1
|
Carrillo JFC, Boaretto AG, Santana DJ, Silva DB. Skin secretions of Leptodactylidae (Anura) and their potential applications. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230042. [PMID: 38374940 PMCID: PMC10876013 DOI: 10.1590/1678-9199-jvatitd-2023-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/04/2023] [Indexed: 02/21/2024] Open
Abstract
The skin of anuran species is a protective barrier against predators and pathogens, showing also chemical defense by substances that represent a potential source for bioactive substances. This review describes the current chemical and biological knowledge from the skin secretions of Leptodactylidae species, one of the most diverse neotropical frog families. These skin secretions reveal a variety of substances such as amines (12), neuropeptides (16), and antimicrobial peptides (72). The amines include histamine and its methylated derivatives, tryptamine derivatives and quaternary amines. The peptides of Leptodactylidae species show molecular weight up to 3364 Da and ocellatins are the most reported. The peptides exhibit commonly glycine (G) or glycine-valine (GV) as C-terminal amino acids, and the most common N-terminal amino acids are glutamic acid (E), lysine (K), and valine (V). The substances from Leptodactylidae species have been evaluated against pathogenic microorganisms, particularly Escherichia coli and Staphylococcus aureus, and the most active peptides showed MIC of 1-15 µM. Furthermore, some compounds showed also pharmacological properties such as immunomodulation, treatment of degenerative diseases, anticancer, and antioxidant. Currently, only 9% of the species in this family have been properly studied, highlighting a large number of unstudied species such as an entire subfamily (Paratelmatobiinae). The ecological context, functions, and evolution of peptides and amines in this family are poorly understood and represent a large field for further exploration.
Collapse
Affiliation(s)
- Juan F. C. Carrillo
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Amanda Galdi Boaretto
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Natural Products and Mass Spectrometry (LaPNEM),
Faculty of Pharmaceutical Sciences, Food and Nutrition (FACFAN), Federal University
of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Diego J. Santana
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
- Laboratory of Systematics and Biogeography of Amphibians and
Reptiles (Mapinguari), Institute of Biosciences, Federal University of Mato Grosso
do Sul, Campo Grande, MS, Brazil
| | - Denise Brentan Silva
- Program in Ecology and Conservation, Institute of Biosciences,
Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
2
|
Souza KL, Melo S, Peixoto MA, Travenzoli NM, Feio RN, Dergam JA. Repetitive DNA Mapping in Five Genera of Tree Frogs (Amphibia: Anura) from the Atlantic Forest: New Highlights on Genomic Organization in Hylidae. Cytogenet Genome Res 2024; 163:317-326. [PMID: 38368863 DOI: 10.1159/000537875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION The tribes Cophomantini, Scinaxini, and Dendropsophini are anurans that belong to Hylidae, with wide distribution in tropical and subtropical regions around the world. The taxonomy and systematics of this family remain in a state of ongoing revision. Previous cytogenetic analyses of genera Boana, Bokermannohyla, Ololygon, Scinax, and Dendropsophus described some karyotypic characters such as conventional staining, C-banding and NORs, and FISH with specific probes. METHODS This study describes for the first time the karyotypes of four species: Bokermannohyla ibitipoca, Ololygon luizotavioi, Dendropsophus bipunctatus, and Dendropsophus ruschii. Furthermore, we map CA(15) and CAT(10) microsatellite sites for the aforementioned species and six more species from the same genera for insight into the chromosomal evolution within the subfamily Hyalinae. RESULTS B. ibitipoca and O. luizotavioi had 2n = 24 and karyotypic formulas 18m + 4sm + 2st and 8m + 12sm + 4st, while D. bipunctatus and D. ruschii showed 2n = 30 and karyotypic formulas 12m + 12sm + 4st + 2t and 10m + 10sm + 6st + 4t, respectively. The diploid numbers and karyotypic formulas revealed here follow the previously reported trend for Hylidae, except B. ibitipoca has a particularity of eight metacentric chromosomes, more than what is commonly found in species of this genus. The microsatellites probes CA(15) and CAT(10) had markings accumulated in blocks in the centromeric, pericentromeric, and terminal regions that were more specific for some species, as well as markings scattered along the chromosomes. We present a comprehensive review table of current data on cytogenetics of these genera. CONCLUSION Our findings showed that the karyotypes of the hylids studied here majority fit the postulated conserved diploid number (2n = 24) and morphological chromosome patterns, while the mapping of the microsatellites enabled us to detect differences between species that share similar chromosomal morphologies.
Collapse
Affiliation(s)
- Késsia Leite Souza
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Silvana Melo
- Department of Structural and Functional Biology, Laboratory of Fish Biology and Genetics, Botucatu Institute of Biosciences, Paulista State University, Botucatu, Brazil
| | - Marco Antônio Peixoto
- Department of General Biology, Biometrics Laboratory, Federal University of Viçosa, Vicosa, Brazil
| | - Natália Martins Travenzoli
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Renato Neves Feio
- Department of Animal Biology, Museum of Zoology João Moojen (MZUFV), Federal University of Viçosa, Vicosa, Brazil
| | - Jorge Abdala Dergam
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| |
Collapse
|
3
|
Carvalho TR, Fouquet A, Lyra ML, Giaretta AA, Costa-Campos CE, Rodrigues MT, Haddad CFB, Ron SR. Species diversity and systematics of the Leptodactylus melanonotus group (Anura, Leptodactylidae): review of diagnostic traits and a new species from the Eastern Guiana Shield. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2089269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thiago R. Carvalho
- Laboratório de Herpetologia, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Mariana L. Lyra
- Laboratório de Herpetologia, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Ariovaldo A. Giaretta
- Laboratório de Taxonomia e Evolução de Anuros Neotropicais, Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG, Brazil
| | - C. Eduardo Costa-Campos
- Laboratório de Herpetologia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Macapá, AP, Brazil
| | - Miguel T. Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Célio F. B. Haddad
- Laboratório de Herpetologia, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
4
|
Valchi P, Ponssa ML, Farías A, Volonteri MC, Hermida GN. Comparative spermatozoa ultrastructure of neotropical grass frogs (genus Leptodactylus) with comments on anuran reproductive modes and phylogeny. ZOOL ANZ 2022. [DOI: 10.1016/j.jcz.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Fouquet A, Cornuault J, Rodrigues MT, Werneck FP, Hrbek T, Acosta-Galvis AR, Massemin D, J. R. Kok P, Ernst R. Diversity, biogeography and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae). Mol Phylogenet Evol 2022; 170:107442. [DOI: 10.1016/j.ympev.2022.107442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
|
6
|
Haddad CF, Lopes CM, Becker CG, da Silva FR, Lyra ML. From genes to ecosystems: a synthesis of amphibian biodiversity research in Brazil. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Here, we summarize examples of significant advances in amphibian research supported by the São Paulo Research Foundation (FAPESP), focusing on recent discoveries in the fields of community ecology, habitat change, infection diseases, and multipurpose DNA sequencing. We demonstrated that FAPESP has been fundamental not only by directly funding research projects and scholarships, but also through its science training policy, fostering international collaborations with world-class research institutions, improving and consolidating new lines of research that often depended on a synergetic combination of different knowledge and complex tools. We emphasized that future studies will continue to focus on basic questions, such as description of new species, as well as taxonomic and systematic corrections. Furthermore, we also expect that there will be a strong integration among different disciplines using novel bioinformatics tools and modeling approaches, such as machine learning. These new approaches will be critical to further develop our understanding of foundational questions of amphibian life-history trait variation, disease transmission, community assembly, biogeography, and population forecasts under different global change scenarios such as agricultural expansion, agrochemical use, habitat loss, and climate change.
Collapse
|
7
|
Tadpoles' Resistance to Desiccation in Species of Leptodactylus (Anura, Leptodactylidae). J HERPETOL 2021. [DOI: 10.1670/20-051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Schneider RG, Ferro JM, Reinko IN, Boeris JM, Cardozo DE, Baldo D. Sex chromosomes in the Vizcacheras' White-lipped frog, Leptodactylus bufonius (Anura, Leptodactylidae). AN ACAD BRAS CIENC 2021; 93:e20190426. [PMID: 34105608 DOI: 10.1590/0001-3765202120190426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/13/2019] [Indexed: 11/21/2022] Open
Abstract
Cytogenetic analyses were performed on specimens of Leptodactylus bufonius from different localities in Argentina. Mitotic chromosomes were studied with Giemsa and differential staining techniques (Ag-NOR, C-banding, and CMA3/DAPI) and fluorescence in situ hybridization with the 18S DNAr probe. All specimens showed karyotypes with 2n = 2x = 22 and FN = 44. Secondary constrictions were present in the long arm of chromosome pair 8, coincident with Ag-NOR and hybridization signals of the 18S DNAr probe. The C-banding technique evidenced an important amount of heterochromatin with a sex-linked pericentromeric band in the short arm of chromosome pair 4. This heterochromatic band was heteromorphic in males but present in both homologues of females, and it was CMA3 positive (DAPI negative) at fluorescence staining. The occurrence of heteromorphic XY sex chromosomes in L. bufonius is the second known case in Leptodactylus and the fifth within the speciose family Leptodactylidae.
Collapse
Affiliation(s)
- Rosio G Schneider
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 6to Piso, CPA N3300LQF, Posadas, Misiones, Argentina
| | - Juan M Ferro
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 6to Piso, CPA N3300LQF, Posadas, Misiones, Argentina
| | - Ivana N Reinko
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 6to Piso, CPA N3300LQF, Posadas, Misiones, Argentina
| | - Juan M Boeris
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 6to Piso, CPA N3300LQF, Posadas, Misiones, Argentina
| | - Darío E Cardozo
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 6to Piso, CPA N3300LQF, Posadas, Misiones, Argentina
| | - Diego Baldo
- Laboratorio de Genética Evolutiva "Claudio Juan Bidau", Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Félix de Azara 1552, 6to Piso, CPA N3300LQF, Posadas, Misiones, Argentina
| |
Collapse
|
9
|
Gazoni T, Dorigon NS, da Silva MJ, Cholak LR, Haddad CFB, Parise-Maltempi PP. Chromosome Mapping of U2 snDNA in Species of Leptodactylus (Anura, Leptodactylidae). Cytogenet Genome Res 2021; 161:63-69. [PMID: 33823507 DOI: 10.1159/000515047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022] Open
Abstract
Small nuclear RNA (snRNA) is a class of molecules involved in the processing of pre-mRNA and in regulatory cell processes. snRNAs are always associated with a set of specific proteins. The complexes are referred to as small nuclear ribonucleoproteins, and spliceosome U RNAs are their most common snRNA components. The repetitive sequences of U snDNAs have been cytogenetically mapped in several species of Arthropoda, fishes, and mammals; however, their distribution remains unknown in amphibians. Here, we show results of FISH mapping of U2 snDNA repetitive sequences in species of the amphibian genus Leptodactylus to reveal the distribution patterns of this sequence in their karyotypes. The probe hybridized in the metacentric chromosome pair 6 in Leptodactylus fuscus, L. gracilis, L. latrans, L. chaquensis, L. petersii, L. podicipinus, and L. brevipes. A different pattern was observed in L. labyrinthicus with hybridization signals in 4 chromosome pairs. The same localization of U2 gene sequences in most of the species analyzed suggests a relatively conserved pattern and a similarity of the chromosome 6 among these species of Leptodactylus.
Collapse
Affiliation(s)
- Thiago Gazoni
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Nathália S Dorigon
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Marcelo J da Silva
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Luiza R Cholak
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Célio F B Haddad
- Departamento de Biodiversidade e Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| | - Patricia P Parise-Maltempi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Rio Claro, Brazil
| |
Collapse
|