1
|
Feng W, Chen Y, Han Y, Diao Z, Zhao Z, Zhang Y, Huang T, Ma Y, Li Z, Jiang J, Li J, Li J, Zhang R. Key performance evaluation of commercialized multiplex rRT-PCR kits for respiratory viruses: implications for application and optimization. Microbiol Spectr 2024; 12:e0164124. [PMID: 39470276 PMCID: PMC11619282 DOI: 10.1128/spectrum.01641-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024] Open
Abstract
Respiratory tract infections (RTIs) caused by viruses are prevalent and significant conditions in clinical settings. Accurate and effective detection is of paramount importance in the diagnosis, treatment, and prevention of viral RTIs. With technological advancements, multiplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assays have been developed and extensively adopted for the diagnosis of viral RTIs. Given the potential challenges in the detection performance of multiplex assays, this study evaluated the analytical sensitivity and competitive interference of the six most commonly used multiplex rRT-PCR kits for detection of respiratory viruses in China. The results revealed that the limits of detection were variable across the viruses and kits. Most of the evaluated multiplex kits demonstrated comparable or enhanced analytical sensitivity compared with singleplex kits for clinically significant viruses, including human adenovirus (HAdV)-3, HAdV-7, Omicron BA.5, H1N1pdm09, H3N2, B/Victoria, respiratory syncytial virus subtype A, and respiratory syncytial virus subtype B, whereas multiplex kits showed relatively less analytical sensitivity for human rhinovirus-B72, human metapneumovirus-A2, parainfluenza virus (PIV)-1, and PIV-3. In addition, most multiplex kits successfully identified co-infections when one analyte was present at a low concentration and another analyte was present at a high concentration. IMPORTANCE The complexity and severity of viral respiratory tract infections (RTIs) emphasize the pivotal role of precise diagnosis for viral RTIs in guiding effective public health responses and ensuring appropriate medical interventions, given the substantial population at risk. This study highlights the necessity and importance of evaluating the analytical validity of multiplex real-time reverse transcription polymerase chain reaction assays, offering valuable insights into their optimization and application.
Collapse
Affiliation(s)
- Wanyu Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yanxi Han
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Zhenli Diao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Zihong Zhao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yuanfeng Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Tao Huang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Yu Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Ziqiang Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jian Jiang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jing Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| |
Collapse
|
2
|
Tang HT, Nörz D, Grunwald M, Giersch K, Pfefferle S, Fischer N, Aepfelbacher M, Rohde H, Lütgehetmann M. Analytical and clinical validation of a novel, laboratory-developed, modular multiplex-PCR panel for fully automated high-throughput detection of 16 respiratory viruses. J Clin Virol 2024; 173:105693. [PMID: 38820916 DOI: 10.1016/j.jcv.2024.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Viral respiratory Infections pose a health risk, especially to vulnerable patient populations. Effective testing programs can detect and differentiate these infections at an early stage, which is particularly important for high-risk clinical departments. The objective of this study was to develop and validate a multiplex PCR-panel for 16 different respiratory viruses on a fully-automated high-throughput platform. METHODS Three multiplex-PCR assays were designed to run on the cobas5800/6800/8800 systems, consolidating 16 viral targets: RESP1: SARS-CoV-2, influenza-A/B, RSV; RESP2: hMPV, hBoV, hAdV, rhino-/ENV; RESP3: HPIV-1-4, hCoV-229E, hCoV-NL63, hCoV-OC43, hCoV-HKU1. Analytic performance was evaluated using digital-PCR based standards and international reference material. Clinical performance was determined by comparing results from clinical samples with reference assays. RESULTS Analytical sensitivity (i.e. lower limit of detection (LoD), 95 % probability of detection) was determined as follows: SARS-CoV-2: 29.3 IU/ml, influenza-A: 179.9 cp/ml, influenza-B: 333.9 cp/ml and RSV: 283.1 cp/ml. LoDs of other pathogens ranged between 9.4 cp/ml (hCoV-NL63) and 21,419 cp/ml (HPIV-2). Linearity was verified over 4-7 log-steps with pooled standard differentials (SD) ranging between 0.18-0.70ct. Inter-/intra-run variability (precision) was assessed for all targets over 3 days. SDs ranged between 0.13-0.74ct. Positive agreement in clinical samples was 99.4 % and 95 % for SARS-CoV-2 and influenza-A respectively. Other targets were in the 80-100 % range. Negative agreement varied between 96.3-100 %. DISCUSSION Lab-developed tests are a key factor for effective clinical diagnostics. The multiplex panel presented in this study demonstrated high performance and provides an easily scalable high-throughput solution for respiratory virus testing, e.g. for testing in high-risk patient populations.
Collapse
Affiliation(s)
- Hui Ting Tang
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Dominik Nörz
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Moritz Grunwald
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Katja Giersch
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Susanne Pfefferle
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Nicole Fischer
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Martin Aepfelbacher
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Holger Rohde
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Marc Lütgehetmann
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany.
| |
Collapse
|
3
|
Janssen R, Cuypers L, Laenen L, Keyaerts E, Beuselinck K, Janssenswillen S, Slechten B, Bode J, Wollants E, Van Laethem K, Rector A, Bloemen M, Sijmons A, de Schaetzen N, Capron A, Van Baelen K, Pascal T, Vermeiren C, Bureau F, Vandesompele J, De Smet P, Uten W, Malonne H, Kerkhofs P, De Cock J, Matheeussen V, Verhasselt B, Gillet L, Detry G, Bearzatto B, Degosserie J, Henin C, Pairoux G, Maes P, Van Ranst M, Lagrou K, Dequeker E, André E. Nationwide quality assurance of high-throughput diagnostic molecular testing during the SARS-CoV-2 pandemic: role of the Belgian National Reference Centre. Virol J 2024; 21:40. [PMID: 38341597 PMCID: PMC10858549 DOI: 10.1186/s12985-024-02308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Since the onset of the coronavirus disease (COVID-19) pandemic in Belgium, UZ/KU Leuven has played a crucial role as the National Reference Centre (NRC) for respiratory pathogens, to be the first Belgian laboratory to develop and implement laboratory developed diagnostic assays for SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and later to assess the quality of commercial kits. To meet the growing demand for decentralised testing, both clinical laboratories and government-supported high-throughput platforms were gradually deployed across Belgium. Consequently, the role of the NRC transitioned from a specialised testing laboratory to strengthening capacity and coordinating quality assurance. Here, we outline the measures taken by the NRC, the national public health institute Sciensano and the executing clinical laboratories to ensure effective quality management of molecular testing throughout the initial two years of the pandemic (March 2020 to March 2022).
Collapse
Affiliation(s)
- Reile Janssen
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium.
| | - Lize Cuypers
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Lies Laenen
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Els Keyaerts
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Beuselinck
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Sunita Janssenswillen
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Bram Slechten
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Jannes Bode
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Elke Wollants
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Kristel Van Laethem
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Mandy Bloemen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Anke Sijmons
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Nathalie de Schaetzen
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Arnaud Capron
- Quality of Laboratories Unit, Scientific Directorate of Biological Health Risks, Sciensano, 1000, Brussels, Belgium
| | - Kurt Van Baelen
- Janssen Pharmaceutica N.V, Johnson & Johnson, 2340, Beerse, Belgium
| | | | | | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège, 4000, Liège, Belgium
| | - Jo Vandesompele
- Biogazelle, a CellCarta Company, Technologiepark Zwijnaarde, 9052, Zwijnaarde, Belgium
| | | | | | - Hugues Malonne
- Federal Agency for Medicines and Health Products (FAGG-AFMPS), 1210, Brussels, Belgium
- Department of Pharmacology, Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Biomedical Sciences, Namur Research Institute for Life Sciences, University of Namur, 5000, Namur, Belgium
| | - Pierre Kerkhofs
- Federal Public Service Public Health, Safety of the Food Chain and the Environment, 1210, Brussels, Belgium
| | - Jo De Cock
- National Institute for Health and Disability Insurance (RIZIV/INAMI), 1150, Brussels, Belgium
| | - Veerle Matheeussen
- Federal Testing Platform COVID-19, University Hospitals Antwerp, 2650, Edegem, Belgium
| | - Bruno Verhasselt
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, Ghent University and Ghent University Hospital, 9000, Ghent, Belgium
| | - Laurent Gillet
- Federal Testing Platform COVID-19, University of Liège, 4000, Liège, Belgium
| | - Gautier Detry
- Federal Testing Platform COVID-19, Laboratory of Clinical Biology, Pole Hospitalier Jolimont, 7100, La Louvière, Belgium
| | - Bertrand Bearzatto
- Federal Testing Platform COVID-19, Centre Des Technologies Moléculaires Appliquées (CTMA), Institute of Experimental and Clinical Research (IREC), Cliniques Universitaires Saint-Luc and Université Catholique de Louvain (UCLouvain), 1200, Brussels, Belgium
| | - Jonathan Degosserie
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, CHU UCL Namur, 5530, Yvoir, Belgium
| | - Coralie Henin
- Federal Testing Platform COVID-19, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Gregor Pairoux
- Quality of Laboratories Unit, Scientific Directorate of Biological Health Risks, Sciensano, 1000, Brussels, Belgium
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Marc Van Ranst
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Katrien Lagrou
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Elisabeth Dequeker
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Biomedical Quality Assurance Research Unit, Department of Public Health and Primary Care, University of Leuven, 3000, Leuven, Belgium
| | - Emmanuel André
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
4
|
Bernstein DI, Mejias A, Rath B, Woods CW, Deeter JP. Summarizing Study Characteristics and Diagnostic Performance of Commercially Available Tests for Respiratory Syncytial Virus: A Scoping Literature Review in the COVID-19 Era. J Appl Lab Med 2023; 8:353-371. [PMID: 35854475 PMCID: PMC9384538 DOI: 10.1093/jalm/jfac058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Nonpharmaceutical interventions to prevent the spread of coronavirus disease 2019 also decreased the spread of respiratory syncytial virus (RSV) and influenza. Viral diagnostic testing in patients with respiratory tract infections (RTI) is a necessary tool for patient management; therefore, sensitive and specific tests are required. This scoping literature review aimed to summarize the study characteristics of commercially available sample-to-answer RSV tests. CONTENT PubMed and Embase were queried for studies reporting on the diagnostic performance of tests for RSV in patients with RTI (published January 2005-January 2021). Information on study design, patient and setting characteristics, and published diagnostic performance of RSV tests were extracted from 77 studies that met predefined inclusion criteria. A literature gap was identified for studies of RSV tests conducted in adult-only populations (5.3% of total subrecords) and in outpatient (7.5%) or household (0.8%) settings. Overall, RSV tests with analytical time >30 min had higher published sensitivity (62.5%-100%) vs RSV tests with analytical time ≤30 min (25.7%-100%); this sensitivity range could be partially attributed to the different modalities (antigen vs molecular) used. Molecular-based rapid RSV tests had higher published sensitivity (66.7%-100%) and specificity (94.3%-100%) than antigen-based RSV tests (sensitivity: 25.7%-100%; specificity:80.3%-100%). SUMMARY This scoping review reveals a paucity of literature on studies of RSV tests in specific populations and settings, highlighting the need for further assessments. Considering the implications of these results in the current pandemic landscape, the authors preliminarily suggest adopting molecular-based RSV tests for first-line use in these settings.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Asuncion Mejias
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Barbara Rath
- Vienna Vaccine Safety Initiative, Berlin, Germany
- Université de Bourgogne Franche-Comté, Besançon, France
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Christopher W Woods
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Infectious Diseases Division, Duke University Medical Center, Durham, NC, USA
| | - Jamie Phillips Deeter
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Roche Diagnostics Corporation, Indianapolis, IN, USA
| |
Collapse
|
5
|
Automated Real-Time PCR Detection of Tickborne Diseases Using the Panther Fusion Open Access System. Microbiol Spectr 2022; 10:e0280822. [PMID: 36374034 PMCID: PMC9769788 DOI: 10.1128/spectrum.02808-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of tickborne infections in the United States has risen significantly. Automation is needed for the increasing demand for testing. The Panther Fusion (Fusion) has an Open Access functionality to perform lab developed tests (LDTs) on a fully automated system. Our laboratory adapted two LDTs on Fusion; a multiplex real-time PCR for Anaplasma phagocytophilum and Ehrlichia chaffeensis (AP/EC) and a Babesia microti (BM) PCR. Limits of detection (LODs) were performed with target region plasmid panels spiked into whole blood. The LODs for AP, BM, and EC on the Fusion were 11, 17, and 10 copies/reaction, respectively. The performance of AP/EC was evaluated with 80 whole blood specimens, including 50 specimens previously positive for AP by our test of record (TOR) and 30 specimens (including 20 AP positive) spiked with EC plasmid. AP was detected in 49 out of 50 positive specimens and EC was detected in all 30 spiked specimens. BM PCR on Fusion was evaluated with 75 whole blood samples, including 16 specimens previously shown to be positive for BM and 59 negative specimens, of which 29 were spiked with BM plasmid DNA. BM was detected in 45 samples as expected. AP/EC and BM PCRs were successfully developed and optimized on the Panther Fusion with performance characteristics comparable to our TOR. These assays complement each other and allow for a modular testing approach for tickborne diseases which have differing clinical presentation. Furthermore, automation of these assays will help the lab meet the increasing demand for testing. IMPORTANCE Since the incidence of tickborne diseases has been accelerating in the United States, automation for testing has become essential in affected regions. Unfortunately, because the need is regional, commercial test manufacturers have not yet provided answers for clinical laboratories. Here, we describe the development of PCR tests on the highly automated Panther Fusion for three tickborne diseases. The Panther Fusion assays were evaluated using 155 archived whole blood (WB) specimens previously tested for Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Babesia microti, while WB spiked with DNA from plasmid clones of the target regions were used for analytical sensitivity. We demonstrated that the Panther Fusion assays performed similar to the manual PCR tests used clinically in our laboratory and that automation of these tests had no adverse effect on the performance.
Collapse
|
6
|
Evaluation of Five Buffers for Inactivation of Monkeypox Virus and Feasibility of Virus Detection Using the Panther Fusion® Open Access System. Viruses 2022; 14:v14102227. [PMID: 36298782 PMCID: PMC9610623 DOI: 10.3390/v14102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Rapid diagnosis is key to containing viral outbreaks. However, for the current monkeypox outbreak the major deterrent to rapid testing is the requirement for higher biocontainment of potentially infectious monkeypox virus specimens. The current CDC guidelines require the DNA extraction process before PCR amplification to be performed under biosafety level 3 unless vaccinated personnel are performing assays. This increases the turn-around time and makes certain laboratories insufficiently equipped to handle specimens from patients with suspected monkeypox infection. We investigated the ability of five commercially available lysis buffers and heat for inactivation of monkeypox virus. We also optimized the use of monkeypox virus in Hologic® Panther Specimen Lysis Buffer for detection of virus in the Panther Fusion® Open Access System using published generic and clade specific monkeypox virus primers and probes.
Collapse
|
7
|
Wang H, Zhang W, Tang YW. Clinical Microbiology in Detection and Identification of Emerging Microbial Pathogens: Past, Present and Future. Emerg Microbes Infect 2022; 11:2579-2589. [PMID: 36121351 PMCID: PMC9639501 DOI: 10.1080/22221751.2022.2125345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinical microbiology has possessed a marvellous past, an important present and a bright future. Western medicine modernization started with the discovery of bacterial pathogens, and from then, clinical bacteriology became a cornerstone of diagnostics. Today, clinical microbiology uses standard techniques including Gram stain morphology, in vitro culture, antigen and antibody assays, and molecular biology both to establish a diagnosis and monitor the progression of microbial infections. Clinical microbiology has played a critical role in pathogen detection and characterization for emerging infectious diseases as evidenced by the ongoing COVID-19 pandemic. Revolutionary changes are on the way in clinical microbiology with the application of “-omic” techniques, including transcriptomics and metabolomics, and optimization of clinical practice configurations to improve outcomes of patients with infectious diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Laboratory Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Fudan University Huashan Hospital, Shanghai 200040, China
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform China/Cepheid, Shanghai 200325, China
| |
Collapse
|
8
|
Yang J, Li D, Wang J, Zhang R, Li J. Design, optimization, and application of multiplex rRT-PCR in the detection of respiratory viruses. Crit Rev Clin Lab Sci 2022:1-18. [PMID: 35559711 DOI: 10.1080/10408363.2022.2072467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Viral respiratory infections are common and serious diseases. Because there is no effective treatment method or vaccine for respiratory tract infection, early diagnosis is vital to identify the pathogen so as to determine the infectivity of the patient and to quickly take measures to curb the spread of the virus, if warranted, to avoid serious public health problems. Real-time reverse transcriptase PCR (rRT-PCR), which has high sensitivity and specificity, is the best approach for early diagnosis. Among rRT-PCR methods, multiplex rRT-PCR can resolve issues arising from various types of viruses, high mutation frequency, coinfection, and low concentrations of virus. However, the design, optimization, and validation of multiplex rRT-PCR are more complicated than singleplex rRT-PCR, and comprehensive research on multiplex rRT-PCR methodology is lacking. This review summarizes recent progress in multiplex rRT-PCR methodology, outlines the principles of design, optimization and validation, and describes a scheme to help diagnostic companies to design and optimize their multiplex rRT-PCR detection panel and to assist laboratory staff to solve problems in their daily work. In addition, the analytical validity, clinical validity and clinical utility of multiplex rRT-PCR in viral respiratory tract infection diagnosis are assessed to provide theoretical guidance and useful information for physicians to understand the test results.
Collapse
Affiliation(s)
- Jing Yang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Dandan Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jie Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, P.R. China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| |
Collapse
|
9
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
10
|
Yasasve M, Manojj D, Vishal LA. Emerging Technological Trends and Advancements in Respiratory Medicine. ADVANCED DRUG DELIVERY STRATEGIES FOR TARGETING CHRONIC INFLAMMATORY LUNG DISEASES 2022:591-608. [DOI: 10.1007/978-981-16-4392-7_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Rapid Response to SARS-CoV-2 in Aotearoa New Zealand: Implementation of a Diagnostic Test and Characterization of the First COVID-19 Cases in the South Island. Viruses 2021; 13:v13112222. [PMID: 34835031 PMCID: PMC8623489 DOI: 10.3390/v13112222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
It has been 20 months since we first heard of SARS-CoV-2, the novel coronavirus detected in the Hubei province, China, in December 2019, responsible for the ongoing COVID-19 pandemic. Since then, a myriad of studies aimed at understanding and controlling SARS-CoV-2 have been published at a pace that has outshined the original effort to combat HIV during the beginning of the AIDS epidemic. This massive response started by developing strategies to not only diagnose individual SARS-CoV-2 infections but to monitor the transmission, evolution, and global spread of this new virus. We currently have hundreds of commercial diagnostic tests; however, that was not the case in early 2020, when just a handful of protocols were available, and few whole-genome SARS-CoV-2 sequences had been described. It was mid-January 2020 when several District Health Boards across New Zealand started planning the implementation of diagnostic testing for this emerging virus. Here, we describe our experience implementing a molecular test to detect SARS-CoV-2 infection, adapting the RT-qPCR assay to be used in a random-access platform (Hologic Panther Fusion® System) in a clinical laboratory, and characterizing the first whole-genome SARS-CoV-2 sequences obtained in the South Island, right at the beginning of the SARS-CoV-2 outbreak in New Zealand. We expect that this work will help us and others prepare for the unequivocal risk of similar viral outbreaks in the future.
Collapse
|
12
|
Combined SARS-CoV-2 nucleic acid amplification testing and respiratory virus panel RT-PCR on the Hologic Panther Fusion system. J Clin Virol 2021; 138:104792. [PMID: 33770659 PMCID: PMC7944800 DOI: 10.1016/j.jcv.2021.104792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Background Significant overlap exists between the symptoms of SARS-CoV-2 and other respiratory viruses. This poses a serious challenge to clinical diagnosis, laboratory testing, and infection control programs. Objectives To evaluate the performance of the Hologic Panther Fusion Respiratory Assays (RA) compared to the GenMark ePlex Respiratory Pathogen Panel (RPP) and to assess the ability of the Panther Fusion to perform parallel testing of SARS-CoV-2 and other respiratory viruses from a single sample. Study design A diagnostic comparison study was carried out using 375 clinical nasopharyngeal specimens. Assay performance was assessed by overall, positive, and negative percent agreement and Cohen’s kappa coefficient. Results Overall agreement between the Fusion RA and ePlex RPP was 97.3 % (95 % CI 96.3−98.0), positive percent agreement was 97.2 % (95 % CI 93.0−99.2), negative percent agreement was 97.3 % (95 % CI 96.3−98.0), and the kappa coefficient was 0.85 (95 % CI 0.81−0.89). Forty additional viruses in 30 specimens were detected by Fusion that were not detected by ePlex. The maximum specimen throughput for parallel testing of the Fusion Respiratory Assays with SARS-CoV-2 was 275 samples in 20.7 h for Fusion SARS-CoV-2 and 350 samples in 20.0 h for Aptima Transcription Mediated Amplification SARS-CoV-2. Conclusion Fusion RA demonstrated substantial agreement compared to the ePlex RPP. However, the Fusion detected respiratory viruses not identified by ePlex, consistent with higher clinical sensitivity. Workflows for parallel testing of respiratory pathogens and SARS-CoV-2 demonstrate that the Panther Fusion instrument provides a flexible, moderate to high throughput testing option for pandemic and seasonal respiratory viruses.
Collapse
|
13
|
A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens. Anal Bioanal Chem 2021; 413:1787-1798. [PMID: 33492406 PMCID: PMC7829496 DOI: 10.1007/s00216-021-03171-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Rapid and accurate identification of respiratory tract infection pathogens is of utmost importance for clinical diagnosis and treatment, as well as prevention of pathogen transmission. To meet this demand, a microfluidic chip-based PCR-array system, Onestart, was developed. The Onestart system uses a microfluidic chip packaged with all the reagents required, and the waste liquid is also collected and stored on the chip. This ready-to-use system can complete the detection of 21 pathogens in a fully integrated manner, with sample lysis, nucleic acid extraction/purification, and real-time PCR sequentially implemented on the same chip. The entire analysis process is completed within 1.5 h, and the system automatically generates a test report. The lower limit-of-detection (LOD) of the Onestart assay was determined to be 1.0 × 103 copies·mL−1. The inter-batch variation of cycle threshold (Ct) values ranged from 0.08% to 0.69%, and the intra-batch variation ranged from 0.9% to 2.66%. Analytical results of the reference sample mix showed a 100% specificity of the Onestart assay. The analysis of batched clinical samples showed consistency of the Onestart assay with real-time PCR. With its ability to provide rapid, sensitive, and specific detection of respiratory tract infection pathogens, application of the Onestart system will facilitate timely clinical management of respiratory tract infections and effective prevention of pathogen transmission.
Collapse
|
14
|
Analytical Performances of the Panther Fusion System for the Detection of Respiratory Viruses in the French National Reference Centre of Lyon, France. Microorganisms 2020; 8:microorganisms8091371. [PMID: 32906749 PMCID: PMC7563737 DOI: 10.3390/microorganisms8091371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
Respiratory infection are mainly caused by viral pathogens. During the 2017-2018 epidemic season, Panther Fusion® Respiratory kits (Influenza virus A&B (FluA&B), respiratory syncytial virus (RSV), adenovirus (ADV), metapneumovirus (MPV), rhinovirus (RV), parainfluenzae virus (PIV), were compared to the Respiratory MultiWells System r-gene. Respiratory clinical specimens were tested retrospectively (n = 268) and prospectively (n = 463). Analytical performances were determined (sensitivity -Sep-, specificity -Spe- and κ) considering concordances of ≥2 molecular testing specific to each viral target (discrepant results were verified at the National Reference Centres for Enteroviruses or Respiratory viruses, Lyon, France). After retrospective (and prospective) testing, Sep, Spe, and κ were 100% (97.7%), 100% (99%) and 100% (94%) for FluA: 100% (95.5%), 100% (99.3%) and 100% (94%) for FluB, and 100% (88.5%), 100% (98.7%) and 100% (89%) for RSV; 82.1% (41.7%), 100% (99.5%) and 86% (54%) for ADV; 94.7% (73.7%), 96.1% (98.0%) and 91% (65%) for MPV; 96.1% (94.6%), 90.2% (98.5%) and 86% (91%) for HRV; and 90% (72.7%), 100% (99.3%) and 91% (72%), respectively, for PIV. Analytical performances were above 85% for all viruses except for ADV, MPV and PIV, confirming the analytical performance of the Panther Fusion system, a high throughput system with reduced turn-around-time, when compared to non-automated systems.
Collapse
|
15
|
Foster CE, Moulton EA, Munoz FM, Hulten KG, Versalovic J, Dunn J, Revell P, Koy TH, Arrington AS, Marquez L, Campbell J. Coronavirus Disease 2019 in Children Cared for at Texas Children's Hospital: Initial Clinical Characteristics and Outcomes. J Pediatric Infect Dis Soc 2020; 9:373-377. [PMID: 32504532 PMCID: PMC7313841 DOI: 10.1093/jpids/piaa072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023]
Abstract
We describe the clinical course of 57 children with coronavirus disease 2019 (COVID-19) cared for through a single hospital system. Most children were mildly symptomatic, and only a few patients with underlying medical conditions required hospitalization. Systemwide patient evaluation processes allowed for prompt identification and management of patients with COVID-19.
Collapse
Affiliation(s)
- Catherine E Foster
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Department of Infection Control and Prevention, Texas Children’s Hospital, Houston, Texas, USA,Corresponding author: Catherine E. Foster, MD, Feigin Center, Texas Children’s Hospital, 1102 Bates St, Suite 1120, Houston, TX 77030. E-mail:
| | - Elizabeth A Moulton
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Flor M Munoz
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Kristina G Hulten
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - James Dunn
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Paula Revell
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Tjin H Koy
- Department of Infection Control and Prevention, Texas Children’s Hospital, Houston, Texas, USA
| | - Amy S Arrington
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lucila Marquez
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Department of Infection Control and Prevention, Texas Children’s Hospital, Houston, Texas, USA
| | - Judith Campbell
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Department of Infection Control and Prevention, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
The Panther Fusion System with Open Access Functionality for Laboratory-Developed Tests for Influenza A Virus Subtyping. J Clin Microbiol 2020; 58:JCM.00188-20. [PMID: 32229600 PMCID: PMC7269382 DOI: 10.1128/jcm.00188-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/21/2020] [Indexed: 11/25/2022] Open
Abstract
Nucleic acid amplification tests, such as PCR, are the method of choice for respiratory virus testing, due to their superior diagnostic accuracy and fast turnaround time. The Panther Fusion (Fusion; Hologic) system has an array of highly sensitive in vitro diagnostic (IVD) real-time PCR assays for respiratory viruses, including an assay for influenza A (FluA) virus, influenza B (FluB) virus, and respiratory syncytial virus (RSV) (FFABR assay). The Fusion system has Open Access functionality to perform laboratory-developed tests (LDTs) alongside IVD assays. Nucleic acid amplification tests, such as PCR, are the method of choice for respiratory virus testing, due to their superior diagnostic accuracy and fast turnaround time. The Panther Fusion (Fusion; Hologic) system has an array of highly sensitive in vitro diagnostic (IVD) real-time PCR assays for respiratory viruses, including an assay for influenza A (FluA) virus, influenza B (FluB) virus, and respiratory syncytial virus (RSV) (FFABR assay). The Fusion system has Open Access functionality to perform laboratory-developed tests (LDTs) alongside IVD assays. We developed two LDTs for FluA virus strain typing on the Panther Fusion instrument, enabling side-by-side testing with the FFABR assay. The LDT-FAST assay uses proprietary primers and probes designed by Hologic for the Prodesse ProFAST+ (PFAST) assay. The exWHO-FAST assay is an expanded redesign of the WHO-recommended reverse transcriptase PCRs (RT-PCRs). To evaluate the performance of these two LDTs, 110 FluA virus-positive samples were tested. Of these, 104 had been subtyped previously; 54 were H3, 46 were 09H1, and 4 were fsH1. All were appropriately subtyped by both LDTs. Of the untyped FluA virus samples, three were subtyped as H3 by both LDTs and two were subtyped as H3 by the LDT-FAST assay only. The sample not subtyped by either LDT was retested with the FFABR assay and was now negative. Limit-of-detection (LOD) analyses were performed with five FluA virus strains. The LDT-FAST LODs were similar to the FFABR assay LODs, while the exWHO-FAST LODs were higher for two H3N2 strains, findings that were explained by analysis of primer/probe homology. In conclusion, either FluA virus typing assay would be a valuable complement to the Panther Fusion respiratory menu given the performance of these LDTs, the system’s full automation, and the ability to split eluates for both IVD and LDT testing.
Collapse
|
17
|
Boerger AC, Binnicker MJ. Comparison of the Panther Fusion respiratory panels to routine methods for detection of viruses in upper and lower respiratory tract specimens. Diagn Microbiol Infect Dis 2020; 97:115014. [PMID: 32192787 DOI: 10.1016/j.diagmicrobio.2020.115014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Viral respiratory infections remain a significant cause of morbidity and mortality in pediatric, elderly, and immunocompromised patients. The Panther Fusion respiratory panels consist of 3 separate multiplex assays that test for 1) influenza A, influenza B, and RSV; 2) parainfluenza virus types 1-4; or 3) adenovirus, human metapneumovirus, and rhinovirus. This study evaluated the performance of the Fusion assays for both upper and lower respiratory tract specimens in comparison to routine methods, including viral culture and targeted real-time polymerase chain reaction assays. Following discordant resolution, the Fusion assays demonstrated high overall correlation (98.6% [648/657]) with routine methods. In addition, prospective testing of respiratory specimens (n = 146) submitted for viral culture showed a ~10-fold increase in detection by the Fusion panels compared to viral culture (28.1% versus 2.7% positivity). The Fusion respiratory panels offer a flexible, more targeted approach to respiratory virus testing with a turnaround time comparable to other molecular assays.
Collapse
Affiliation(s)
- Aimee C Boerger
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | - Matthew J Binnicker
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|