1
|
Talarico F, Koçak Y, Macirella R, Sesti S, Yüksel E, Brunelli E. Eye morphology in four species of tiger beetles (Coleoptera: Cicindelidae). ZOOLOGY 2024; 165:126173. [PMID: 38820711 DOI: 10.1016/j.zool.2024.126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024]
Abstract
Compound eyes undoubtedly represent the widespread eye architecture in the animal kingdom. The insects' compound eye shows a wide variety of designs, and insects use their visual capacity to accomplish several tasks, including avoiding enemies, searching for food and shelter, locating a mate, and acquiring information about the environment and its surroundings. Broad literature data support the concept that visual ability lies in the way the eyes are built. Since the resolution and sensitivity of the compound eye are partly determined by the density of the ommatidia and the size of the facets. Morphological parameters of the compound eyes could influence the function of the visual organ and its capacity to process information, also representing a sensitive indicator of different habitat demands. In this study, we compared compound eyes' parameters in four closely related species of tiger beetles to disclose differences arising from different habitats. Furthermore, to investigate whether there are consistent intersexual differences, we also compared the most relevant parameters of the eye in males and females of four selected species. Our results show sex-related and interspecific differences that occur in examined species.
Collapse
Affiliation(s)
- Federica Talarico
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy.
| | - Yavuz Koçak
- Ankara Hacı Bayram Veli University, Faculty of Polatlı Art and Science, Department of Biology, Ankara 06900, Turkey
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy.
| | - Settimio Sesti
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Eşref Yüksel
- Gazi University, Faculty of Science, Department of Biology, Teknikokullar, Ankara 06500, Turkey
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy.
| |
Collapse
|
2
|
Acal DA, Sulikowska-Drozd A, Jaskuła R. Filling the gaps in ecology of tropical tiger beetles (Coleoptera: Cicindelidae): first quantitative data of sexual dimorphism in semi-arboreal Therates from the Philippine biodiversity hotspot. PeerJ 2024; 12:e16956. [PMID: 38495761 PMCID: PMC10944163 DOI: 10.7717/peerj.16956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/25/2024] [Indexed: 03/19/2024] Open
Abstract
Background Sexual dimorphism, driven by sexual selection, leads to varied morphological distinctions in male and female insects, providing insights into selection pressures across species. However, research on the morphometric variability within specific taxa of tiger beetles (Coleoptera: Cicindelidae), particularly arboreal and semi-arboreal species, remains very limited. Methods We investigate sexual dimorphism in six semi-arboreal Therates tiger beetle taxa from the Philippines, focusing on morphological traits. We employed morphometric measurements and multivariate analyses to reveal patterns of sexual dimorphism between sexes within the taxa. Results Our results indicate significant sexual dimorphism in elytra width, with females consistently displaying broader elytra, potentially enhancing fecundity. Notable sexual size dimorphism was observed in Therates fulvipennis bidentatus and T. coracinus coracinus, suggesting heightened sexual selection pressures on male body size. Ecological factors, mating behavior, and female mate choice might contribute to the observed morphological variation. These findings emphasize the need for further studies to comprehend mating dynamics, mate choice, and ecological influences on morphological variations in semi-arboreal and arboreal tiger beetles.
Collapse
Affiliation(s)
- Dale Ann Acal
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Anna Sulikowska-Drozd
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Radomir Jaskuła
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
3
|
Lemic D, Viric Gasparic H, Majcenic P, Pajač Živković I, Bjeliš M, Suazo MJ, Correa M, Hernández J, Benítez HA. Wing Shape Variation between Terrestrial and Coastal Populations of the Invasive Box Tree Moth, Cydalima perspectalis, in Croatia. Animals (Basel) 2023; 13:3044. [PMID: 37835650 PMCID: PMC10571768 DOI: 10.3390/ani13193044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The box tree moth (Cydalima perspectalis Walker, 1859; Lepidoptera: Crambidae) is an invasive species naturally distributed in Asia. The caterpillars in all developmental stages cause damage through defoliation of plants, and ultimately the death of the plant itself may occur. It is possible to recognize this species by its silk barriers and threads, and in the case of an intense attack, the entire plant will be covered with them. In Europe, this species' presence was first recorded in 2007 in Germany and the Netherlands, and it is now widely distributed. In Croatia, its existence was first recorded in 2012, in Istria, while substantial damages were recorded in 2013. This work aimed to determine the morphological variability of C. perspectalis from Croatia and assess its invasive character, the possibility of flight, and the risk of further spread. The methods of geometric morphometrics were used as the analysis of wing shape. A total of 269 moths from different locations in Croatia were collected, the upper wings of males and females were analyzed using 14 landmarks. Significant differences in wing shapes between terrestrial and coastal populations were found, as well as subtle wing shape sexual dimorphism. The implications of this variability in species invasiveness and capacity of spread are discussed in this paper. We also extrapolate the usefulness of our results and suggest strategies for predicting and managing invasive species.
Collapse
Affiliation(s)
- Darija Lemic
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (D.L.); (P.M.); (I.P.Ž.)
| | - Helena Viric Gasparic
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (D.L.); (P.M.); (I.P.Ž.)
| | - Patricija Majcenic
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (D.L.); (P.M.); (I.P.Ž.)
| | - Ivana Pajač Živković
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia; (D.L.); (P.M.); (I.P.Ž.)
| | - Mario Bjeliš
- Department of Marine Studies, University of Split, Ruđera Boškovića 31, 21000 Split, Croatia;
| | - Manuel J. Suazo
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile;
| | - Margarita Correa
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile; (M.C.); (J.H.)
| | - Jordan Hernández
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile; (M.C.); (J.H.)
- Programa de Doctorado en Salud Ecosistémica, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile
- Cape Horn International Center (CHIC), Puerto Williams 6350000, Chile
| | - Hugo A. Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile; (M.C.); (J.H.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8370993, Chile
| |
Collapse
|
4
|
Benítez HA, Sukhodolskaya RA, Avtaeva TA, Escobar-Suárez S, Órdenes-Claveria R, Laroze D, Hernández-P R, Vavilov DN. Quantifying elevational effect on the geometric body shape of Russian beetle Carabus exaratus (Coleoptera: Carabidae). ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Benítez HA, Püschel TA, Suazo MJ. Drosophila Wing Integration and Modularity: A Multi-Level Approach to Understand the History of Morphological Structures. BIOLOGY 2022; 11:biology11040567. [PMID: 35453766 PMCID: PMC9025964 DOI: 10.3390/biology11040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 01/12/2023]
Abstract
Simple Summary The diverse components of any morphological structure are integrated with respect to each other since they have developed, functioned, and evolved together, a phenomenon known as integration. However, this integration is not absolute but organized in units (i.e., modules) that are relatively independent while participating to generate a structure that acts as a functional whole. Even though most of the studies on modularity and integration have focused on variation among individuals within populations, there are more levels of variation that exhibit modularity and integration, deriving from distinct sources such as genetic variation, phenotypic plasticity, fluctuating asymmetry, evolutionary change, among others. Consequently, the present study focused on analysing the integration and modularity of the wing shape of some of the best-known model organisms, i.e., the genus Drosophila, at the static, developmental, and evolutionary levels to acquire a better insight about how modularity and integration act at different analytical levels. The strong integration and overall similarities observed in the variation pattern at multiple levels suggest a shared mechanism underlying the observed variation in Drosophila’s wing shape and added a new piece of evidence of stasis in the evolutionary history of Drosophila wing. Abstract Static, developmental, and evolutionary variation are different sources of morphological variation which can be quantified using morphometrics tools. In the present study we have carried out a comparative multiple level study of integration (i.e., static, developmental, and evolutionary) to acquire insight about the relationships that exist between different integration levels, as well as to better understand their involvement in the evolutionary processes related to the diversification of Drosophila’s wing shape. This approach was applied to analyse wing evolution in 59 species across the whole genus in a large dataset (~10,000 wings were studied). Static integration was analysed using principal component analysis, thus providing an integration measurement for overall wing shape. Developmental integration was studied between wing parts by using a partial least squares method between the anterior and posterior compartments of the wing. Evolutionary integration was analysed using independent contrasts. The present results show that all Drosophila species exhibit strong morphological integration at different levels. The strong integration and overall similarities observed at multiple integration levels suggest a shared mechanism underlying this variation, which could result as consequence of genetic drift acting on the wing shape of Drosophila.
Collapse
Affiliation(s)
- Hugo A. Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8370993, Chile
- Correspondence:
| | - Thomas A. Püschel
- Ecology and Evolutionary Biology Division, School of Biological Sciences, University of Reading, Reading RG6 6AH, UK;
- Institute of Human Sciences, School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX1 2JD, UK
| | - Manuel J. Suazo
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile;
| |
Collapse
|
6
|
Jaskuła R, Schwerk A, Płóciennik M. Morphological variability in Lophyra flexuosa (Fabricius, 1787) (Coleoptera, Cicindelidae) in desert countries is affected by sexual dimorphism and geographic aspect. Ecol Evol 2021; 11:17527-17536. [PMID: 34938527 PMCID: PMC8668792 DOI: 10.1002/ece3.8387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Lophyra flexuosa, a eurytopic tiger beetle characterized by long phenological activity, wide geographic and altitudinal distribution, and occurring in the highest number of habitats among all Cicindelidae known from North Africa, was chosen to study its geographic variation in morphology and sexual dimorphism. Here, we found significant sexual dimorphism exhibited in larger body size of females and longer mandibles in males, which can be explained by different roles of particular sexes in courtship. Moreover, we recorded significant differences in body sizes between western and eastern Maghreb populations which could suggest genetic isolation between these populations. As the species is related to habitats placed close to the water reservoirs, which in the desert countries are under significant human pressure (including climate change), we expect a reduction of habitat occupied by this taxon. Therefore, the geographic morphological variability that we observe today in the tiger beetle Lophyra flexuosa in the future could lead to speciation.
Collapse
Affiliation(s)
- Radomir Jaskuła
- Department of Invertebrate Zoology & HydrobiologyFaculty of Biology & Environmental ProtectionUniversity of LodzLodzPoland
| | - Axel Schwerk
- Department of Landscape ArtInstitute of Environmental EngineeringWarsaw University of Life Sciences‐SGGWWarsawPoland
| | - Mateusz Płóciennik
- Department of Invertebrate Zoology & HydrobiologyFaculty of Biology & Environmental ProtectionUniversity of LodzLodzPoland
| |
Collapse
|
7
|
Benítez HA, Sukhodolskaya RA, Órdenes-Claveria R, Vavilov DN, Ananina T. Assessing the shape plasticity between Russian biotopes in Pterostichus dilutipes (Motschulsky, 1844) (Coleoptera: Carabidae) a geometric morphometric approach. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Budečević S, Savković U, Đorđević M, Vlajnić L, Stojković B. Sexual Dimorphism and Morphological Modularity in Acanthoscelides obtectus (Say, 1831) ( Coleoptera: Chrysomelidae): A Geometric Morphometric Approach. INSECTS 2021; 12:insects12040350. [PMID: 33919947 PMCID: PMC8070904 DOI: 10.3390/insects12040350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The seed beetle Acanthoscelides obtectus used in this study is a worldwide pest species that inhabits storage facilities and fields of beans. Knowing that sexual dimorphism is very common among insects, we investigated the level of morphological differences between the sexes. Such an approach allowed us to look into the modular organization of this organism. As expected, the females were larger than the males. The observed two modular organization (thorax and abdomen) was sex specific, indicating that reproductive function has the central role in forming the patterns of modularity. It seems that natural selection is driving force for females, while males are influenced more by sexual selection. Abstract Sexual dimorphism and specific patterns of development contribute in a great manner to the direction and degree of the sexual differences in body size and shape in many insects. Using a landmark-based geometric morpohometrics approach, we investigated sex-specific morphological size and shape variation in the seed beetle, Acanthoscelides obtectus. We also tested the functional hypothesis of the two morphological modules—thorax and abdomen in both sexes. Female-biased sexual dimorphism in size was shown, while differences in shape were reflected in the wider thorax and abdomen and shorter abdomen in females in comparison to males. The functional hypothesis of a two-module body was confirmed only in females before correction for size, and in both sexes after the allometry correction. Our results indicate that reproductive function has the central role in forming the patterns of modularity. We hypothesize that high morphological integration of the abdomen in females results from intense stabilizing selection, while the more relaxed integration in males is driven by the higher intensity of sexual selection.
Collapse
Affiliation(s)
- Sanja Budečević
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (U.S.); (M.Đ.)
- Correspondence:
| | - Uroš Savković
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (U.S.); (M.Đ.)
| | - Mirko Đorđević
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (U.S.); (M.Đ.)
| | - Lea Vlajnić
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (L.V.); (B.S.)
| | - Biljana Stojković
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia; (L.V.); (B.S.)
| |
Collapse
|
9
|
Regueira JC, Damasceno EM, Iannuzzi L. Shape variation of Cydianerus latruncularius (Coleoptera, Curculionidae) across biomes and sexes. ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Benítez HA, Sukhodolskaya RA, Órdenes-Clavería R, Avtaeva TA, Kushalieva SA, Saveliev AA. Measuring the Inter and Intraspecific Sexual Shape Dimorphism and Body Shape Variation in Generalist Ground Beetles in Russia. INSECTS 2020; 11:insects11060361. [PMID: 32531974 PMCID: PMC7349662 DOI: 10.3390/insects11060361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022]
Abstract
Ground beetles in multiple species vary greatly in the expression of the shape on sexual traits, resulting in a sexual shape dimorphism as a consequence of sexual selection differences. The present research focuses on the study of inter and intrasexual sexual shape dimorphism of two generalist genera of ground beetles Pterostichus and Carabus. Geometric morphometric methods were applied to five generalist species of ground beetles Carabus exaratus, C. granulatus, Pterostichus melanarius, P. niger, and P. oblongopunctatus and several multivariate analyses were applied for two different traits, abdomen and elytra. Three of the five species analyzed showed high levels of sex-based shape dimorphism. However, the most generalist species, P. melanarius and P. oblongopunctatus, did not evidence shape-based sexual dimorphism differentiation in both of the analyzed traits, as statistically confirmed based on the permutation of pairwise comparison of the Mahalanobis distances of a sex–species classifier. It is generally known that environmental stress in natural populations can affect the fitness expression, principally related to sexual fecundity, being that this pattern is more evident in non-generalist species. In our results, the contrary pattern was found, with the absence of sexual shape dimorphism for two of the three generalist species analyzed. On the other hand, the interspecies shape variation was clearly identified using principal component analysis of both of the analyzed traits. Finally, this research is the first to analyze the relationship between sexual shape dimorphism in Russian ground beetles, evidencing the lack of understanding of the mechanism underlying the sexual dimorphism, especially in species living in extreme environments.
Collapse
Affiliation(s)
- Hugo A. Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile;
- Correspondence: ; Tel.: +56-978895630
| | - Raisa A. Sukhodolskaya
- Institute of Ecology and Mineral Resource Management Academy of Sciences of Tatarstan Republic, Tatarstan, Kazan 420000, Russia;
| | - Rodrigo Órdenes-Clavería
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca 3466706, Chile;
| | - Tamara A. Avtaeva
- Kh. Ibragimov Complex Institute of the Russian Academy of Sciences, Grozny 364014, Russia;
| | - Shapaat A. Kushalieva
- Department of Biology and Methods of Teaching (Head), Chechen State Pedagogical University, Grozny 364014, Russia;
| | - Anatoly A. Saveliev
- Department of Ecosystem Modeling, Kazan (Volga Region) Federal University, Kazan 420000, Russia;
| |
Collapse
|