1
|
Tonelli R, Pischiutta F, Elice F, Zanier ER, Grisendi G, Astori G, Samarelli AV, Bruzzi G, Manicardi L, Spano C, Nattino G, Signorini F, Bernardi M, Catanzaro D, Merlo A, Lisi I, Pasetto L, Bonetto V, Fiammenghi L, Boschi L, Guidi S, Candini O, Zoerle T, Dander E, D'Amico G, De Pierri F, Maur M, Pettorelli E, Ruggieri V, Cerri S, Mari G, De Berardis G, Mighali P, Baschieri MC, Lazzari L, Bambi F, Ciccocioppo R, Clini E, Dominici M. Impact of mesenchymal stromal/stem cell infusions on circulating inflammatory biomarkers in COVID-19 patients: analysis of a phase I-IIa trial. Cytotherapy 2025:S1465-3249(25)00677-2. [PMID: 40353787 DOI: 10.1016/j.jcyt.2025.04.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND AIMS SARS-CoV-2 infection triggers respiratory inflammation with potentially fatal systemic effects. Mesenchymal stromal/stem cells (MSCs) are promising for treating severe COVID-19 due to their anti-inflammatory and regenerative capacities. This study investigates the effects of allogeneic MSCs in severe COVID-19 pneumonia. METHODS In the phase I/IIa RESCAT trial (May 2021-Feb 2022), patients with severe COVID-19 pneumonia received two intravenous MSC infusions and were compared to a control group (CTRL). To assess cytokine and biomarker responses, the MSC group was matched 1:2 with standard care patients (mCTRL) by age, gender, BMI, and PaO2/FiO2 (Nov 2020-Feb 2021). Random-effects linear regression evaluated cytokine and biomarker trends over time between MSC and control groups. RESULTS Seventeen patients (MSC = 5, CTRL = 2, mCTRL = 10) were analyzed. Two MSC infusions were feasible and safe, with all patients discharged on average 15 ± 3.7 days postsecond infusion. While IL1RA and IL18 levels significantly increased in CTRL-mCTRL patients (P = 0.044 and P = 0.032), MSC treatment averted these rises, showing a distinct trajectory, particularly for IL1RA. MSC treatment also reduced IL6 levels compared to CTRL-mCTRL, while both groups showed similar reductions in Long pentraxin. Furthermore, MSC infusions prevented the neurofilament light chain surge observed in CTRL patients. CONCLUSIONS MSC in COVID-19 patients resulted safe and feasible, effectively modulating inflammatory cytokines, in particular mitigating brain damage related biomarker, suggesting both reduced inflammation and a potential neurological protection.
Collapse
Affiliation(s)
- Roberto Tonelli
- Respiratory Intermediate Care Unit, University Hospital of Modena, Modena, Italy; Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy; Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy
| | - Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Elice
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Elisa R Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giulia Grisendi
- Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy; Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Giuseppe Astori
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy; Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy
| | - Giulia Bruzzi
- Respiratory Intermediate Care Unit, University Hospital of Modena, Modena, Italy; Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Lung Disease Unit, Arcispedale IRCCS Santa Maria Nuova, Reggio Emilia, Italy
| | - Carlotta Spano
- Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy; Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Giovanni Nattino
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabiola Signorini
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Martina Bernardi
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Daniela Catanzaro
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Anna Merlo
- Haematology Unit, Laboratory of Advanced Cellular Therapies, San Bortolo Hospital, Vicenza, Italy
| | - Ilaria Lisi
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Pasetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Valentina Bonetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | | | | | - Tommaso Zoerle
- Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, Monza, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Via Pergolesi, Monza, Italy
| | - Ferruccio De Pierri
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Michela Maur
- Department of Oncology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Elisa Pettorelli
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Valentina Ruggieri
- Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Rare Lung Disease Unit, University Hospital of Modena, Modena, Italy
| | | | - Giorgia De Berardis
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH) S.r.l., Pescara, Italy
| | - Pasquale Mighali
- Innovation and Research Office, University Hospital of Modena, Modena, Italy
| | - Maria Cristina Baschieri
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapies, Cell Factory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franco Bambi
- Unità Operativa Complessa di Immunoematologia, Medicina Trasfusionale e Laboratorio Azienda Ospedaliera Universitaria Meyer, Firenze, Italy
| | - Rachele Ciccocioppo
- Department of Medicine, Gastroenterology Unit, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy
| | - Enrico Clini
- Respiratory Intermediate Care Unit, University Hospital of Modena, Modena, Italy; Department of Medical and Surgical Sciences, Experimental Pneumology Laboratory, University of Modena and Reggio Emilia, Modena, Italy; Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy.
| | - Massimo Dominici
- Health Extended Alliance (HEAL) ITALIA for innovative therapies, Italy; Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences and Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
2
|
Tang C, Dziedzic A, Khatib MN, Alhumaid S, Thangavelu L, Parameswari RP, Satapathy P, Zahiruddin QS, Rustagi S, Alanazi MA, Al-Thaqafy MS, Hazazi A, Alotaibi J, Al Faraj NJ, Al-Zaki NA, Al Marshood MJ, Al Saffar TY, Alsultan KA, Al-Ahmed SH, Rabaan AA. Stem cell therapy for COVID-19 treatment: an umbrella review. Int J Surg 2024; 110:6402-6417. [PMID: 38967503 PMCID: PMC11487013 DOI: 10.1097/js9.0000000000001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND COVID-19 has presented significant obstacles to healthcare. Stem cell therapy, particularly mesenchymal stem cells, has emerged as a potential treatment modality due to its immunomodulatory and regenerative properties. This umbrella review aims to synthesize current evidence from systematic reviews on the safety and efficacy of stem cell therapy in COVID-19 treatment. METHODS A thorough literature search was performed across Embase, PubMed, Cochrane, and Web of Science from December 2019 to February 2024. Systematic reviews focusing on the use of stem cell therapy for COVID-19 were included. Evidence was synthesized by meta-analysis using R software (V 4.3) for each outcome. The certainty of evidence was assessed using the GRADE approach. RESULTS A total of 24 systematic reviews were included. Stem cell therapy was associated with reduced mortality [risk ratio (RR) 0.72, 95% CI: 0.60-0.86]; shorter hospital stays (mean difference -4.00 days, 95% CI: -4.68 to -3.32), and decreased need for invasive ventilation (RR 0.521, 95% CI: 0.320-0.847). Symptom remission rates improved (RR 1.151, 95% CI: 0.998-1.330), and a reduction in C-reactive protein levels was noted (standardized mean difference -1.198, 95% CI: -2.591 to 0.195), albeit with high heterogeneity. For adverse events, no significant differences were found between stem cell therapy and standard care (RR 0.87, 95% CI: 0.607-1.265). The certainty of evidence ranged from low to moderate. CONCLUSION Stem cell therapy demonstrates a potential benefit in treating COVID-19, particularly in reducing mortality and hospital stay duration. Despite these promising findings, the evidence is varied, and future large-scale randomized trials are essential to confirm the efficacy and optimize the therapeutic protocols for stem cell therapy in the management of the disease. The safety profile is encouraging, with no significant increase in adverse events, suggesting a viable avenue for treatment expansion.
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, Katowice, Poland
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education
| | - Saad Alhumaid
- School of Pharmacy, University of Tasmania, Hobart, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - RP Parameswari
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Majid S. Al-Thaqafy
- Infection Prevention and Control Department, King Abdulaziz Medical City, National Guard Health Affairs
- Epidemiology and Public Health, King Abdullah International Medical Research Center, National Guard Health Affairs
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Jeddah
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh
| | | | | | | | | | | | | | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
3
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
4
|
Martínez-Muñoz ME, Payares-Herrera C, Lipperheide I, Malo de Molina R, Salcedo I, Alonso R, Martín-Donaire T, Sánchez R, Zafra R, García-Berciano M, Trisán-Alonso A, Pérez-Torres M, Ramos-Martínez A, Ussetti P, Rubio JJ, Avendaño-Solà C, Duarte RF. Mesenchymal stromal cell therapy for COVID-19 acute respiratory distress syndrome: a double-blind randomised controlled trial. Bone Marrow Transplant 2024; 59:777-784. [PMID: 38409332 DOI: 10.1038/s41409-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/28/2024]
Abstract
Mesenchymal stromal cells (MSC) have immunomodulatory and tissue-regenerative properties and have shown promising results in acute respiratory distress syndrome (ARDS) of multiple causes, including COVID-19. We conducted a randomised (1:1), placebo-controlled, double-blind clinical trial to assess the efficacy and safety of one bone marrow-derived MSC infusion in twenty patients with moderate to severe ARDS caused by COVID-19. The primary endpoint (increase in PaO2/FiO2 ratio from baseline to day 7, MSC 83.3 versus placebo 57.6) was not statistically significant, although a clinical improvement at day 7 in the WHO scale was observed in MSC patients (5, 50% vs 0, 0%, p = 0.033). Median time to discontinuation of supplemental oxygen was also shorter in the experimental arm (14 versus 23 days, p = 0.007), resulting in a shorter hospital stay (17.5 versus 28 days, p = 0.042). No significant differences were observed for other efficacy or safety secondary endpoints. No infusion or treatment-related serious adverse events occurred during the one-year follow-up. This study did not meet the primary endpoint of PaO2/FiO2 increase by day 7, although it suggests that MSC are safe in COVID-19 ARDS and may accelerate patients' clinical recovery and hospital discharge. Larger studies are warranted to elucidate their role in ARDS and other inflammatory lung disorders.Trial Registration: EudraCT Number: 2020-002193-27, registered on July 14th, 2020, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002193-27/ES . NCT number: NCT04615429, registered on November 4th, 2020, https://clinicaltrials.gov/ct2/show/NCT04615429 .
Collapse
Affiliation(s)
- María E Martínez-Muñoz
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Concepción Payares-Herrera
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Inés Lipperheide
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Rosa Malo de Molina
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Isabel Salcedo
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rosalía Alonso
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Trinidad Martín-Donaire
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rocío Sánchez
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Rocío Zafra
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Miguel García-Berciano
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
| | - Andrea Trisán-Alonso
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Manuel Pérez-Torres
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Antonio Ramos-Martínez
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Internal Medicine and Infectious Diseases, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Piedad Ussetti
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Pneumology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Juan J Rubio
- Intensive Care Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Cristina Avendaño-Solà
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain
- Department of Clinical Pharmacology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Rafael F Duarte
- Department of Haematology and GMP Cellular Therapy Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
- Instituto de Investigación Sanitaria Puerta de Hierro Segovia Arana, Madrid, Spain.
| |
Collapse
|
5
|
Gazzaniga G, Voltini M, Carletti A, Lenta E, Meloni F, Briganti DF, Avanzini MA, Comoli P, Belliato M. Potential application of mesenchymal stromal cells as a new therapeutic approach in acute respiratory distress syndrome and pulmonary fibrosis. Respir Res 2024; 25:170. [PMID: 38637860 PMCID: PMC11027419 DOI: 10.1186/s12931-024-02795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
While the COVID-19 outbreak and its complications are still under investigation, post-inflammatory pulmonary fibrosis (PF) has already been described as a long-term sequela of acute respiratory distress syndrome (ARDS) secondary to SARS-CoV2 infection. However, therapeutical strategies for patients with ARDS and PF are still limited and do not significantly extend lifespan. So far, lung transplantation remains the only definitive treatment for end-stage PF. Over the last years, numerous preclinical and clinical studies have shown that allogeneic mesenchymal stromal cells (MSCs) might represent a promising therapeutical approach in several lung disorders, and their potential for ARDS treatment and PF prevention has been investigated during the COVID-19 pandemic. From April 2020 to April 2022, we treated six adult patients with moderate COVID-19-related ARDS in a late proliferative stage with up to two same-dose infusions of third-party allogeneic bone marrow-derived MSCs (BM-MSCs), administered intravenously 15 days apart. No major adverse events were registered. Four patients completed the treatment and reached ICU discharge, while two received only one dose of MSCs due to multiorgan dysfunction syndrome (MODS) and subsequent death. All four survivors showed improved gas exchanges (PaO2/FiO2 ratio > 200), contrary to the others. Furthermore, LDH trends after MSCs significantly differed between survivors and the deceased. Although further investigations and shared protocols are still needed, the safety of MSC therapy has been recurrently shown, and its potential in treating ARDS and preventing PF might represent a new therapeutic strategy.
Collapse
Affiliation(s)
- Giulia Gazzaniga
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy.
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands.
| | - Marta Voltini
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Carletti
- SC Anestesia e Rianimazione 3 - TIPO, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Lenta
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Meloni
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Domenica Federica Briganti
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Pediatric Hematology/Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Patrizia Comoli
- SSD Cell Factory and Center for Advanced Therapies, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Pediatric Hematology/Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mirko Belliato
- SC Anestesia e Rianimazione 2, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, Pavia, PV, 27100, Italy
| |
Collapse
|
6
|
Curley GF, O’Kane CM, McAuley DF, Matthay MA, Laffey JG. Cell-based Therapies for Acute Respiratory Distress Syndrome: Where Are We Now? Am J Respir Crit Care Med 2024; 209:789-797. [PMID: 38324017 PMCID: PMC10995569 DOI: 10.1164/rccm.202311-2046cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.
Collapse
Affiliation(s)
- Gerard F. Curley
- Department of Anaesthesia, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Michael A. Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - John G. Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland; and
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
7
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
8
|
Kelly CJ, Lindsay SL, Smith RS, Keh S, Cunningham KT, Thümmler K, Maizels RM, Campbell JDM, Barnett SC. Development of Good Manufacturing Practice-Compatible Isolation and Culture Methods for Human Olfactory Mucosa-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:743. [PMID: 38255817 PMCID: PMC10815924 DOI: 10.3390/ijms25020743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.
Collapse
Affiliation(s)
- Christopher J. Kelly
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Susan L. Lindsay
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rebecca Sherrard Smith
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Siew Keh
- New Victoria Hospital, 55 Grange Road, Glasgow G42 9LF, UK
| | - Kyle T. Cunningham
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Katja Thümmler
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rick M. Maizels
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - John D. M. Campbell
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
- Tissues Cells and Advanced Therapeutics, SNBTS, Jack Copland Centre, Edinburgh EH14 4BE, UK
| | - Susan C. Barnett
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| |
Collapse
|
9
|
Lightner AL, Sengupta V, Qian S, Ransom JT, Suzuki S, Park DJ, Melson TI, Williams BP, Walsh JJ, Awili M. Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicle Infusion for the Treatment of Respiratory Failure From COVID-19: A Randomized, Placebo-Controlled Dosing Clinical Trial. Chest 2023; 164:1444-1453. [PMID: 37356708 PMCID: PMC10289818 DOI: 10.1016/j.chest.2023.06.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BM-MSC)-derived extracellular vesicles (ExoFlo) convey the immunomodulatory and regenerative properties of intact BM-MSCs. This study aimed to determine the safety and efficacy of ExoFlo as treatment for moderate to severe ARDS in patients with severe COVID-19. RESEARCH QUESTION Do two doses of ExoFlo safely reduce mortality in COVID-19-associated moderate to severe ARDS compared with placebo? STUDY DESIGN AND METHODS A prospective phase 2 multicenter double-anonymized randomized placebo-controlled dosing trial was conducted at five sites across the United States with infusions of placebo, 10 mL of ExoFlo, or 15 mL of ExoFlo on days 1 and 4. Patients (N = 102) with COVID-19-associated moderate to severe ARDS were enrolled and randomized to treatment. Adverse events were documented throughout the study. The primary outcome measure was all-cause 60-day mortality rate. Secondary outcomes included time to death (overall mortality); the incidence of treatment-emergent serious adverse events; proportion of discharged patients at 7, 30, and 60 days; time to hospital discharge; and ventilation-free days. RESULTS No treatment-related adverse events were reported. Mortality (60-day) in the intention-to-treat population was reduced with 15 mL ExoFlo mixed with 85 mL normal saline (ExoFlo-15) compared with placebo (not significant, χ2, P = .1343). For the post hoc subgroup analyses, 60-day mortality was decreased with ExoFlo-15 compared with placebo (relative risk, 0.385; 95% CI, 0.159-0.931; P = .0340; n = 50). With ExoFlo-15, a relative risk of 0.423 (95% CI, 0.173-1.032; P = .0588; n = 24) was determined for participants aged 18 to 65 years with moderate to severe ARDS. Ventilation-free days improved with ExoFlo-15 (P = .0455; n = 50) for all participants aged 18 to 65 years. INTERPRETATION The 15 mL dose of ExoFlo was found to be safe in patients with severe or critical COVID-19-associated respiratory failure. In participants aged 18 to 65 years, the risk reduction in 60-day mortality was further improved from subjects of all ages in the intention-to-treat population after two doses of 15 mL of ExoFlo compared with placebo. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; No.: NCT04493242; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
| | | | | | | | | | - David J Park
- Providence St Jude Medical Center/Providence Medical Foundation, Fullerton, CA
| | | | | | | | | |
Collapse
|
10
|
Herzig MC, Christy BA, Montgomery RK, Cantu-Garza C, Barrera GD, Lee JH, Mucha N, Talackine JR, Abaasah IA, Bynum JA, Cap AP. Short-term assays for mesenchymal stromal cell immunosuppression of T-lymphocytes. Front Immunol 2023; 14:1225047. [PMID: 37822938 PMCID: PMC10562633 DOI: 10.3389/fimmu.2023.1225047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Trauma patients are susceptible to coagulopathy and dysfunctional immune responses. Mesenchymal stromal cells (MSCs) are at the forefront of the cellular therapy revolution with profound immunomodulatory, regenerative, and therapeutic potential. Routine assays to assess immunomodulation activity examine MSC effects on proliferation of peripheral blood mononuclear cells (PBMCs) and take 3-7 days. Assays that could be done in a shorter period of time would be beneficial to allow more rapid comparison of different MSC donors. The studies presented here focused on assays for MSC suppression of mitogen-stimulated PBMC activation in time frames of 24 h or less. Methods Three potential assays were examined-assays of apoptosis focusing on caspase activation, assays of phosphatidyl serine externalization (PS+) on PBMCs, and measurement of tumor necrosis factor alpha (TNFα) levels using rapid ELISA methods. All assays used the same initial experimental conditions: cryopreserved PBMCs from 8 to 10 pooled donors, co-culture with and without MSCs in 96-well plates, and PBMC stimulation with mitogen for 2-72 h. Results Suppression of caspase activity in activated PBMCs by incubation with MSCs was not robust and was only significant at times after 24 h. Monitoring PS+ of live CD3+ or live CD4+/CD3+ mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, 2 h, although no increase in the percentage of PS+ cells was seen with time. The ability of MSC in co-culture to suppress PBMC PS+ externalization compared favorably to two concomitant assays for MSC co-culture suppression of PBMC proliferation, at 72 h by ATP assay, or at 96 h by fluorescently labeled protein signal dilution. TNFα release by mitogen-activated PBMCs was dose dependent, reproducible, robust, and evident at the earliest time point taken, with accumulating signal over time. However, suppression levels with MSC co-culture was reliably seen only after 24 h. Discussion Takeaways from these studies are as follows: (1) while early measures of PBMC activation is evident at 2-6 h, immunosuppression was only reliably detected at 24 h; (2) PS externalization at 24 h is a surrogate assay for MSC immunomodulation; and (3) rapid ELISA assay detection of TNFα release by PBMCs is a robust and sensitive assay for MSC immunomodulation at 24 h.
Collapse
Affiliation(s)
- Maryanne C. Herzig
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Barbara A. Christy
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Robbie K. Montgomery
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Carolina Cantu-Garza
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Gema D. Barrera
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Ji H. Lee
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Nicholas Mucha
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Jennifer R. Talackine
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - Isaac A. Abaasah
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| | - James A. Bynum
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
- Department of Surgery, University of Texas, Health Science Center, San Antonio, TX, United States
| | - Andrew P. Cap
- Blood and Shock Research, US Army Institute of Surgical Research, Fort Sam Houston, TX, United States
| |
Collapse
|
11
|
Gorman EA, Rynne J, Gardiner HJ, Rostron AJ, Bannard-Smith J, Bentley AM, Brealey D, Campbell C, Curley G, Clarke M, Dushianthan A, Hopkins P, Jackson C, Kefela K, Krasnodembskaya A, Laffey JG, McDowell C, McFarland M, McFerran J, McGuigan P, Perkins GD, Silversides J, Smythe J, Thompson J, Tunnicliffe WS, Welters IDM, Amado-Rodríguez L, Albaiceta G, Williams B, Shankar-Hari M, McAuley DF, O'Kane CM. Repair of Acute Respiratory Distress Syndrome in COVID-19 by Stromal Cells (REALIST-COVID Trial): A Multicenter, Randomized, Controlled Clinical Trial. Am J Respir Crit Care Med 2023; 208:256-269. [PMID: 37154608 DOI: 10.1164/rccm.202302-0297oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Rationale: Mesenchymal stromal cells (MSCs) may modulate inflammation, promoting repair in coronavirus disease (COVID-19)-related acute respiratory distress syndrome (ARDS). Objectives: We investigated the safety and efficacy of ORBCEL-C (CD362 [cluster of differentiation 362]-enriched, umbilical cord-derived MSCs) in COVID-19-related ARDS. Methods: In this multicenter, randomized, double-blind, allocation-concealed, placebo-controlled trial (NCT03042143), patients with moderate to severe COVID-19-related ARDS were randomized to receive ORBCEL-C (400 million cells) or placebo (Plasma-Lyte 148). The primary safety and efficacy outcomes were the incidence of serious adverse events and oxygenation index at Day 7, respectively. Secondary outcomes included respiratory compliance, driving pressure, PaO2:FiO2 ratio, and Sequential Organ Failure Assessment score. Clinical outcomes relating to duration of ventilation, lengths of ICU and hospital stays, and mortality were collected. Long-term follow-up included diagnosis of interstitial lung disease at 1 year and significant medical events and mortality at 2 years. Transcriptomic analysis was performed on whole blood at Days 0, 4, and 7. Measurements and Main Results: Sixty participants were recruited (final analysis: n = 30 received ORBCEL-C, n = 29 received placebo; 1 participant in the placebo group withdrew consent). Six serious adverse events occurred in the ORBCEL-C group and three in the placebo group (risk ratio, 2.9 [95% confidence interval, 0.6-13.2]; P = 0.25). Day 7 mean (SD) oxygenation index did not differ (ORBCEL-C, 98.3 [57.2] cm H2O/kPa; placebo, 96.6 [67.3] cm H2O/kPa). There were no differences in secondary surrogate outcomes or in mortality at Day 28, Day 90, 1 year, or 2 years. There was no difference in the prevalence of interstitial lung disease at 1 year or significant medical events up to 2 years. ORBCEL-C modulated the peripheral blood transcriptome. Conclusion: ORBCEL-C MSCs were safe in subjects with moderate to severe COVID-19-related ARDS but did not improve surrogates of pulmonary organ dysfunction.
Collapse
Affiliation(s)
- Ellen A Gorman
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jennifer Rynne
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah J Gardiner
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Anthony J Rostron
- Sunderland Royal Hospital, South Tyneside and Sunderland National Health Service Foundation Trust, Sunderland, United Kingdom
- Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Andrew M Bentley
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester, United Kingdom
| | - David Brealey
- University College Hospital London, London, United Kingdom
| | | | - Gerard Curley
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mike Clarke
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Ahilanadan Dushianthan
- University Hospital Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Phillip Hopkins
- King's Trauma Centre, King's College Hospital, London, United Kingdom
| | - Colette Jackson
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Kallirroi Kefela
- Department of Critical Care, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anna Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John G Laffey
- Regenerative Medicine Institute at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Cliona McDowell
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Margaret McFarland
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jamie McFerran
- Northern Ireland Clinical Trials Unit, Belfast, United Kingdom
| | - Peter McGuigan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Gavin D Perkins
- Critical Care Unit, University Hospitals Birmingham, Birmingham, United Kingdom
- Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jonathan Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Jon Smythe
- National Health Service Blood and Transplant, Oxford, United Kingdom
| | - Jacqui Thompson
- National Health Service Blood and Transplant, Birmingham, United Kingdom
| | | | - Ingeborg D M Welters
- Intensive Care Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Institute of Life Course Medical Sciences, University of Liverpool, Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Laura Amado-Rodríguez
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Guillermo Albaiceta
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
- Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain; and
| | - Barry Williams
- Independent Patient and Public Representative, Sherborne, United Kingdom
| | - Manu Shankar-Hari
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Bukreieva T, Svitina H, Nikulina V, Vega A, Chybisov O, Shablii I, Ustymenko A, Nemtinov P, Lobyntseva G, Skrypkina I, Shablii V. Treatment of Acute Respiratory Distress Syndrome Caused by COVID-19 with Human Umbilical Cord Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24054435. [PMID: 36901868 PMCID: PMC10003440 DOI: 10.3390/ijms24054435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
This study aimed to identify the impact of mesenchymal stem cell transplantation on the safety and clinical outcomes of patients with severe COVID-19. This research focused on how lung functional status, miRNA, and cytokine levels changed following mesenchymal stem cell transplantation in patients with severe COVID-19 pneumonia and their correlation with fibrotic changes in the lung. This study involved 15 patients following conventional anti-viral treatment (Control group) and 13 patients after three consecutive doses of combined treatment with MSC transplantation (MCS group). ELISA was used to measure cytokine levels, real-time qPCR for miRNA expression, and lung computed tomography (CT) imaging to grade fibrosis. Data were collected on the day of patient admission (day 0) and on the 7th, 14th, and 28th days of follow-up. A lung CT assay was performed on weeks 2, 8, 24, and 48 after the beginning of hospitalization. The relationship between levels of biomarkers in peripheral blood and lung function parameters was investigated using correlation analysis. We confirmed that triple MSC transplantation in individuals with severe COVID-19 was safe and did not cause severe adverse reactions. The total score of lung CT between patients from the Control and MSC groups did not differ significantly on weeks 2, 8, and 24 after the beginning of hospitalization. However, on week 48, the CT total score was 12 times lower in patients in the MSC group (p ≤ 0.05) compared to the Control group. In the MSC group, this parameter gradually decreased from week 2 to week 48 of observation, whereas in the Control group, a significant drop was observed up to week 24 and remained unchanged afterward. In our study, MSC therapy improved lymphocyte recovery. The percentage of banded neutrophils in the MSC group was significantly lower in comparison with control patients on day 14. Inflammatory markers such as ESR and CRP decreased more rapidly in the MSC group in comparison to the Control group. The plasma levels of surfactant D, a marker of alveocyte type II damage, decreased after MSC transplantation for four weeks in contrast to patients in the Control group, in whom slight elevations were observed. We first showed that MSC transplantation in severe COVID-19 patients led to the elevation of the plasma levels of IP-10, MIP-1α, G-CSF, and IL-10. However, the plasma levels of inflammatory markers such as IL-6, MCP-1, and RAGE did not differ between groups. MSC transplantation had no impact on the relative expression levels of miR-146a, miR-27a, miR-126, miR-221, miR-21, miR-133, miR-92a-3p, miR-124, and miR-424. In vitro, UC-MSC exhibited an immunomodulatory impact on PBMC, increasing neutrophil activation, phagocytosis, and leukocyte movement, activating early T cell markers, and decreasing effector and senescent effector T cell maturation.
Collapse
Affiliation(s)
- Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Hanna Svitina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Viktoriia Nikulina
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Alyona Vega
- Department of Infectious Diseases, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Oleksii Chybisov
- Endoscopic Unit, CNE Kyiv City Clinical Hospital # 4, 03110 Kyiv, Ukraine
| | - Iuliia Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
| | - Alina Ustymenko
- Laboratory of Cell and Tissue Cultures, Department of Cell and Tissue Technologies, Institute of Genetic and Regenerative Medicine, State Institution, 04114 Kyiv, Ukraine
- National Scientific Center “Institute of Cardiology, Clinical and Regenerative Medicine n.a. M. D. Strazhesko”, National Academy of Medical Sciences of Ukraine, 03680 Kyiv, Ukraine
- Laboratory of Pathophysiology and Immunology, D. F. Chebotarev State Institute of Gerontology of the National Academy of Medical Sciences of Ukraine, 04114 Kyiv, Ukraine
| | - Petro Nemtinov
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Coordination Center for Transplantation of Organs, Tissues and Cells, Ministry of Health of Ukraine, 01021 Kyiv, Ukraine
| | - Galyna Lobyntseva
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Institute of Molecular Biology and Genetics, Department of Functional Genomics, National Academy of Science, 150 Zabolotnogo Str., 03143 Kyiv, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, 03035 Kyiv, Ukraine
- Correspondence: (I.S.); (V.S.)
| |
Collapse
|