the temperatures, matrices, and virus strains. The persistence of NoV was higher in drinking water compared to wastewater, and the cold temperature assisted persistence at both matrices. Differences between the persistence of NoV strains were also evident and, particularly, indigenous NoVs persisted better than spiked NoVs in wastewater. The decay constants obtained in this study can be utilized to assess the fate of the NoV genome in different water environments.
Collapse
Affiliation(s)
- Ari Kauppinen
- Department of Health Security, Expert Microbiology Unit, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| | - Ilkka T Miettinen
- Department of Health Security, Expert Microbiology Unit, National Institute for Health and Welfare, P.O. Box 95, FI-70701 Kuopio, Finland.
| |
Collapse
|
10
|
|
11
|
Siqueira JAM, Bandeira RDS, Justino MCA, Linhares ADC, Gabbay YB. Characterization of novel intragenotype recombination events among norovirus pandemic GII.4 variants. INFECTION GENETICS AND EVOLUTION 2016; 44:361-366. [DOI: 10.1016/j.meegid.2016.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/28/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
|
12
|
Bruggink LD, Dunbar NL, Marshall JA. Emergence of GII.Pg norovirus in gastroenteritis outbreaks in Victoria, Australia. J Med Virol 2016; 88:1521-8. [PMID: 26946515 DOI: 10.1002/jmv.24511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 01/26/2023]
Abstract
The ORF 1 GII.Pg genotype represents an obligatory recombinant comprising the ORF 1 GII.Pg genotype and a number of ORF 2 genotypes. The emergence, incidence, and molecular features of GII.Pg norovirus have never been considered in detail and are the subject of the current study. Over the period 2002-2013, GII.Pg norovirus was detected in 16 outbreaks in Victoria, Australia. It was first identified in 2009 and thereafter was detected at low level in each year of the study. GII.Pg norovirus outbreaks occurred in both healthcare and non-healthcare settings and could be found in individuals with a broad range of ages. The seasonality of GII.Pg norovirus outbreaks was significantly different from that of all other (non-GII.Pg) norovirus outbreaks. For the 15 GII.Pg norovirus outbreaks where ORF 2 sequencing data were available, two ORF 2 recombinant genotypes were found: GII.1 in 5 (33%) outbreaks and GII.12 in 10 (67%) outbreaks. The ORF 1 phylogenetic tree shows that the GII.Pg ORF 1 genotype fell into two distinct groups. The ORF 2 phylogenetic tree indicates that the GII.1 and GII.12 clusters each corresponded to one of the groups in the ORF 1 tree. This indicates the two recombinant forms were evolving in parallel and not one from the other. Analysis of age data indicates the GII.1 and GII.12 recombinant forms circulated in different ways in the community. J. Med. Virol. 88:1521-1528, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leesa D Bruggink
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Natalie L Dunbar
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - John A Marshall
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Hernandez JDM, Silva LDD, Sousa EC, Lucena MSSD, Soares LDS, Mascarenhas JDP, Gabbay YB. Analysis of uncommon norovirus recombinants from Manaus, Amazon region, Brazil: GII.P22/GII.5, GII.P7/GII.6 and GII.Pg/GII.1. INFECTION GENETICS AND EVOLUTION 2016; 39:365-371. [PMID: 26861619 DOI: 10.1016/j.meegid.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/25/2022]
Abstract
Norovirus (NoV) is responsible for outbreaks and sporadic cases of nonbacterial acute gastroenteritis in humans worldwide. The virus consists of small round particles containing a single-stranded RNA genome that is divided into three Open Reading Frames. NoV evolves via mechanisms of antigenic drift and recombination, which lead to the emergence of new strains that are capable of causing global epidemics. Recombination usually occurs in the ORF1/ORF2 overlapping region and generates strains with different genotypes in the polymerase and capsid region. The primary objective of this study was to analyze recombination in positive-NoV samples. Specimens were collected during 2011, 2012 and 2014, from children under two years of age presenting gastrointestinal symptoms such as vomiting and diarrhea. The partial polymerase (B region), capsid (D region) genes and the ORF1-ORF2 overlap regions were sequenced in each sample. The recombinant analyses were performed in the Simplot software v.3.5.1 and RDP4 Beta v. 4.6 program. These analyses showed that GII.Pg/GII.1, GII.P7/GII.6, and GII.P22/GII.5 were recombinant strains. To our knowledge, this is the first time that the GII.P22/GII.5 and GII.Pg/GII.1 strains were described in South America and the GII.P7/GII.6 was detected in Northern of Brazil.
Collapse
Affiliation(s)
- Juliana das Merces Hernandez
- Postgraduate Program in Virology, Evandro Chagas Institute, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Luciana Damascena da Silva
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Edivaldo Costa Sousa
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Maria Silvia Souza de Lucena
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil
| | - Luana da Silva Soares
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Joana D'Arc Pereira Mascarenhas
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| | - Yvone Benchimol Gabbay
- Virology Section, Evandro Chagas Institute, Brazilian Ministry of Health, Rodovia BR-316, Km 7 s/n, Levilândia, 67030-000 Ananindeua, Pará, Brazil.
| |
Collapse
|
14
|
Norovirus diversity in children with gastroenteritis in South Africa from 2009 to 2013: GII.4 variants and recombinant strains predominate. Epidemiol Infect 2015; 144:907-16. [PMID: 26374265 DOI: 10.1017/s0950268815002150] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
From 2009 to 2013 the diversity of noroviruses (NoVs) in children (⩽5 years) hospitalized with gastroenteritis in South Africa was investigated. NoVs were genotyped based on nucleotide sequence analyses of partial RNA-dependent RNA polymerase (RdRp) and capsid genes. Seventeen RdRp genotypes (GI.P2, GI.P3, GI.P6, GI.P7, GI.P not assigned (NA), GI.Pb, GI.Pf, GII.P2, GII.P4, GII.P7, GII.P13, GII.P16, GII.P21, GII.Pc, GII.Pe, GII.Pg, GII.PNA) and 20 capsid genotypes (GI.1, GI.2, GI.3, GI.5, GI.6, GI.7, GI.NA, GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.10, GII.12, GII.13, GII.14, GII.16, GII.17, GII.21) were identified. The combined RdRp/capsid genotype was determined for 275 GII strains. Fifteen confirmed recombinant NoV strains circulated during the study period. NoV GII.P4/GII.4 (47%) and GII.Pe/GII.4 (18%) predominated, followed by GII.PNA/GII.3 (10%) and GII.P21/GII.3 (7%). Other prevalent strains included GII.Pg/GII.12 (6%) and GII.Pg/GII.1 (3%). Two novel recombinants, GII.Pg/GII.2 and GII.Pg/GII.10 were identified. In 2013 the replacement of GII.4 New Orleans 2009 and GII.P21/GII.3, which predominated during the early part of the study, with GII.4 Sydney 2012 and GII.PNA/GII.3 was observed. This study presents the most comprehensive recent data on NoV diversity in Africa.
Collapse
|
15
|
Ayukekbong JA, Mesumbe HN, Oyero OG, Lindh M, Bergström T. Role of noroviruses as aetiological agents of diarrhoea in developing countries. J Gen Virol 2015; 96:1983-1999. [PMID: 26002299 DOI: 10.1099/vir.0.000194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diarrhoea is considered to be the second leading cause of death due to infections among children < 5 years of age worldwide that may be caused by bacteria, parasites, viruses and non-infectious agents. The major causative agents of diarrhoea in developing countries may vary from those in developed countries. Noroviruses are considered to be the most common cause of acute diarrhoea in both children and adults in industrialized countries. On the other hand, there is a lack of comprehensive epidemiological evidence from developing countries that norovirus is a major cause of diarrhoea. In these regions, asymptomatic norovirus infections are very common, and similar detection rates have been observed in patients with diarrhoea and asymptomatic persons. This review summarizes the current knowledge of norovirus infection in developing countries and seeks to position infections with noroviruses among those of other enteropathogens in terms of disease burden in these regions.
Collapse
Affiliation(s)
- James Ayukepi Ayukekbong
- Section for Clinical Research, Redeem Biomedical System, Buea, Cameroon
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Olufunmilayo G Oyero
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Nigeria
| | - Magnus Lindh
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases/Section of Clinical Virology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
16
|
Paklonskaya NU, Amvrosieva TV, Dziadziulia KL, Baranouskaya NM, Kishkurno EP, Kluiko NL. Norovirus Infection in Belarus: Occurrence and Molecular Epidemiology. Cent Eur J Public Health 2015; 23:69-72. [DOI: 10.21101/cejph.a4046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Zhirakovskaia EV, Tikunov AY, Bodnev SA, Klemesheva VV, Netesov SV, Tikunova NV. Molecular epidemiology of noroviruses associated with sporadic gastroenteritis in children in Novosibirsk, Russia, 2003-2012. J Med Virol 2015; 87:740-53. [DOI: 10.1002/jmv.24068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Elena V. Zhirakovskaia
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| | - Artem Yu Tikunov
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| | - Sergey A. Bodnev
- State Research Center of Virology and Biotechnology VECTOR; Novosibirsk Region; Koltsovo Russia
| | | | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine; Siberian Branch of the Russian Academy of Sciences; Novosibirsk Russia
| |
Collapse
|
18
|
Mans J, Murray TY, Taylor MB. Novel norovirus recombinants detected in South Africa. Virol J 2014; 11:168. [PMID: 25228444 PMCID: PMC4181420 DOI: 10.1186/1743-422x-11-168] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/12/2014] [Indexed: 12/26/2022] Open
Abstract
Background Noroviruses (NoV) are the leading cause of viral gastroenteritis worldwide. Recombination frequently occurs within and between NoV genotypes and recombinants have been implicated in sporadic cases, outbreaks and pandemics of NoV. There is a lack of data on NoV recombinants in Africa and therefore their presence and diversity was investigated in South Africa (SA). Results Between 2010 and 2013, eleven types of NoV recombinants were identified in SA. Amplification of the polymerase/capsid region spanning the ORF1/2 junction and phylogenetic analysis confirmed each of the recombinant types. SimPlot and maximum x2 analysis indicated that all recombinants had a breakpoint in the region of the ORF1/2 junction (P < 0.05). The majority (9/11) were intergenotype recombinants, but two intragenotype GII.4 recombinants were characterised. Three combinations represent novel recombinants namely GII.P not assigned (NA)/GII.3, GII.P4 New Orleans 2009/GII.4 NA and GII.P16/GII.17. Several widely reported recombinants were identified and included GII.P21/GII.2, GII.P21/GII.3, GII.Pe/GII.4 Sydney 2012, and GII.Pg/GII.12. Other recombinants that were identified were GII.Pg/GII.1, GII.Pe/GII.4 Osaka 2007, GII.P4 New Orleans 2009/GII.4 Sydney 2012, GII.P7/GII.6. To date these recombinant types all have a reportedly restricted geographic distribution. This is the first report of the GII.P4 New Orleans 2009/GII.4 Sydney 2012 recombinant in Africa. Conclusions Over the past four years, remarkably diverse NoV recombinants have been circulating in SA. Pandemic strains such as the GII.Pe/GII.4 Sydney 2012 recombinant co-circulated with novel and emerging recombinant strains. Combined polymerase- and capsid-based NoV genotyping is essential to determine the true diversity and global prevalence of these viruses.
Collapse
Affiliation(s)
- Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | | | | |
Collapse
|
19
|
Sabrià A, Pintó RM, Bosch A, Bartolomé R, Cornejo T, Torner N, Martínez A, de Simón M, Domínguez A, Guix S. Molecular and clinical epidemiology of norovirus outbreaks in Spain during the emergence of GII.4 2012 variant. J Clin Virol 2014; 60:96-104. [PMID: 24746342 DOI: 10.1016/j.jcv.2014.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Norovirus (NoV) is the most common cause of acute nonbacterial gastroenteritis outbreaks worldwide, but the impact of NoV infections in Spain remains underestimated. OBJECTIVES This study aimed to determine the prevalence and genetic diversity of NoVs causing outbreaks of acute gastroenteritis in Northeastern Spain (Catalonia) during 2010-2012, and to compare clinical features and levels of viral shedding of the most prevalent GII.4 2012 variant with its predecessor. STUDY DESIGN NoVs were screened and genotyped in stools from gastroenteritis outbreaks. Genetic diversity over a region covering 50% of VP1, and viral loads were analyzed in stools belonging to GII.4 2009 and 2012 variants. RESULTS More than 50% of outbreaks were caused by genotype GII.4, although outbreaks caused by multiple strains, GII.6 and GII.1 were also prevalent. During 2012, GII.4 2012 strains clearly replaced GII.4 2009 strains. The first 2012 strain was detected in February 2011, representing the earliest isolate reported worldwide. Epidemiological features of GII.4 2012 and GII.4 2009 outbreaks were comparable, as well as levels of viral shedding in stools. Finally, analysis of the capsid gene showed a higher amino acid variability and diversification in GII.4 2012, affecting sites located at the P2 domain, but also in the shell domain. CONCLUSIONS Clinical features of outbreaks caused by different genotypes circulating in Spain, including outbreaks caused by GII.4 2012 and GII.4 2009 strains, were comparable. Although shed at similar levels than GII.4 2009 strains, GII.4 2012 strains have clearly replaced the previous predominant strain.
Collapse
Affiliation(s)
- Aurora Sabrià
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain
| | - Rosa Bartolomé
- Laboratory of Microbiology, Hospital Universitari Vall d'Hebron, Pssg Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Thais Cornejo
- Laboratory of Microbiology, Hospital Universitari Vall d'Hebron, Pssg Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Núria Torner
- Department of Health, Generalitat of Catalonia, Roc Boronat 81-95, 08005 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
| | - Ana Martínez
- Department of Health, Generalitat of Catalonia, Roc Boronat 81-95, 08005 Barcelona, Spain
| | - Mercedes de Simón
- Laboratory of the Public Health Agency, Pl. Lesseps 1, 08024 Barcelona, Spain
| | - Angela Domínguez
- CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Department of Public Health, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain; Nutrition and Food Safety Research Institute (INSA-UB), University of Barcelona, Avda Prat de la Riba 171, 08921 Santa Coloma de Gramanet, Spain.
| | | |
Collapse
|