1
|
Mercati D, Giglio A, Brandmayr P, Lupetti P, Dallai R. The spermatheca ultrastructure of the ground beetle Clinidium canaliculatum (Costa) (Carabidae, Rhysodinae). Micron 2024; 187:103721. [PMID: 39306919 DOI: 10.1016/j.micron.2024.103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 11/12/2024]
Abstract
The ground beetle Clinidium canaliculatum is a member of Rhysodinae, a taxon with still discussed systematic position. The spermatheca of this species is a small cylindrical structure connected to the common oviduct by a thin duct. The ultrastructure of the organ has revealed that the apical receptacle is provided with an epithelium lined by a thick cuticle from the deeper region of which several finger-like cuticular structures extend into the cytoplasm. On these structures adhere microtubule bundles that cross the whole cytoplasm to anchor on short densities along the basal plasma membrane. These specializations are strongly reminiscent of the hemidesmosomes, possibly playing a mechanical role enabling the cells to resist to the muscle contractions pushing the sperm towards the spermathecal duct. The cells are rich in mitochondria and glycogen granules and they are possibly involved in fluid uptake from the spermathecal lumen. The spermathecal duct has a simple epithelium lined by a soft cuticle. The sperm present in the apical receptacle and in the duct lumen maintain the structure described in the male genital apparatuses. They are generally free and embedded in a homogeneous electron-dense material. Occasionally, a sperm bundle, still with an apical cap, was visible in the spermathecal receptacle.
Collapse
Affiliation(s)
- David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Anita Giglio
- Department of Biology, Ecology and Earth Sciences, Di.B.E.S.T., University of Calabria, Cosenza, Italy.
| | - Pietro Brandmayr
- Department of Biology, Ecology and Earth Sciences, Di.B.E.S.T., University of Calabria, Cosenza, Italy.
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
2
|
Sollai G, Giglio A, Giulianini PG, Crnjar R, Solari P. Topic: Arthropod Biodiversity: Ecological and Functional Aspects. INSECTS 2024; 15:766. [PMID: 39452342 PMCID: PMC11509084 DOI: 10.3390/insects15100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Invertebrate animals with a segmented body, exoskeleton, and articulated appendages represent the largest phylum in the animal kingdom, Arthropoda, and account for over 80% of all known living species [...].
Collapse
Affiliation(s)
- Giorgia Sollai
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy;
| | | | - Roberto Crnjar
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy;
| |
Collapse
|
3
|
Vommaro ML, Donato S, Caputo S, Agostino RG, Montali A, Tettamanti G, Giglio A. Anatomical changes of Tenebrio molitor and Tribolium castaneum during complete metamorphosis. Cell Tissue Res 2024; 396:19-40. [PMID: 38409390 PMCID: PMC10997553 DOI: 10.1007/s00441-024-03877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
In holometabolous insects, extensive reorganisation of tissues and cells occurs at the pupal stage. The remodelling of the external exoskeleton and internal organs that intervenes during metamorphosis has been traditionally studied in many insect species based on histological or ultrastructural methods. This study demonstrates the use of synchrotron X-ray phase-contrast micro-computed tomography as a powerful, non-destructive tool for in situ morphological observation of anatomical structures at the pupal stage in two Tenebrionid beetles, i.e. Tribolium castaneum and Tenebrio molitor, known as important pests, as well as emerging and promising models in experimental biology. Virtual sections and three-dimensional reconstructions were performed on both males and females at early, intermediate, and late pupal stage. The dataset allowed us to observe the remodelling of the gut and nervous system as well as the shaping of the female and male reproductive system at different pupal ages in both mealworm and red flour beetles. Moreover, we observed that the timing and duration pattern of organ development varied between the species analysed, likely related to the species-specific adaptations of the pre-imaginal stages to environmental conditions, which ultimately affect their life cycle. This research provides new knowledge on the morphological modifications that occur during the pupal stage of holometabolous insects and provides a baseline set of information on beetle metamorphosis that may support future research in forensics, physiology, and ecology as well as an image atlas for educational purposes.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Sandro Donato
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
- Istituto Nazionale di Fisica Nucleare, Division of Frascati, Rome, Italy
| | - Simone Caputo
- University of Calabria, Department of Environmental Engineering, Rende, Italy
| | - Raffaele G Agostino
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
| | - Aurora Montali
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
| | - Gianluca Tettamanti
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
4
|
Windfelder AG, Steinbart J, Flögel U, Scherberich J, Kampschulte M, Krombach GA, Vilcinskas A. A quantitative micro-tomographic gut atlas of the lepidopteran model insect Manduca sexta. iScience 2023; 26:106801. [PMID: 37378344 PMCID: PMC10291339 DOI: 10.1016/j.isci.2023.106801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/26/2023] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
The tobacco hornworm is used extensively as a model system for ecotoxicology, immunology and gut physiology. Here, we established a micro-computed tomography approach based on the oral application of the clinical contrast agent iodixanol, allowing for a high-resolution quantitative analysis of the Manduca sexta gut. This technique permitted the identification of previously unknown and understudied structures, such as the crop or gastric ceca, and revealed the underlying complexity of the hindgut folding pattern, which is involved in fecal pellet formation. The acquired data enabled the volume rendering of all gut parts, the reliable calculation of their volumes, and the virtual endoscopy of the entire alimentary tract. It can provide information for accurate orientation in histology uses, enable quantitative anatomical phenotyping in three dimensions, and allow the calculation of locally effective midgut concentrations of applied chemicals. This atlas will provide critical insights into the evolution of the alimentary tract in lepidopterans.
Collapse
Affiliation(s)
- Anton G. Windfelder
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Jessica Steinbart
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Scherberich
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Gabriele A. Krombach
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Germany
| | - Andreas Vilcinskas
- Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Vommaro ML, Donato S, Lo LK, Brandmayr P, Giglio A. Anatomical study of the red flour beetle using synchrotron radiation X-ray phase-contrast micro-tomography. J Anat 2023; 242:510-524. [PMID: 36417320 PMCID: PMC9919503 DOI: 10.1111/joa.13796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Synchrotron X-ray phase-contrast microtomography (SR-PhC micro-CT) is well established, fast and non-destructive imaging technique for data acquisition that is currently being used to obtain new insights into insect anatomy and function in physiological, morphological and phylogenetic studies. In this study, we described in situ the internal organs of the red flour beetle Tribolium castaneum Herbst 1797, a widespread pest of cereals and stored food causing serious damage to the human economy. Two-dimensional virtual sections and volumetric reconstructions of the nervous, alimentary and reproductive systems were carried out in both sexes. The results provided a comprehensive overview of the morphological characteristics of this species, such as the different maturation stages of ovarioles and the realistic location, size and shape of internal organs. Given the great interest in this model species in experimental biology and forensic entomology, complete knowledge of the general anatomy is required for future functional applications in pest control and experimental studies. In addition, this study confirms SR-PhC micro-CT as a powerful and innovative tool in entomology, particularly suitable for small species and chitinized structures that are difficult to analyse using conventional dissection and histological methods.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| | - Sandro Donato
- Department of PhysicsUniversity of CalabriaCosenzaItaly
- Division of Frascati, Istituto Nazionale di Fisica NucleareRomeItaly
| | - Lai Ka Lo
- Animal Evolutionary Ecology GroupInstitute for Evolution and Biodiversity, University of MünsterMünsterGermany
| | - Pietro Brandmayr
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| | - Anita Giglio
- Department of Biology, Ecology and Earth ScienceUniversity of CalabriaCosenzaItaly
| |
Collapse
|
6
|
Exploring Compound Eyes in Adults of Four Coleopteran Species Using Synchrotron X-ray Phase-Contrast Microtomography (SR-PhC Micro-CT). Life (Basel) 2022; 12:life12050741. [PMID: 35629408 PMCID: PMC9145526 DOI: 10.3390/life12050741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/17/2022] Open
Abstract
Compound eyes in insects are primary visual receptors of surrounding environments. They show considerable design variations, from the apposition vision of most day-active species to the superposition vision of nocturnal insects, that sacrifice resolution to increase sensitivity and are able to overcome the challenges of vision during lightless hours or in dim habitats. In this study, Synchrotron radiation X-ray phase-contrast microtomography was used to describe the eye structure of four coleopteran species, showing species-specific habitat demands and different feeding habits, namely the saproxylic Clinidium canaliculatum (Costa, 1839) (Rhysodidae), the omnivorous Tenebrio molitor (Linnaeus, 1758) and Tribolium castaneum (Herbest, 1797) (Tenebrionidae), and the generalist predator Pterostichus melas italicus (Dejean, 1828) (Carabidae). Virtual sections and 3D volume renderings of the heads were performed to evaluate the application and limitations of this technique for studying the internal dioptrical and sensorial parts of eyes, and to avoid time-consuming methods such as ultrastructural analyses and classic histology. Morphological parameters such as the area of the corneal facet lens and cornea, interocular distance, facet density and corneal lens thickness were measured, and differences among the studied species were discussed concerning the differences in lifestyle and habitat preferences making different demands on the visual system. Our imaging results provide, for the first time, morphological descriptions of the compound eyes in these species, supplementing their ecological and behavioural traits.
Collapse
|