1
|
Salem HF, Nafady MM, Khallaf RA, Abdel-Sattar AR, Abdel-Sattar HH, Eissa EM. Implementing losartan potassium-laden pegylated nanocubic vesicles as a novel nanoplatform to alleviate cisplatin-induced nephrotoxicity via blocking apoptosis and activating the wnt/β-catenin/TCF-4 pathway. Life Sci 2024; 354:122955. [PMID: 39122109 DOI: 10.1016/j.lfs.2024.122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
AIMS Losartan potassium-laden pegylated nanocubic vesicles (LP-NCVs-PEG) have an intriguing kidney-targeted nanoplatform for acute renal injury via blocking apoptosis and activating wnt/β-catenin pathway. MAIN METHODS Utilizing a thin-film hydration methodology established on 42 full factorial design to produce LP loaded nanocubic formulations (LP-NCVs) which composed mainly from L-α-phosphatidylcholine and poloxamer. The optimization process was designed to select the formulation with maximum entrapment efficiency (EE %), maximum in-vitro drug release (Q8h), and minimum vesicle size (VS). The optimum formulation was then pegylated to obtain LP-NCVs-PEG formulation that shields NCVs from the harsh ecosystem of the stomach, improves their oral drug delivery performance and targets the proximal renal tubules with no systemic toxicity. Male albino rats were injected with Cisplatin (6 mg/kg, i.p.) alone or with LP-formulations (5 mg/kg/day). Kidney injury markers, inflammatory markers, apoptotic markers. Besides renal tissue expression of Wnt, β-Catenin, GSK-3β, renal RNA gene expression of TCF-4, LEF-1 and histopathology were also analyzed to display pharmacological study. KEY FINDINGS The pharmacokinetics studies demonstrated that LP-NCVs-PEG boosted LP bioavailability approximately 3.61 times compared to LP oral solution. Besides LP-NCVs-PEG may have an intriguing kidney-targeted nanoplatform for acute renal injury via decreased renal toxicity markers, renal expression of LEF-1, GSK3-β, caspase, TNF-α, NF-κB and TUNEL expression. Alternatively, increased renal tissue level of Bcl-2, wnt, β-catenin and TCF-4. SIGNIFICANCE LP-NCVs-PEG improved LP pharmacokinetics targeting the kidney and improved injury by activating wnt/β-catenin/TCF-4 pathway, blocking apoptosis, inflammation and renal toxicity markers suggesting it might be successful nephroprotective adjuvant therapy.
Collapse
Affiliation(s)
- Heba F Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Mohamed M Nafady
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University Beni-Suef, Egypt.
| | - Rasha A Khallaf
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | | | - Hend Hassan Abdel-Sattar
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University Beni-Suef, Egypt.
| | - Essam M Eissa
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
2
|
Salem HF, Nafady MM, Eissa EM, Abdel-Sattar HH, Khallaf RA. Assembly of In-Situ Gel Containing Nano-Spanlastics of an Angiotensin II Inhibitor as a Novel Epitome for Hypertension Management: Factorial Design Optimization, In-vitro Gauging, Pharmacokinetics, and Pharmacodynamics Appraisal. AAPS PharmSciTech 2024; 25:115. [PMID: 38755324 DOI: 10.1208/s12249-024-02823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
More than 1 billion people worldwide suffer from hypertension; therefore, hypertension management has been categorized as a global health priority. Losartan potassium (LP) is an antihypertensive drug with a limited oral bioavailability of about 33% since it undergoes the initial metabolic cycle. Thus, nasal administration is a unique route to overcome first-pass metabolism. The investigation focused on the potential effects of LP-loaded spanlastic vesicles (SNVs) on LP pharmacodynamics and pharmacokinetic parameters, utilizing a thin-film hydration methodology established on a 3122 full factorial design. Entrapment efficiency (EE%) ranged from 39.8 ± 3.87.8 to 83.8 ± 2.92% for LP-SNVs. Vesicle size (VS) varied from 205.5 ± 6.5.10 to 445.1 ± 13.52 nm, and the percentage of LP released after 8 h (Q8h) ranged from 30.8 ± 3.10 to 68.8 ± 1.45%. LP permeated through the nasal mucosa during 24 h and flocculated from 194.1 ± 4.90 to 435.3 ± 13.53 µg/cm2. After twenty-four hours, the optimal LP-SNVs in-situ gel showed 2.35 times more permeation through the nasal mucosa than the LP solution. It also lowered systolic blood pressure, so it is thought to be better than the reference formulation in terms of pharmacodynamics. The pharmacokinetics studies demonstrated that the intranasal LP-SNVs gel boosted its bioavailability approximately 6.36 times compared to the oral LP solution. Our research showed that intranasal LP-SNVs could be a good nanoplatform because they are well-tolerated and have possible pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Heba F Salem
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed M Nafady
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Essam M Eissa
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hend Hassan Abdel-Sattar
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Rasha A Khallaf
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
3
|
Thota SK, Dudhipala N, Katla V, Veerabrahma K. Cationic Solid SMEDDS of Efavirenz for Improved Oral Delivery: Development by Central Composite Design, In Vitro and In Vivo Evaluation. AAPS PharmSciTech 2023; 24:38. [PMID: 36653545 DOI: 10.1208/s12249-022-02495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
Efavirenz (EFV) is an anti-HIV drug with high dose and 40% oral bioavailability (BA). The aim was to improve the bioavailability by designing cationic solid SMEDDS. Solubility data, ternary phase diagrams, and central composite design were employed in design. Globule size, TEM, DSC, and SEM studies were used for characterization. Optimized L-SMEDDS contained 20 mg of EFV, 10 mg of Peceol, 43.5 mg of Tween 80, and 40 mg of Labrafac Lipophile WL-1349 and the characters included mean globule size-94 nm, PDI-0.255, and ZP-28 mV. Later, octadecylamine was added to get L-SMEDDS with + 38 mV charge. L-SMEDDS was converted into solid S-SMEDDS by adsorbing onto silica carriers. Syloid XDP was preferred based on flow and oil adsorption capacity. The % drug (EFV) release from powder, L-SMEDDS, and solid SMEDDS were 14.04, 94.47, and 85 respectively in first 30 min. TEM picture showed dispersed globules. DSC and SEM studies indicated the loss of drug crystallinity in S-SMEDDS. Pharmacokinetic (PK) studies in Wistar rats revealed 4.12 fold hike in BA for optimized cationic S-SMEDDS when compared to EFV suspension. Increased absorption could be due to the positive charge on globules. Thus, cationic S-SMEDDS emerged as a potential novel delivery system for improvement in BA and has scope for reducing the high dose for AIDS patients by future clinical studies.
Collapse
Affiliation(s)
- Sunil Kumar Thota
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Narendar Dudhipala
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Venumadhav Katla
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India
| | - Kishan Veerabrahma
- Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India. .,Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, 506009, India.
| |
Collapse
|
4
|
Janakiraman AK, Islam T, Liew KB, Elumalai M, Hanish Singh JC. Improved oral bioavailability of poorly water-soluble vorinostat by self-microemulsifying drug delivery system. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Vorinostat is a histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) with anticancer properties. However, it is plagued by low water solubility, low permeability (BCS class IV drug), and suboptimal pharmacokinetics. The purpose of the present study was to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of vorinostat. Capryol 90, labrasol, and polyethylene glycol (PEG 400) were selected as oil phase, surfactant, and co-surfactant, respectively. The vorinostat self-microemulsifying drug delivery systems were tested for self-microemulsifying time, phase separation, effect of pH, droplet size, zeta potential, dilution study, Fourier-transform infrared (FT-IR) spectroscopy analysis, and field emission scanning electron microscopy (FESEM). A rat model in vivo pharmacokinetic study was conducted for the optimized formulation against vorinostat pure drug powder.
Results
The results from the characterization studies showed that the optimized formulation (F7) self-microemulsification time was 1.4 ± 0.05 min and no precipitation or phase separation was observed. The mean droplet size, polydispersity index (PDI), and zeta potential of the optimized formulation (F7) were found to be 272.9 ± 82.7 nm, 0.415, and − 57.2 mV, respectively. The pharmacokinetic parameters of the optimized formulation (F7) showed a 1.6-fold increase in maximum concentration (Cmax) and a 3.6-fold increase in area under the curve (AUC(0−∞)), in comparison with pure drug in suspension.
Conclusions
The findings suggest that SMEDDS formulation could be an effective method for increasing the oral bioavailability of vorinostat, which is poorly water soluble.
Collapse
|
5
|
Suram D, Veerabrahma K. Design and Development of Solid SMEDDS and Liquisolid Formulations of Lovastatin, for Improved Drug Dissolution and In vivo Effects-a Pharmacokinetic and Pharmacodynamic Assessment. AAPS PharmSciTech 2022; 23:123. [PMID: 35460060 DOI: 10.1208/s12249-022-02272-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 01/04/2023] Open
Abstract
Lovastatin (Lov) is a lipid-lowering agent, with 5% bioavailability (BA) due to extensive first pass metabolism and poor solubility. To enhance dissolution and in vivo effects, Lov solid self microemulsifying drug delivery system (SMEDDS) and liquisolid systems were developed and evaluated to select superior one. Solubilities were determined in oils, surfactants, and cosurfactants. Ternary phase diagrams were constructed and selected the one which showed maximum emulsion zone. In vitro dissolution, DSC, SEM and PXRD studies were used to characterize the developed formulations. In vivo studies were conducted on optimal formulations in wistar rats. Based on solubilities, Capmul PG8 and Capmul MCM were preferred as oils, Labrasol and Transcutol P as surfactant and cosurfactant. Here, Syloid XDP carrier showed better adsorption capacity among others, hence was used in optimal solid SMEDDS (SX) and liquisolid (LS) formulations. Dissolution study results showed significant improvement in release when compared to pure drug. DSC, SEM, and PXRD results indicated the loss of drug crystallinity in optimal formulations. In pharmacokinetic (PK) study, SX and LS showed 2.57 and 1.43 fold improvements in AUC, when compared to that of coarse suspension (CS). In pharmacodynamic (PD) study, hyperlipidemia was induced by Triton X-100. CS and LS treatments showed a decline in hyperlipidemic levels at 4 h. But, SX-treated group showed early onset of decline at 2 h. Further, the duration of anti-hyperlipidemia was at least 12 h extra when compared to CS and LS. This study confirmed the superiority of SX over LS in PK and PD effects.
Collapse
|
6
|
Mishra V, Nayak P, Yadav N, Singh M, Tambuwala MM, Aljabali AAA. Orally administered self-emulsifying drug delivery system in disease management: advancement and patents. Expert Opin Drug Deliv 2020; 18:315-332. [PMID: 33232184 DOI: 10.1080/17425247.2021.1856073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Oral administration of a drug is the most common, ideal and preferred route of administration. The main problem of oral drug formulations is their low bioavailability arises from poor aqueous solubility of drug. Aqueous solubility of lipophilic drugs can be improved by various techniques like salt formation, complexation, addition of co-solvent etc. but self-emulsifying drug-delivery system (SEDDS) is getting more attention for increasing the solubility of such drugs. The SEDDS is an isotropic mixture of drug, lipids, and emulsifiers, usually with one or more hydrophilic co-solvents/co-emulsifiers. This system is having ability to generate oil-in-water (o/w) emulsions or microemulsions upon gentle agitation followed by dilution with aqueous phase. The SEDDSs are relatively newer, lipid-based technological innovations possessing unparalleled potential in improving oral bioavailability of poorly water-soluble drugs.Areas covered: This review provides updated information regarding the types of SEDDS, their preparation techniques, drug delivery and related recent patents along with marketed formulations.Expert opinion: The SEDDS has been explored for improving bioavailability, rising intra-subject heterogeneity, and increasing solubility. SEDDS offers the benefit of a protective effect against the hostile environment in the gut. The unique fabrication techniques provide specific strategy to overcome the low bioavailability and poor solubility problems.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pallavi Nayak
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Manvendra Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
7
|
Liang X, Hua Y, Liu Q, Li Z, Yu F, Gao J, Zhang H, Zheng A. Solid Self-Emulsifying Drug Delivery System (Solid SEDDS) for Testosterone Undecanoate: In Vitro and In Vivo Evaluation. Curr Drug Deliv 2020; 18:620-633. [PMID: 32887542 DOI: 10.2174/1567201817666200904172626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/01/2020] [Accepted: 08/15/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The current study aimed to investigate the potential of Solid Self-Emulsifying Drug Delivery Systems (solid SEDDS) loaded with Testosterone Undecanoate (TU) (solid TUSEDDS). The solid TU-SEDDS was composed of TU, Medium-Chain Triglycerides (MCT, oil), 2- Chloro-1-(chloromethyl) ethyl carbamate (EL-35, surfactant) and polyethylene glycol (PEG400, cosurfactant). It was expected to improve the dissolution and oral bioavailability of TU, as a result of investigating the feasibility of the clinical application of SEDDS. METHODS First, a TU-SEDDS was developed by using rational blends of components with the good solubilizing ability for TU. Next, a ternary phase diagram was constructed to determine the self-emulsifying region, and the formulation was optimized. Then, the solid TU-SEDDS formulation was established by screening suitable solid adsorptions. Finally, the prepared SEDDS, TUSEDDS and solid TU-SEDDS formulations were evaluated in vitro and in vivo. RESULTS The size of the solid TU-SEDDS was 189.1 ± 0.23 nm. The Transmission Electron Microscopy (TEM) results showed that the oil droplets were homogenous and spherical with good integrity. The Differential Scanning Calorimetry (DSC) and X-Ray Powder Dffraction (XRD) results indicated that the solid TU-SEDDS formulation almost preserves the amorphous state. Scanning Electron Microscopy (SEM) indicated that neusilin US2 successfully adsorbed the TU-SEDDS. Drug release indicated that the dissolution of the solid TU-SEDDS was faster than that of Andriol Testocaps ®. Furthermore, in vivo pharmacokinetic (PK) studies in Sprague-Dawley (SD) rats showed that the Area Under the Curve (AUC) of the solid TU-SEDDS (487.54±208.80 μg/L×h) was higher than that of Andriol Testocaps® (418.93±273.52 μg/L×h, P < 0.05). In beagles not fed a high-fat diet, the AUC of the solid TU-SEDDS (5.81±4.03 μg/L×h) was higher than that of Andriol Testocaps ® (5.53±3.43 μg/L×h, P > 0.05). In beagles fed a high-fat diet, the AUC of the solid TUSEDDS (38.18±21.90 μg/L×h) was higher than that of Andriol Testocaps® (37.17±13.79 μg/L×h, P > 0.05). CONCLUSION According to the results of this research, oral solid TU-SEDDS is expected to be another alternative delivery system for the late-onset hypogonadism. This is beneficial to the transformation of existing drug delivery systems into preclinical and clinical studies.
Collapse
Affiliation(s)
- Xi Liang
- TEAM Academy of Pharmaceutical Sciences Co. Ltd., Beijing 102488, China
| | - Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Qian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiguo Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Fanglin Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
8
|
Suram D, Narala A, Veerabrahma K. Development, characterization, comparative pharmacokinetic and pharmacodynamic studies of iloperidone solid SMEDDS and liquisolid compact. Drug Dev Ind Pharm 2020; 46:587-596. [DOI: 10.1080/03639045.2020.1742142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dinesh Suram
- Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
| | - Arjun Narala
- Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
| | - Kishan Veerabrahma
- Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
| |
Collapse
|