1
|
Łyszczarz E, Sosna O, Srebro J, Rezka A, Majda D, Mendyk A. Electrospun Amorphous Solid Dispersions with Lopinavir and Ritonavir for Improved Solubility and Dissolution Rate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1569. [PMID: 39404296 PMCID: PMC11478052 DOI: 10.3390/nano14191569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Lopinavir (LPV) and ritonavir (RTV) are two of the essential antiretroviral active pharmaceutical ingredients (APIs) characterized by poor solubility. Hence, attempts have been made to improve both their solubility and dissolution rate. One of the most effective approaches used for this purpose is to prepare amorphous solid dispersions (ASDs). To our best knowledge, this is the first attempt aimed at developing ASDs via the electrospinning technique in the form of fibers containing LPV and RTV. In particular, the impact of the various polymeric carriers, i.e., Kollidon K30 (PVP), Kollidon VA64 (KVA), and Eudragit® E100 (E100), as well as the drug content as a result of the LPV and RTV amorphization were investigated. The characterization of the electrospun fibers included microscopic, DSC, and XRD analyses, the assessment of their wettability, and equilibrium solubility and dissolution studies. The application of the electrospinning process led to the full amorphization of both the APIs, regardless of the drug content and the type of polymer matrix used. The utilization of E100 as a polymeric carrier for LPV and KVA for RTV, despite the beads-on-string morphology, had a favorable impact on the equilibrium solubility and dissolution rate. The results showed that the electrospinning method can be successfully used to manufacture ASDs with poorly soluble APIs.
Collapse
Affiliation(s)
- Ewelina Łyszczarz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Oskar Sosna
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Justyna Srebro
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Doctoral School of Medicinal and Health Sciences, Jagiellonian University Medical College, Św. Łazarza 16, 31-530 Cracow, Poland
| | - Aleksandra Rezka
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Dorota Majda
- Department of Chemical Technology, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Cracow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
2
|
Lalchandani DS, Chenkual L, Sonpasare K, Rajdev B, Naidu VGM, Chella N, Porwal PK. Optimization of atorvastatin and quercetin-loaded solid lipid nanoparticles using Box-Behnken design. Nanomedicine (Lond) 2024; 19:1541-1555. [PMID: 39012199 PMCID: PMC11321401 DOI: 10.1080/17435889.2024.2364585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: The study explores the synergistic potential of atorvastatin (ATR) and quercetin (QUER)- loaded solid lipid nanoparticles (SLN) in combating breast cancer. Materials & methods: SLNs were synthesized using a high-shear homogenization method and optimized using Box-Behnken design. The SLNs were characterized and evaluated for their in vitro anticancer activity. Results: The optimized SLN exhibited narrow size distribution (PDI = 0.338 ± 0.034), a particle size of 72.5 ± 6.5 nm, higher entrapment efficiency (<90%), sustained release and spherical surface particles. The in vitro cytotoxicity studies showed a significant reduction in IC50 values on MDA-MB-231 cell lines. Conclusion: We report a novel strategy of repurposing well-known drugs and encapsulating them into SLNs as a promising drug-delivery system against breast cancer.
Collapse
Affiliation(s)
- Dimple S. Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Laltanpuii Chenkual
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Kailas Sonpasare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - VGM Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam781101, India
| |
Collapse
|
3
|
Ali HSM, Namazi N, Elbadawy HM, El-Sayed AAA, Ahmed SA, Bafail R, Almikhlafi MA, Alahmadi YM. Repaglinide-Solid Lipid Nanoparticles in Chitosan Patches for Transdermal Application: Box-Behnken Design, Characterization, and In Vivo Evaluation. Int J Nanomedicine 2024; 19:209-230. [PMID: 38223883 PMCID: PMC10788056 DOI: 10.2147/ijn.s438564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Background Repaglinide (REP) is an antidiabetic drug with limited oral bioavailability attributable to its low solubility and considerable first-pass hepatic breakdown. This study aimed to develop a biodegradable chitosan-based system loaded with REP-solid lipid nanoparticles (REP-SLNs) for controlled release and bioavailability enhancement via transdermal delivery. Methods REP-SLNs were fabricated by ultrasonic hot-melt emulsification. A Box-Behnken design (BBD) was employed to explore and optimize the impacts of processing variables (lipid content, surfactant concentration, and sonication amplitude) on particle size (PS), and entrapment efficiency (EE). The optimized REP-SLN formulation was then incorporated within a chitosan solution to develop a transdermal delivery system (REP-SLN-TDDS) and evaluated for physicochemical properties, drug release, and ex vivo permeation profiles. Pharmacokinetic and pharmacodynamic characteristics were assessed using experimental rats. Results The optimized REP-SLNs had a PS of 249±9.8 nm and EE of 78%±2.3%. The developed REP-SLN-TDDS demonstrated acceptable characteristics without significant aggregation of REP-SLNs throughout the casting and drying processes. The REP-SLN-TDDS exhibited a biphasic release pattern, where around 36% of the drug load was released during the first 2 h, then the drug release was sustained at around 80% at 24 h. The computed flux across rat skin for the REP-SLN-TDDS was 2.481±0.22 μg/cm2/h in comparison to 0.696±0.07 μg/cm2/h for the unprocessed REP, with an enhancement ratio of 3.56. The REP-SLN-TDDS was capable of sustaining greater REP plasma levels over a 24 h period (p<0.05). The REP-SLN-TDDS also reduced blood glucose levels compared to unprocessed REP and commercial tablets (p<0.05) in experimental rats. Conclusion Our REP-SLN-TDDS can be considered an efficient therapeutic option for REP administration.
Collapse
Affiliation(s)
- Hany S M Ali
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nader Namazi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdelaziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Al-Sharqiya, Egypt
| | - Sameh A Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Yaser M Alahmadi
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, 30001Saudi Arabia
| |
Collapse
|
4
|
Jitta SR, Salwa, Bhaskaran NA, Marques SM, Kumar L, Cheruku SP, Rao V, Sharma P, Kulkarni OP. Enhanced tissue distribution of ritonavir-loaded nanostructured lipid carriers-recommending its dose reduction. Drug Deliv Transl Res 2024; 14:116-130. [PMID: 37402943 DOI: 10.1007/s13346-023-01386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
Human immunodeficiency virus (HIV) mainly attacks lymphocytes of the human immune system. The untreated infection leads to acquired immune deficiency syndrome (AIDS). Ritonavir (RTV) belongs to protease inhibitors (PIs), the crucial contributors of the combination therapy used in the treatment of HIV that is called highly active antiretroviral therapy (HAART). Formulations targeting the lymphatic system (LS) play a key role in delivering and maintaining therapeutic drug concentrations in HIV reservoirs. In our previous study, we developed RTV-loaded nanostructured lipid carriers (NLCs), which contain the natural antioxidant alpha-tocopherol (AT). In the current study, the cytotoxicity of the formulation was studied in HepG2, MEK293, and H9C2 cell lines. The formulation efficacy to reach the LS was evaluated through a cycloheximide-injected chylomicron flow blockade model in Wistar rats. Biodistribution and toxicity studies were conducted in rodents to understand drug distribution patterns in various organs and to establish the safety profile of the optimized formulation (RTV-NLCs). From the MTT assay, it was found that the cell viability of the formulation is comparable with the pure drug (RTV-API). More than 2.5-folds difference in AUC was observed in animals treated with RTV-NLCs with and without cycloheximide injection. Biodistribution studies revealed higher drug exposure in the lymphoidal organs with the RTV-NLCs. No significant increase in serum biomarkers for hepatotoxicity was observed in rats dosed with the RTV-NLCs. The current study reveals the lymphatic uptake of the RTV-NLCs and their safety in rodents. As the tissue distribution of RTV-NLCs is high, hence re-adjusting the RTV-NLCs dose to get the response equivalent to RTV-API may be more beneficial with respect to its safety and efficacy.
Collapse
Affiliation(s)
- Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, 844 102, Vaishali, Bihar, India.
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Vanishree Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104, Udupi, Karnataka, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, 500 078, Telangana State, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, 500 078, Telangana State, India
| |
Collapse
|
5
|
Yang RF, Peng YY, Wang YR. Enhancing Hot Air Drying Efficiency through Electrostatic Field-Ultrasonic Coupling Pretreatment. Foods 2023; 12:foods12081727. [PMID: 37107522 PMCID: PMC10137644 DOI: 10.3390/foods12081727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The drying of compact and biologically active materials presents significant challenges. In this study, we propose using electrostatic field-ultrasonic coupling pretreatment to enhance the drying efficiency of ginkgo fruits. We designed and constructed an experimental device to investigate the effects of ultrasonic power, pretreatment time, hot air drying temperature, and electrostatic field voltage on the moisture content of the fruits. We used the response surface methodology to identify optimal process conditions and further explored the kinetic model for the moisture content of the fruits under the pretreatment. The results showed that the optimal process parameters for electrostatic-ultrasound pretreatment and the drying of ginkgo fruits were: an electrostatic field voltage of 11.252 kV, an ultrasound power of 590.074 W, a pretreatment time of 32.799 min, and a hot air drying temperature of 85 °C. Under the optimized process conditions, the correlation between the moisture content of ginkgo fruits and the two-term drying kinetics model was the highest. After electrostatic-ultrasound coupling pretreatment, the drying rate of ginkgo fruits was significantly improved during hot air drying.
Collapse
Affiliation(s)
- Ri-Fu Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Ying-Ying Peng
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Yu-Rong Wang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
7
|
Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: Formulation, optimization, characterization, in vitro, and in vivo evaluation. Drug Deliv Transl Res 2023; 13:658-674. [PMID: 35978260 DOI: 10.1007/s13346-022-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
Andrographolide, the primary bioactive constituent of Andrographis paniculata, is a promising natural substance with numerous pharmacotherapy uses. Low water solubility, short half-life, and low permeability necessitate the development of a delivery system that enhances its entrapment efficiency, bioavailability, lymphatic targeting, and by-pass hepatic effect. The andrographolide-loaded solid lipid nanoparticles were fabricated by melt-emulsification and ultrasonication and optimized with Design-Expert software. In the optimal formulation, Glycerol monostearate as the solid lipid and Poloxamer 407 and Span 60 as surfactants were used. Optimum AND-SLN was observed to have a mean particle size, polydispersity index, zeta potential, and entrapment efficiency of 193.84 nm, 0.211, - 22.8 mV, and 83.70% respectively. An optimized formulation was characterized by examining surface morphology, X-ray diffraction, and differential scanning calorimetry. In vitro studies have shown sustained drug release from AND-SLN for up to 24 h. The stability studies showed that there was no significant change in the mean particle size and entrapment efficiency after storage at 4 ± 2 °C and 25 ± 2 °C/60 ± 5% RH. In in vivo pharmacokinetics studies, AND-SLN was found to have enhanced bioavailability and specificity in the spleen and thymus compared to plasma, providing evidence that the formulations could enhance target specificity and bioavailability in comparison to pure drugs. The H&E staining of the liver, spleen, and thymus treated with the AND-SLN revealed no signs of damage histopathologically. Thus, AND-SLN possess a high potential for improved efficacy and are an efficient vehicle for delivering drugs to the lymphatic system.
Collapse
|
8
|
Aanish Ali M, Rehman N, Park TJ, Basit MA. Antiviral role of nanomaterials: a material scientist's perspective. RSC Adv 2022; 13:47-79. [PMID: 36605642 PMCID: PMC9769549 DOI: 10.1039/d2ra06410c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The present world continues to face unprecedented challenges caused by the COVID-19 pandemic. Collaboration between researchers of multiple disciplines is the need of the hour. There is a need to develop antiviral agents capable of inhibiting viruses and tailoring existing antiviral drugs for efficient delivery to prevent a surge in deaths caused by viruses globally. Biocompatible systems have been designed using nanotechnological principles which showed appreciable results against a wide range of viruses. Many nanoparticles can act as antiviral therapeutic agents if synthesized by the correct approach. Moreover, nanoparticles can act as carriers of antiviral drugs while overcoming their inherent drawbacks such as low solubility, poor bioavailability, uncontrolled release, and side effects. This review highlights the potential of nanomaterials in antiviral applications by discussing various studies and their results regarding antiviral potential of nanoparticles while also suggesting future directions to researchers.
Collapse
Affiliation(s)
- Muhammad Aanish Ali
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| | - Nagina Rehman
- Department of Zoology, Government College University Allama Iqbal Road Faisalabad 38000 Pakistan
| | - Tae Joo Park
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan 15588 Republic of Korea
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad 44000 Pakistan
| |
Collapse
|
9
|
Karakucuk A, Canpinar H, Celebi N. Ritonavir nanosuspensions prepared by microfluidization with enhanced solubility and desirable immunological properties. Pharm Dev Technol 2022; 27:1027-1037. [PMID: 36343117 DOI: 10.1080/10837450.2022.2145309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objective of this study was to develop ritonavir (RTV) nanosuspensions (NSs) by microfluidization method. Particle size (PS) measurements were performed by photon correlation spectroscopy. Amorphous properties of the particles were evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dissolution studies were conducted in fed state simulated intestinal fluid (FeSSIF) medium. The flow cytometry was utilized to determine the lymphocyte sub-groups and immune response of NSs. RTV NSs were obtained with 400-500 nm PS. The crystal properties of RTV remain unchanged. The solubility of NS was enhanced five times. 57% and 18% of RTV were dissolved in FeSSIF medium for NSs and coarse powder. According to immunological studies, the prepared NSs did not significantly alter the ratio of CD4+/CD8+. Therefore, NSs may be a beneficial approach for the oral administration of RTV.
Collapse
Affiliation(s)
- Alptug Karakucuk
- Department of Pharmaceutical Technology, Ankara Medipol University Faculty of Pharmacy, Ankara, Turkey.,Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Hande Canpinar
- Department of Basic Oncology, School of Medicine, Institute of Oncology, Hacettepe University, Ankara, Turkey
| | - Nevin Celebi
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey.,Department of Pharmaceutical Technology, Baskent University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
10
|
Jitta SR, Salwa, Bhaskaran NA, Marques SM, Kumar L. Recent advances in nanoformulation development of Ritonavir, a key protease inhibitor used in the treatment of HIV-AIDS. Expert Opin Drug Deliv 2022; 19:1133-1148. [PMID: 36063032 DOI: 10.1080/17425247.2022.2121817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION AIDS is one of the world's most serious public health challenges. Protease inhibitors are key components of AIDS treatment regimen. Ritonavir is a well-known protease inhibitor with low aqueous solubility belonging to BCS class II category. Some of the severe adverse effects associated with this drug restricted its use in the treatment of AIDS. However, several attempts were made by researchers in the past to enhance the oral bioavailability of Ritonavir. AREAS COVERED The current review mainly focuses on the adverse effects of Ritonavir and recent approaches followed by researchers on the development of nanoformulations of Ritonavir. Further, various patents filed on Ritonavir have also been discussed in the current review. EXPERT OPINION Most research on nanoformulation development for Ritonavir is mainly focused on enhancing the solubility and oral bioavailability of the drug. Some of the researchers focused on the lymphatic targeting of the drug in order to bypass the hepatic metabolism of the drug. However, most of the research topics did not cover the toxicity evaluation of the developed formulation. Since the major issue of Ritonavir is not only oral bioavailability but also drug-induced toxicity, this area needs to be considered during the formulation development.
Collapse
Affiliation(s)
- Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Navya Ajitkumar Bhaskaran
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, India.,Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, Government of NCT of Delhi, New Delhi, India
| |
Collapse
|
11
|
Alhalmi A, Amin S, Beg S, Al-Salahi R, Mir SR, Kohli K. Formulation and optimization of naringin loaded nanostructured lipid carriers using Box-Behnken based design: In vitro and ex vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Sherif AY, Harisa GI, Alanazi FK, Nasr FA, Alqahtani AS. PEGylated SLN as a Promising Approach for Lymphatic Delivery of Gefitinib to Lung Cancer. Int J Nanomedicine 2022; 17:3287-3311. [PMID: 35924261 PMCID: PMC9342893 DOI: 10.2147/ijn.s365974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose The present study aimed to develop gefitinib-loaded solid lipid nanoparticles (GEF-SLN), and GEF-loaded PEGylated SLN (GEF-P-SLN) for targeting metastatic lung cancer through the lymphatic system. Methods The prepared SLNs were characterized in terms of physicochemical properties, entrapment efficiency, and in-vitro release. Furthermore, ex-vivo permeability was investigated using the rabbit intestine. Cytotoxicity and apoptotic effects were studied against A549 cell lines as a model for lung cancer. Results The present results revealed that the particle size and polydispersity index of the prepared formulations range from 114 to 310 nm and 0.066 to 0.350, respectively, with negative zeta-potential (−14 to −27.6). Additionally, SLN and P-SLN showed remarkable entrapment efficiency above 89% and exhibited sustained-release profiles. The permeability study showed that GEF-SLN and GEF-P-SLN enhanced the permeability of GEF by 1.71 and 2.64-fold, respectively, compared with GEF suspension. Cytotoxicity showed that IC50 of pure GEF was 3.5 μg/mL, which decreased to 1.95 and 1.8 μg/mL for GEF-SLN and GEF-P-SLN, respectively. Finally, the apoptotic study revealed that GEF-P-SLN decreased the number of living cells from 49.47 to 3.43 when compared with pure GEF. Conclusion These results concluded that GEF-P-SLN is a promising approach to improving the therapeutic outcomes of GEF in the treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Correspondence: Abdelrahman Y Sherif, Tel +966 500859725, Email
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Jitta SR, Bhaskaran NA, Salwa, Kumar L. Anti-oxidant Containing Nanostructured Lipid Carriers of Ritonavir: Development, Optimization, and In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2022; 23:88. [PMID: 35296970 DOI: 10.1208/s12249-022-02240-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is a condition caused by the infection of a retrovirus namely, human immunodeficiency virus (HIV). Currently, highly active anti-retroviral therapy (HAART), a combination of anti-viral drugs belonging to different classes is considered to be effective in the management of HIV. Ritonavir, a protease inhibitor (PI), is one of the most important components of the HAART regimen. Because of its lower bioavailability and severe side effects, presently, ritonavir is not being used as a PI. However, this drug is being used as a pharmacokinetic boosting agent for other PIs such as lopinavir and in lower doses. The current study aimed to develop nanostructured lipid carriers (NLCs) encapsulating ritonavir to reduce its side effects and enhance oral bioavailability. Ritonavir-loaded NLCs were developed using a combination of two different solid lipids and liquid lipids. Alpha-tocopherol, a well-known anti-oxidant, was used as an excipient (liquid lipid) in the development of NLCs which were prepared using a simple hot-emulsion and ultrasonication method. Drug-excipient studies were performed using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). QbD approach was followed for the screening and optimization of different variables. The developed NLCs were characterized for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). Furthermore, NLCs were studied for their in vitro drug release profile, and finally, pharmacokinetic parameters were determined using in vivo pharmacokinetic studies. The optimized NLC size was in the range of 273.9 to 458.7 nm, PDI of 0.314 to 0.480, ZP of -52.2 to - 40.9 mV, and EE in the range of 47.37 to 74.51%. From in vitro drug release, it was found that the release of drug in acidic medium was higher than phosphate buffer pH 6.8. Finally, in vivo pharmacokinetic studies revealed a 7-fold enhancement in the area under the curve (AUC) and more than 10-fold higher Cmax with the optimized formulation in comparison to pure drug suspension. Graphical Abstract.
Collapse
|
14
|
Shirvani A, Goli SAH, Varshosaz J, Sedaghat Doost A. Cinnamaldehyde encapsulation within new natural wax-based nanoparticles; formation, optimization and characterization. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2044843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Atefe Shirvani
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- Isfahan Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
15
|
Desai J, Thakkar H. Mechanistic evaluation of lymphatic targeting efficiency of Atazanavir sulfate loaded lipid nanocarriers: In-vitro and in-vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Padhi S, Azharuddin M, Behera A, Zakir F, Mirza MA, Chyad AA, Iqbal Z, Mansoor S. Nanocarriers as delivery tool for COVID-19 drugs. CORONAVIRUS DRUG DISCOVERY 2022:293-332. [DOI: 10.1016/b978-0-323-95574-4.00018-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Mishra KK, Kaur CD, Gupta A. Development of itraconazole loaded ultra-deformable transethosomes containing oleic-acid for effective treatment of dermatophytosis: Box-Behnken design, ex-vivo and in-vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Development of ritonavir-loaded nanostructured lipid carriers employing quality by design (QbD) as a tool: characterizations, permeability, and bioavailability studies. Drug Deliv Transl Res 2021; 12:1753-1773. [PMID: 34671949 DOI: 10.1007/s13346-021-01083-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 11/27/2022]
Abstract
The objective of the present work was to optimize ritonavir (RTV)-loaded nanostructured lipid carriers (NLCs) to improve bioavailability using a quality by design (QbD)-based technique. Risk assessment was studied using "cause and effect" diagram followed by failure mode effect analysis (FMEA) to identify the effective high-risk variables for the formulation development. Quality target product profile (QTPP) and critical quality attributes (CQAs) were initially assigned for the proposed product. Central composite rotatable design (CCRD) was used to identify the individual and combined interactions of formulation variables. RTV-loaded NLC (RTV-NLC) was prepared using emulsification-ultrasonication method. The effect of formulation variables like ultrasound amplitude, lipid concentration, surfactant concentration on their responses like particle size, polydispersity index (PDI), and entrapment efficiency (EE) were studied by CCRD. The optimized formulation was subjected to lyophilization to obtain dry NLCs for solid-state analysis. DSC and PXRD investigations showed that RTV was molecularly dispersed in lipid matrix indicating amorphous form present in the formulation. FESEM and AFM depicted the spherical and uniform particles. The increase in solubility and dissolution rate is expected to be related to the molecular dispersion, amorphous state, of the drug in the nanoparticle. The optimized NLCs showed good physical stability during storage for 6 months. RTV-NLC was further subjected to in vitro studies and found a successful sustained release rate of 92.37 ± 1.03%. The parallel artificial membrane permeability assay (PAMPA) and everted gut sac model have demonstrated the permeation enhancement of RTV. In vivo study observed the enhanced bioavailability with 2.86-fold suggesting optimized NLC successfully overcome the issue of solubility.
Collapse
|
19
|
Tammam SN, El Safy S, Ramadan S, Arjune S, Krakor E, Mathur S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J Control Release 2021; 337:258-284. [PMID: 34293319 PMCID: PMC8289726 DOI: 10.1016/j.jconrel.2021.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.
Collapse
Affiliation(s)
- Salma N Tammam
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt.
| | - Sara El Safy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Shahenda Ramadan
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo (GUC), 11835 Cairo, Egypt
| | - Sita Arjune
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Eva Krakor
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, Department of Chemistry, , University of Cologne, Greinstraße 6, 50939 Cologne, Germany
| |
Collapse
|
20
|
Pandya P, Giram P, Bhole RP, Chang HI, Raut SY. Nanocarriers based oral lymphatic drug targeting: Strategic bioavailability enhancement approaches. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102585] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Gurumukhi VC, Bari SB. Quality by design (QbD)-based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: bioavailability enhancement using chylomicron flow block model and toxicity studies. Drug Deliv Transl Res 2021; 12:1230-1252. [PMID: 34110597 DOI: 10.1007/s13346-021-01014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Atazanavir (ATV) is widely used as anti-HIV agent having poor aqueous solubility needs to modulate novel drug delivery system to enhance therapeutic efficiency and safety. The main objective of the present work was to fabricate ATV-loaded nanostructured lipid carriers (NLCs) employing quality by design (QbD) approach to address the challenges of bioavailability and their safety after oral administration. Herein, the main objective was to identify the influencing variables for the production of quality products. Considering this objective, quality target product profile (QTPP) was assigned and a systematic risk assessment study was performed to identify the critical material attributes (CMAs) and critical process parameter (CPP) having an influence on critical quality attributes (CQAs). Lipid concentrations, surfactant concentrations, and pressure of high-pressure homogenizer were identified as CMAs and CPP. ATV-NLCs were prepared by emulsification-high pressure homogenization method and further lyophilized to obtain solid-state NLCs. The effect of formulation variables (CMAs and CPP) on responses like particle size (Y1), polydispersity index (Y2), and zeta potential (Y3) was observed by central composite rotatable design (CCRD). The data were statistically evaluated by ANOVA for confirmation of a significant level (p < 0.05). The optimal conditions of NLCs were obtained by generating design space and desirability value. The lyophilized ATV-NLCs were characterized by DSC, powder X-ray diffraction, and FT-IR analysis. The morphology of NLCs was revealed by TEM and FESEM. In vitro study suggested a sustained release pattern of drug (92.37 ± 1.03%) with a mechanism of Korsmeyer-Peppas model (r2 = 0.925, and n = 0.63). In vivo evaluation in Wistar rats showed significantly higher (p < 0.001) plasma drug concentration of ATV-NLCs as compared to ATV-suspension using chylomicron flow block model. The relative bioavailability of ATV-NLCs was obtained to be 2.54 folds. Thus, a safe and promising drug targeting system was successfully developed to improve bioavailability and avoiding first-pass effect ensures to circumvent the acute-toxicity of liver.
Collapse
Affiliation(s)
- Vishal C Gurumukhi
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India.
| | - Sanjaykumar B Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| |
Collapse
|
22
|
Obisesan O, Katata-Seru L, Mufamadi S, Mufhandu H. Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment. J Biomed Nanotechnol 2021; 17:793-808. [PMID: 34082867 DOI: 10.1166/jbn.2021.3074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Oluwafemi Obisesan
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Lebogang Katata-Seru
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Steven Mufamadi
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Hazel Mufhandu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
23
|
Ahmad MZ, Ahmad J, Aslam M, Khan MA, Alasmary MY, Abdel-Wahab BA. Repurposed drug against COVID-19: nanomedicine as an approach for finding new hope in old medicines. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abffed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The coronavirus disease 2019 (COVID-19) has become a threat to global public health. It is caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) and has triggered over 17 lakh causalities worldwide. Regrettably, no drug or vaccine has been validated for the treatment of COVID-19 and standard treatment for COVID-19 is currently unavailable. Most of the therapeutics moieties which were originally intended for the other disease are now being evaluated for the potential to be effective against COVID-19 (re-purpose). Nanomedicine has emerged as one of the most promising technologies in the field of drug delivery with the potential to deal with various diseases efficiently. It has addressed the limitations of traditional repurposed antiviral drugs including solubility and toxicity. It has also imparted enhanced potency and selectivity to antivirals towards viral cells. This review emphasizes the scope of repositioning of traditional therapeutic approaches, in addition to the fruitfulness of nanomedicine against COVID-19.
Collapse
|
24
|
Serrano-Mora LE, Zambrano-Zaragoza ML, Mendoza-Muñoz N, Leyva-Gómez G, Urbán-Morlán Z, Quintanar-Guerrero D. Preparation of Co-Processed Excipients for Controlled-Release of Drugs Assembled with Solid Lipid Nanoparticles and Direct Compression Materials. Molecules 2021; 26:2093. [PMID: 33917445 PMCID: PMC8038754 DOI: 10.3390/molecules26072093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of the study was to develop a novel, directly compressible, co-processed excipient capable of providing a controlled-release drug system for the pharmaceutical industry. A co-processed powder was formed by adsorption of solid lipid nanoparticles (SLN) as a controlled-release film onto a functional excipient, in this case, dicalcium phosphate dihydrate (DPD), for direct compression (Di-Tab®). The co-processed excipient has advantages: easy to implement; solvent-free; industrial scaling-up; good rheological and compressibility properties; and the capability to form an inert platform. Six different batches of Di-Tab®:SLN weight ratios were prepared (4:0.6, 3:0.6, 2:0.6, 1:0.6, 0.5:0.6, and 0.25:0.6). BCS class III ranitidine hydrochloride was selected as a drug model to evaluate the mixture's controlled-release capabilities. The co-processed excipients were characterized in terms of powder rheology and dissolution rate. The best Di-Tab®:SLN ratio proved to be 2:0.6, as it showed high functionality with good flow and compressibility properties (Carr Index = 16 ± 1, Hausner Index = 1.19 ± 0.04). This ratio could control release for up to 8 h, so it fits the ideal profile calculated based on biopharmaceutical data. The compressed systems obtained using this powder mixture behave as a matrix platform in which Fickian diffusion governs the release. The Higuchi model can explain their behavior.
Collapse
Affiliation(s)
- Luis Eduardo Serrano-Mora
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México, FES-Cuautitlán, Cuautitlán Izcalli 54745, Estado de México, Mexico;
| | - María L. Zambrano-Zaragoza
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Universidad Nacional Autónoma de México, FES-Cuautitlán, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| | - Néstor Mendoza-Muñoz
- Laboratorio de Farmacia, Facultad de Ciencias Químicas, Universidad de Colima, Colima 28400, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, Mexico;
| | - Zaida Urbán-Morlán
- Laboratorio de Cromatografía, Facultad de Química, Universidad Autónoma de Yucatán, Mérida 97069, Yucatán, Mexico;
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México, FES-Cuautitlán, Cuautitlán Izcalli 54745, Estado de México, Mexico;
| |
Collapse
|
25
|
Cunha S, Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102206. [DOI: 10.1016/j.nano.2020.102206] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
|
26
|
Shrivastava S, Gidwani B, Kaur CD. Development of mebendazole loaded nanostructured lipid carriers for lymphatic targeting: Optimization, characterization, in-vitro and in-vivo evaluation. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2020.1750515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saurabh Shrivastava
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
| | - Bina Gidwani
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
- Columbia Institute of Pharmacy, Tekari, Raipur, India
| | - Chanchal Deep Kaur
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, Durg, Chhattisgarh, India
| |
Collapse
|
27
|
Gurumukhi VC, Bari SB. Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: Exploring characterizations and in vivo safety. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Cheng M, Yuan F, Liu J, Liu W, Feng J, Jin Y, Tu L. Fabrication of Fine Puerarin Nanocrystals by Box-Behnken Design to Enhance Intestinal Absorption. AAPS PharmSciTech 2020; 21:90. [PMID: 32060654 DOI: 10.1208/s12249-019-1616-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Puerarin is widely used as a therapeutic agent to cardiovascular diseases in clinics in China through intravenous administration, which could elicit adverse drug reactions caused by cosolvents, hindering its application in clinics. Therefore, the development of oral dosage is urgently needed. In our previous studies, we proved that the bioavailability of puerarin increased as particle sizes of nanocrystals decreased; however, we have not optimized the best process parameters for nanocrystals. In this study, we aim to fabricate fine nanocrystals (with smallest particle size) by Box-Behnken design and study the intestinal permeability of puerarin and its nanocrystals via employing everted gut sac model and in situ perfusion model. The results showed that the Box-Behnken design could be used to optimize the producing parameters of puerarin nanocrystals, and the particle sizes of fine nanocrystals were about 20 nm. Results of everted gut sacs showed that the polyvinylpyrrolidone (PVP) and verapamil had no influence on the absorption of puerarin and nanocrystals, and the nanocrystals could increase the Papp of puerarin for 2.2-, 2.9-, and 2.9-folds, respectively, in duodenum, jejunum, and ileum. Enhanced Ka and Peff were observed on the nanocrystal group, compared with puerarin, and PVP and verapamil had no influence on the absorption of nanocrystals, while the absorption of puerarin was influenced by P-gp efflux. Combining the results mentioned above, we can conclude that the Box-Behnken design benefits the optimization for preparation of nanocrystals, and the nanocrystals could enhance the intestinal absorption of puerarin by enhanced permeability and inhibited P-gp efflux.
Collapse
|
29
|
An organic solvent-free technology for the fabrication of albumin-based paclitaxel nanoparticles for effective cancer therapy. Colloids Surf B Biointerfaces 2019; 183:110394. [DOI: 10.1016/j.colsurfb.2019.110394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
|
30
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Emerging Lipid Based Drug Delivery Systems. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02017-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Solubility of trans-resveratrol in Transcutol HP + water mixtures at different temperatures and its application to fabrication of nanosuspensions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Abstract
Most clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site.
Collapse
|
33
|
Gidwani B, Vyas A, Kaur CD. Cytotoxicity and pharmacokinetics study of nanostructured lipid carriers of mechlorethamine: Preparation, optimization and characterization. PARTICULATE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1080/02726351.2018.1536685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bina Gidwani
- Shri Rawatpura Sarkar Institute of Pharmacy, Kumhari, India
| | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, India
| | | |
Collapse
|
34
|
Vishwakarma N, Jain A, Sharma R, Mody N, Vyas S, Vyas SP. Lipid-Based Nanocarriers for Lymphatic Transportation. AAPS PharmSciTech 2019; 20:83. [PMID: 30673895 DOI: 10.1208/s12249-019-1293-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
The effectiveness of any drug is dependent on to various factors like drug solubility, bioavailability, selection of appropriate delivery system, and proper route of administration. The oral route for the delivery of drugs is undoubtedly the most convenient, safest and has been widely used from past few decades for the effective delivery of drugs. However, despite of the numerous advantages that oral route offers, it often suffers certain limitations like low bioavailability due to poor water solubility as well as poor permeability of drugs, degradation of the drug in the physiological pH of the stomach, hepatic first-pass metabolism, etc. The researchers have been continuously working extensively to surmount and address appropriately the inherent drawbacks of the oral drug delivery. The constant and continuous efforts have led to the development of lipid-based nano drug delivery system to overcome the aforesaid associated challenges of the oral delivery through lymphatic transportation. The use of lymphatic route has demonstrated its critical and crucial role in overcoming the problem associated and related to low bioavailability of poorly water-soluble and poorly permeable drugs by bypassing intestinal absorption and possible first-pass metabolism. The current review summarizes the bonafide perks of using the lipid-based nanocarriers for the delivery of drugs using the lymphatic route. The lipid-based nanocarriers seem to be a promising delivery system which can be optimized and further explored as an alternative to the conventional dosage forms for the enhancement of oral bioavailability of drugs, with better patient compliance, minimum side effect, and improved the overall quality of life.
Collapse
|
35
|
Nabi B, Rehman S, Baboota S, Ali J. Insights on Oral Drug Delivery of Lipid Nanocarriers: a Win-Win Solution for Augmenting Bioavailability of Antiretroviral Drugs. AAPS PharmSciTech 2019; 20:60. [PMID: 30623263 DOI: 10.1208/s12249-018-1284-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
The therapeutic functionality of innumerable antiretroviral drugs is supposedly obscured owing to their low metabolic stability in the gastrointestinal tract and poor solubilization property leading to poor oral bioavailability. Dictated by such needs, lipid-based formulations could be tailored using nanotechnology which would be instrumental in ameliorating the attributes of such drugs. The stupendous advantages which lipid nanocarriers offer including improved drug stability and peroral bioavailability coupled with sustained drug release profile and feasibility to incorporate wide array of drugs makes it a potential candidate for pharmaceutical formulations. Furthermore, they also impart targeted drug delivery thereby widening their arena for use. Therefore, the review will encompass the details pertaining to numerous lipid nanocarriers such as nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, and so on. These nanocarriers bear the prospective of improving the mucosal adhesion property of the drugs which ultimately upgrades its pharmacokinetic profile. The biodegradable and physiological nature of the lipid excipients used in the formulation is the key parameter and advocates for their safe use. Nevertheless, these lipid-based nanocarriers are amenable to alterations which could be rightly achieved by changing the excipients used or by modifying the process parameters. Thus, the review will systematically envisage the impending benefits and future perspectives of different lipid nanocarriers used in oral delivery of antiretroviral drugs.
Collapse
|