1
|
Kundapura S, Craske D, Hickman G, Braim S. Enhanced siRNA delivery with novel smart chitosan-based formulations. J Pharm Sci 2025; 114:103670. [PMID: 39914729 DOI: 10.1016/j.xphs.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
This study aims to develop an innovative multifunctional and dual responsive drug formulation for precise siRNA delivery to breast cancer sites, addressing the challenges posed by conventional cancer treatments which often result in adverse side effects due to their non-specific nature. The formulation made by incorporating gold coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) into chitosan microspheres, which were subsequently loaded with siRNA. Comprehensive characterization, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDS) confirmed the formulation's favourable morphology, particle size distribution, chemical composition, and stability, indicating its strong potential for effective siRNA drug delivery applications. The developed formulation demonstrated siRNA encapsulation efficiencies ranging from 27.4 % to 88.6 % and loading capacity from 0.291 % to 1.59 %, these values particularly higher for medium molecular weight chitosan. These results were compared across different formulations, showing that variations in chitosan type and crosslinker concentration significantly influenced encapsulation efficiency and drug release profiles. Additionally, our results were compared to previous studies on chitosan microspheres encapsulating organic drugs and siRNA, where the developed system demonstrated similar encapsulation and release properties.. The type of chitosan and the choice of crosslinker significantly influenced the drug release patterns. Diverse release profiles across batches highlighted the necessity for precise formulation control. Incorporating SPIONs into chitosan microspheres presents a promising strategy for magnetically driven, site-specific drug delivery. The dual pH-responsive and magnetic properties enable rapid and targeted siRNA release, leveraging the acidic tumor microenvironment as an internal stimulus in addition to external magnetic stimuli. This novel combination of SPIONs, chitosan microspheres, and siRNA encapsulation represents a new approach for targeted drug delivery. While further research is needed to refine and optimize this approach, our study provides a proof of concept for advancing targeted cancer therapies.
Collapse
Affiliation(s)
- Srujan Kundapura
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Dominic Craske
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Graham Hickman
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Shwana Braim
- School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
2
|
Seydi E, Tahmasebi G, Arjmand A, Pourahmad J. Toxicity of superparamagnetic iron oxide nanoparticles on retinoblastoma mitochondria. Cutan Ocul Toxicol 2024; 43:69-74. [PMID: 37908111 DOI: 10.1080/15569527.2023.2275030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE Retinoblastoma (RB) is one of the most important cancers in children with a higher rate of prevalence in developing countries. Despite different approaches to the treatment of RB, it seems necessary to discover a new approach to its treatment. Today, mitochondria are recognised as an important target in the treatment of cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) have been studied by researchers due to their important biological effects. METHODS In this study, the effects of SPIONs on mitochondria isolated from Y79 retinoblastoma cells were investigated. RESULTS The results showed that SPIONs were able to increase the reactive oxygen species (ROS) level and subsequently damage the mitochondrial membrane and release cytochrome c a as one of the important pro-apoptotic proteins of RB mitochondria. Furthermore, the results indicated a decrease in cell viability and an increase in caspase-3 activity in Y79 retinoblastoma cells. CONCLUSIONS These events can lead to the killing of cancerous mitochondria. Our results suggest that SPIONs can cause mitochondrial dysfunction and death in RB mitochondria.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghazaleh Tahmasebi
- Department of Physics, Iran University of Science and Technology, Tehran, Iran
| | - Abdollah Arjmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yusefi M, Shameli K, Jahangirian H, Teow SY, Afsah-Hejri L, Mohamad Sukri SNA, Kuča K. How Magnetic Composites are Effective Anticancer Therapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:3535-3575. [PMID: 37409027 PMCID: PMC10319292 DOI: 10.2147/ijn.s375964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Chemotherapy is the most prominent route in cancer therapy for prolonging the lifespan of cancer patients. However, its non-target specificity and the resulting off-target cytotoxicities have been reported. Recent in vitro and in vivo studies using magnetic nanocomposites (MNCs) for magnetothermal chemotherapy may potentially improve the therapeutic outcome by increasing the target selectivity. In this review, magnetic hyperthermia therapy and magnetic targeting using drug-loaded MNCs are revisited, focusing on magnetism, the fabrication and structures of magnetic nanoparticles, surface modifications, biocompatible coating, shape, size, and other important physicochemical properties of MNCs, along with the parameters of the hyperthermia therapy and external magnetic field. Due to the limited drug-loading capacity and low biocompatibility, the use of magnetic nanoparticles (MNPs) as drug delivery system has lost traction. In contrast, MNCs show higher biocompatibility, multifunctional physicochemical properties, high drug encapsulation, and multi-stages of controlled release for localized synergistic chemo-thermotherapy. Further, combining various forms of magnetic cores and pH-sensitive coating agents can generate a more robust pH, magneto, and thermo-responsive drug delivery system. Thus, MNCs are ideal candidate as smart and remotely guided drug delivery system due to a) their magneto effects and guide-ability by the external magnetic fields, b) on-demand drug release performance, and c) thermo-chemosensitization under an applied alternating magnetic field where the tumor is selectively incinerated without harming surrounding non-tumor tissues. Given the important effects of synthesis methods, surface modifications, and coating of MNCs on their anticancer properties, we reviewed the most recent studies on magnetic hyperthermia, targeted drug delivery systems in cancer therapy, and magnetothermal chemotherapy to provide insights on the current development of MNC-based anticancer nanocarrier.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kamyar Shameli
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, 81675, Germany
| | | | - Sin-Yeang Teow
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
| | - Leili Afsah-Hejri
- Department of Food Safety and Quality, School of Business, Science and Technology, Lakeland University Plymouth, WI 53073, USA
| | | | - Kamil Kuča
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Kasiński A, Świerczek A, Zielińska-Pisklak M, Kowalczyk S, Plichta A, Zgadzaj A, Oledzka E, Sobczak M. Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems-Synthesis and Characterization. Int J Mol Sci 2023; 24:6906. [PMID: 37108074 PMCID: PMC10138940 DOI: 10.3390/ijms24086906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to develop an innovative, dual-stimuli-responsive smart hydrogel local drug delivery system (LDDS), potentially useful as an injectable simultaneous chemotherapy and magnetic hyperthermia (MHT) antitumor treatment device. The hydrogels were based on a biocompatible and biodegradable poly(ε-caprolactone-co-rac-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-rac-lactide) (PCLA-PEG-PCLA, PCLA) triblock copolymer, synthesized via ring-opening polymerization (ROP) in the presence of a zirconium(IV) acetylacetonate (Zr(acac)4) catalyst. The PCLA copolymers were successfully synthesized and characterized using NMR and GPC techniques. Furthermore, the gel-forming and rheological properties of the resulting hydrogels were thoroughly investigated, and the optimal synthesis conditions were determined. The coprecipitation method was applied to create magnetic iron oxide nanoparticles (MIONs) with a low diameter and a narrow size distribution. The magnetic properties of the MIONs were close to superparamagnetic upon TEM, DLS, and VSM analysis. The particle suspension placed in an alternating magnetic field (AMF) of the appropriate parameters showed a rapid increase in temperature to the values desired for hyperthermia. The MIONs/hydrogel matrices were evaluated for paclitaxel (PTX) release in vitro. The release was prolonged and well controlled, displaying close to zero-order kinetics; the drug release mechanism was found to be anomalous. Furthermore, it was found that the simulated hyperthermia conditions had no effect on the release kinetics. As a result, the synthesized smart hydrogels were discovered to be a promising antitumor LDDS, allowing simultaneous chemotherapy and hyperthermia treatment.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Agata Świerczek
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Monika Zielińska-Pisklak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Sebastian Kowalczyk
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Str., 00-664 Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Str., 00-664 Warsaw, Poland
| | - Anna Zgadzaj
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Ewa Oledzka
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
| | - Marcin Sobczak
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska Str., 01-163 Warsaw, Poland
| |
Collapse
|
5
|
Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030751. [PMID: 36986612 PMCID: PMC10058222 DOI: 10.3390/pharmaceutics15030751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Cancer is one of the major public health problems worldwide. Despite the advances in cancer therapy, it remains a challenge due to the low specificity of treatment and the development of multidrug resistance mechanisms. To overcome these drawbacks, several drug delivery nanosystems have been investigated, among them, magnetic nanoparticles (MNP), especially superparamagnetic iron oxide nanoparticles (SPION), which have been applied for treating cancer. MNPs have the ability to be guided to the tumor microenvironment through an external applied magnetic field. Furthermore, in the presence of an alternating magnetic field (AMF) this nanocarrier can transform electromagnetic energy in heat (above 42 °C) through Néel and Brown relaxation, which makes it applicable for hyperthermia treatment. However, the low chemical and physical stability of MNPs makes their coating necessary. Thus, lipid-based nanoparticles, especially liposomes, have been used to encapsulate MNPs to improve their stability and enable their use as a cancer treatment. This review addresses the main features that make MNPs applicable for treating cancer and the most recent research in the nanomedicine field using hybrid magnetic lipid-based nanoparticles for this purpose.
Collapse
|
6
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
7
|
Zhou H, Tian J, Sun H, Fu J, Lin N, Yuan D, Zhou L, Xia M, Sun L. Systematic Identification of Genomic Markers for Guiding Iron Oxide Nanoparticles in Cervical Cancer Based on Translational Bioinformatics. Int J Nanomedicine 2022; 17:2823-2841. [PMID: 35791307 PMCID: PMC9250777 DOI: 10.2147/ijn.s361483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Magnetic iron oxide nanoparticle (MNP) drug delivery system is a novel promising therapeutic option for cancer treatment. Material issues such as fabrication and functionalized modification have been investigated; however, pharmacologic mechanisms of bare MNPs inside cancer cells remain obscure. This study aimed to explore a systems pharmacology approach to understand the reaction of the whole cell to MNPs and suggest drug selection in MNP delivery systems to exert synergetic or additive anti-cancer effects. Methods HeLa and SiHa cell lines were used to estimate the properties of bare MNPs in cervical cancer through 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and enzyme activity assays and cellular fluorescence imaging. A systems pharmacology approach was utilized by combining bioinformatics data mining with clinical data analysis and without a predefined hypothesis. Key genes of the MNP onco-pharmacologic mechanism in cervical cancer were identified and further validated through transcriptome analysis with quantitative reverse transcription PCR (qRT-PCR). Results Low cytotoxic activity and cell internalization of MNP in HeLa and SiHa cells were observed. Lysosomal function was found to be impaired after MNP treatment. Protein tyrosine kinase 2 beta (PTK2B), liprin-alpha-4 (PPFIA4), mothers against decapentaplegic homolog 7 (SMAD7), and interleukin (IL) 1B were identified as key genes relevant for MNP pharmacology, clinical features, somatic mutation, and immune infiltration. The four key genes also exhibited significant correlations with the lysosome gene set. The qRT-PCR results showed significant alterations in the expression of the four key genes after MNP treatment in HeLa and SiHa cells. Conclusion Our research suggests that treatment of bare MNPs in HeLa and SiHa cells induced significant expression changes in PTK2B, PPFIA4, SMAD7, and IL1B, which play crucial roles in cervical cancer development and progression. Interactions of the key genes with specific anti-cancer drugs must be considered in the rational design of MNP drug delivery systems.
Collapse
Affiliation(s)
- Haohan Zhou
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China.,Department of Orthopaedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, 200000, People's Republic of China
| | - Jiayi Tian
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Hongyu Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Jiaying Fu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Nan Lin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Danni Yuan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Li Zhou
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Meihui Xia
- First Hospital, Jilin University, Changchun, 130021, People's Republic of China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
8
|
Ngema LM, Adeyemi SA, Marimuthu T, Ubanako P, Wamwangi D, Choonara YE. Synthesis of Novel Conjugated Linoleic Acid (CLA)-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for the Delivery of Paclitaxel with Enhanced In Vitro Anti-Proliferative Activity on A549 Lung Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14040829. [PMID: 35456663 PMCID: PMC9031641 DOI: 10.3390/pharmaceutics14040829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/06/2023] Open
Abstract
The application of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as a nanomedicine for Non-Small Cell Lung Carcinoma (NSCLC) can provide effective delivery of anticancer drugs with minimal side-effects. SPIONs have the flexibility to be modified to achieve enhanced oading of hydrophobic anticancer drugs such as paclitaxel (PTX). The purpose of this study was to synthesize novel trans-10, cis-12 conjugated linoleic acid (CLA)-coated SPIONs loaded with PTX to enhance the anti-proliferative activity of PTX. CLA-coated PTX-SPIONs with a particle size and zeta potential of 96.5 ± 0.6 nm and −27.3 ± 1.9 mV, respectively, were synthesized. The superparamagnetism of the CLA-coated PTX-SPIONs was confirmed, with saturation magnetization of 60 emu/g and 29 Oe coercivity. CLA-coated PTX-SPIONs had a drug loading efficiency of 98.5% and demonstrated sustained site-specific in vitro release of PTX over 24 h (i.e., 94% at pH 6.8 mimicking the tumor microenvironment). Enhanced anti-proliferative activity was also observed with the CLA-coated PTX-SPIONs against a lung adenocarcinoma (A549) cell line after 72 h, with a recorded cell viability of 17.1%. The CLA-coated PTX-SPIONs demonstrated enhanced suppression of A549 cell proliferation compared to pristine PTX, thus suggesting potential application of the nanomedicine as an effective site-specific delivery system for enhanced therapeutic activity in NSCLC therapy.
Collapse
Affiliation(s)
- Lindokuhle M. Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Samson A. Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
| | - Daniel Wamwangi
- School of Physics, Materials Physics Research Institute, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (L.M.N.); (S.A.A.); (T.M.); (P.U.)
- Correspondence: ; Tel.: +27-11-717-2052
| |
Collapse
|
9
|
Pourmadadi M, Ahmadi MJ, Dinani HS, Ajalli N, Dorkoosh F. Theranostic applications of stimulus-responsive systems based on Fe2O3. Pharm Nanotechnol 2022; 10:90-112. [PMID: 35142274 DOI: 10.2174/2211738510666220210105113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magnetic-responsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Javad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Farid Dorkoosh
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Medical Biomaterial Research Center (MBR), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
10
|
Cazzagon V, Giubilato E, Pizzol L, Ravagli C, Doumett S, Baldi G, Blosi M, Brunelli A, Fito C, Huertas F, Marcomini A, Semenzin E, Zabeo A, Zanoni I, Hristozov D. Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System. NANOIMPACT 2022; 25:100373. [PMID: 35559879 DOI: 10.1016/j.impact.2021.100373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 06/15/2023]
Abstract
The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties.
Collapse
Affiliation(s)
- V Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - E Giubilato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy; GreenDecision S.r.l., 30170 Venice Mestre, Italy.
| | - L Pizzol
- GreenDecision S.r.l., 30170 Venice Mestre, Italy
| | - C Ravagli
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - S Doumett
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - G Baldi
- COLOROBBIA CONSULTING S.r.l., Ce.Ri.Col. Centro Ricerche Colorobbia, Via Pietramarina, 123, 50053 Sovigliana, Vinci (FI), Italy
| | - M Blosi
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - A Brunelli
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - C Fito
- ITENE, C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - F Huertas
- ITENE, C/ Albert Einstein, 1, 46980 Paterna, Valencia, Spain
| | - A Marcomini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - E Semenzin
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy
| | - A Zabeo
- GreenDecision S.r.l., 30170 Venice Mestre, Italy
| | - I Zanoni
- Institute of Science and Technology for Ceramics (CNR-ISTEC), National Research Council of Italy, Via Granarolo 64, 48018 Faenza, RA, Italy
| | - D Hristozov
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30170 Venice Mestre, Italy.
| |
Collapse
|
11
|
Johnson KK, Koshy P, Yang J, Sorrell CC. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. ADVANCED FUNCTIONAL MATERIALS 2021; 31. [DOI: 10.1002/adfm.202104199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractNanomaterials with cancer‐imaging and therapeutic properties have emerged as the principal focus of nanotheranostics. The past decade has experienced a significant increase in research in the design, formulation, and preclinical and clinical trials of theranostic nanosystems. However, current theranostic nanoformulations have yet to be approved by the FDA for clinical use. Consequently, the present review focuses on the importance of the careful examination of the in vivo preclinical status of specific nanotheranostic materials as a prerequisite for their clinical translation. The scope of coverage is structured according to all of the major organic, inorganic, 2D, and hybrid nanotheranostic materials and their in vivo preclinical status. The therapeutic advantages and limitations of these materials in animal models are considered and the various strategies to enhance the biocompatibility of theranostic nanoparticles are summarized.
Collapse
Affiliation(s)
- Kochurani K. Johnson
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Pramod Koshy
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| | - Jia‐Lin Yang
- Prince of Wales Clinical School Faculty of Medicine UNSW Sydney Sydney New South Wales 2052 Australia
| | - Charles C. Sorrell
- School of Materials Science and Engineering Faculty of Science UNSW Sydney Sydney New South Wales 2052 Australia
| |
Collapse
|
12
|
Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2021; 22:ijms22169082. [PMID: 34445784 PMCID: PMC8396516 DOI: 10.3390/ijms22169082] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders involve the slow and gradual degeneration of axons and neurons in the central nervous system (CNS), resulting in abnormalities in cellular function and eventual cellular demise. Patients with these disorders succumb to the high medical costs and the disruption of their normal lives. Current therapeutics employed for treating these diseases are deemed palliative. Hence, a treatment strategy that targets the disease's cause, not just the symptoms exhibited, is desired. The synergistic use of nanomedicine and gene therapy to effectively target the causative mutated gene/s in the CNS disease progression could provide the much-needed impetus in this battle against these diseases. This review focuses on Parkinson's and Alzheimer's diseases, the gene/s and proteins responsible for the damage and death of neurons, and the importance of nanomedicine as a potential treatment strategy. Multiple genes were identified in this regard, each presenting with various mutations. Hence, genome-wide sequencing is essential for specific treatment in patients. While a cure is yet to be achieved, genomic studies form the basis for creating a highly efficacious nanotherapeutic that can eradicate these dreaded diseases. Thus, nanomedicine can lead the way in helping millions of people worldwide to eventually lead a better life.
Collapse
|
13
|
Cazzagon V, Romano A, Gonella F. Using Stock-Flow Diagrams to Visualize Theranostic Approaches to Solid Tumors in Personalized Nanomedicine. Front Bioeng Biotechnol 2021; 9:709727. [PMID: 34368102 PMCID: PMC8339728 DOI: 10.3389/fbioe.2021.709727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Personalized nanomedicine has rapidly evolved over the past decade to tailor the diagnosis and treatment of several diseases to the individual characteristics of each patient. In oncology, iron oxide nano-biomaterials (NBMs) have become a promising biomedical product in targeted drug delivery as well as in magnetic resonance imaging (MRI) as a contrast agent and magnetic hyperthermia. The combination of diagnosis and therapy in a single nano-enabled product (so-called theranostic agent) in the personalized nanomedicine has been investigated so far mostly in terms of local events, causes-effects, and mutual relationships. However, this approach could fail in capturing the overall complexity of a system, whereas systemic approaches can be used to study the organization of phenomena in terms of dynamic configurations, independent of the nature, type, or spatial and temporal scale of the elements of the system. In medicine, complex descriptions of diseases and their evolution are daily assessed in clinical settings, which can be thus considered as complex systems exhibiting self-organizing and non-linear features, to be investigated through the identification of dynamic feedback-driven behaviors. In this study, a Systems Thinking (ST) approach is proposed to represent the complexity of the theranostic modalities in the context of the personalized nanomedicine through the setting up of a stock-flow diagram. Specifically, the interconnections between the administration of magnetite NBMs for diagnosis and therapy of tumors are fully identified, emphasizing the role of the feedback loops. The presented approach has revealed its suitability for further application in the medical field. In particular, the obtained stock-flow diagram can be adapted for improving the future knowledge of complex systems in personalized nanomedicine as well as in other nanosafety areas.
Collapse
Affiliation(s)
- Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | - Alessandra Romano
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Venice, Italy.,Scuola Superiore di Catania, Università degli Studi di Catania, Catania, Italy
| | - Francesco Gonella
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.,Research Institute for Complexity, University Ca' Foscari of Venice, Venice, Italy
| |
Collapse
|
14
|
Biopolymer and Biomaterial Conjugated Iron Oxide Nanomaterials as Prostate Cancer Theranostic Agents: A Comprehensive Review. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men and the leading cause of death for men all over the world. Early diagnosis is the key to start treatment at an early stage of PCa and to reduce the death toll. Generally, PCa expresses characteristic morphologic features and serum biomarkers; however, early diagnosis is challenging due to its heterogeneity and long-term indolent phase in the early stage. Following positive diagnosis, PCa patients receive conventional treatments including surgery, radiation therapy, androgen deprivation therapy, focal therapy, and chemotherapy to enhance survival time and alleviate PCa-related complications. However, these treatment strategies have both short and long-term side effects, notably impotence, urinary incontinence, erectile dysfunctions, and recurrence of cancer. These limitations warrant the quest for novel PCa theranostic agents with robust diagnostic and therapeutic potentials to lessen the burden of PCa-related suffering. Iron oxide nanoparticles (IONPs) have recently drawn attention for their symmetrical usage in the diagnosis and treatment of several cancer types. Here, we performed a systematic search in four popular online databases (PubMed, Google Scholar, Scopus, and Web of Science) for the articles regarding PCa and IONPs. Published literature confirmed that the surface modification of IONPs with biopolymers and diagnostic biomarkers improved the early diagnosis of PCa, even in the metastatic stage with reliable accuracy and sensitivity. Furthermore, fine-tuning of IONPs with biopolymers, nucleic acids, anticancer drugs, and bioactive compounds can improve the therapeutic efficacy of these anticancer agents against PCa. This review covers the symmetrical use of IONPs in the diagnosis and treatment of PCa, investigates their biocompatibility, and examines their potential as PCa theranostic agents.
Collapse
|
15
|
Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021; 164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Cancer remains a global health problem largely due to a lack of effective therapies. Major cancer management strategies include chemotherapy, surgical resection, and radiation. Unfortunately, these strategies have a number of limitations, such as non-specific side effects, uneven delivery of the drugs, and lack of proper monitoring technology. Inorganic nanoparticles (NPs) are considered promising agents in treating and tracing cancer due to their unique physicochemical properties such as the controlled release of drugs, bioavailability, biocompatibility, stability, and large surface area. Also, they enhance the solubility of hydrophobic drugs, prolong their circulation time, prevent undesired off-targeting and subsequent side effects, making them efficient particles in cancer theranostics. Promising inorganic-NPs include gold, selenium, silica, and oxide NPs. Further, several techniques are used to modify the surface of inorganic-NPs, making them more efficient for the effective transport of therapeutic cargos to overcome cellular barriers. Thus, inorganic-NPs function effectively, surmounting the intrinsic drawbacks of traditional organic NPs. This mini-review summarizes the significant inorganic-NPs, their properties, surface modifications, cellular uptake, and bio-distributions, along with their potential use in cancer theranostics. We also discuss the promises and challenges faced during the inorganic-NPs mediated therapeutic approach for cancer and these particles' status in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
16
|
Balk M, Haus T, Band J, Unterweger H, Schreiber E, Friedrich RP, Alexiou C, Gostian AO. Cellular SPION Uptake and Toxicity in Various Head and Neck Cancer Cell Lines. NANOMATERIALS 2021; 11:nano11030726. [PMID: 33805818 PMCID: PMC7999062 DOI: 10.3390/nano11030726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) feature distinct magnetic properties that make them useful and effective tools for various diagnostic, therapeutic and theranostic applications. In particular, their use in magnetic drug targeting (MDT) promises to be an effective approach for the treatment of various diseases such as cancer. At the cellular level, SPION uptake, along with SPION-mediated toxicity, represents the most important prerequisite for successful application. Thus, the present study determines SPION uptake, toxicity and biocompatibility in human head and neck tumor cell lines of the tongue, pharynx and salivary gland. Using magnetic susceptibility measurements, microscopy, atomic emission spectroscopy, flow cytometry, and plasma coagulation, we analyzed the magnetic properties, cellular uptake and biocompatibility of two different SPION types in the presence and absence of external magnetic fields. Incubation of cells with lauric acid and human serum albumin-coated nanoparticles (SPIONLA-HSA) resulted in substantial particle uptake with low cytotoxicity. In contrast, uptake of lauric acid-coated nanoparticles (SPIONLA) was substantially increased but accompanied by higher toxicity. The presence of an external magnetic field significantly increased cellular uptake of both particles, although cytotoxicity was not significantly increased in any of the cell lines. SPIONs coated with lauric acid and/or human serum albumin show different patterns of uptake and toxicity in response to an external magnetic field. Consequently, the results indicate the potential use of SPIONs as vehicles for MDT in head and neck cancer.
Collapse
Affiliation(s)
- Matthias Balk
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
| | - Theresa Haus
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
- Correspondence:
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
| | - Antoniu-Oreste Gostian
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (M.B.); (T.H.); (J.B.); (H.U.); (E.S.); (C.A.); (A.-O.G.)
| |
Collapse
|
17
|
Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, Cruz JC. Tailoring Iron Oxide Nanoparticles for Efficient Cellular Internalization and Endosomal Escape. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1816. [PMID: 32932957 PMCID: PMC7559083 DOI: 10.3390/nano10091816] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
Iron oxide nanoparticles (IONs) have been widely explored for biomedical applications due to their high biocompatibility, surface-coating versatility, and superparamagnetic properties. Upon exposure to an external magnetic field, IONs can be precisely directed to a region of interest and serve as exceptional delivery vehicles and cellular markers. However, the design of nanocarriers that achieve an efficient endocytic uptake, escape lysosomal degradation, and perform precise intracellular functions is still a challenge for their application in translational medicine. This review highlights several aspects that mediate the activation of the endosomal pathways, as well as the different properties that govern endosomal escape and nuclear transfection of magnetic IONs. In particular, we review a variety of ION surface modification alternatives that have emerged for facilitating their endocytic uptake and their timely escape from endosomes, with special emphasis on how these can be manipulated for the rational design of cell-penetrating vehicles. Moreover, additional modifications for enhancing nuclear transfection are also included in the design of therapeutic vehicles that must overcome this barrier. Understanding these mechanisms opens new perspectives in the strategic development of vehicles for cell tracking, cell imaging and the targeted intracellular delivery of drugs and gene therapy sequences and vectors.
Collapse
Affiliation(s)
- Laura Rueda-Gensini
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Javier Cifuentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Maria Claudia Castellanos
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Julian A. Serna
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, School of Engineering, Universidad de Los Andes, Carrera 1 No. 18A-12, 111711 Bogotá, Colombia; (L.R.-G.); (J.C.); (M.C.C.); (P.R.P.); (J.A.S.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
18
|
Abstract
Abstract
Purpose
The aim of this review is to summarize the main applications of mesothelin-targeting agents in the diagnosis of different types of cancers with a brief mention of nuclear magnetic resonance.
Methods
The articles taken into account were selected from PubMed, Scopus, and Web of Sciences, including research articles and abstracts that deal with radioimmunotherapy and new tracers for nuclear medicine and radiodiagnosis. Articles that are not in English have been excluded.
Results
Mesothelin-targeting agents were the subject of the selected articles in which tracers as 64Cu-DOTA-11-25mAb anti MSLN, 111In-MORAb-009-CHX-A″, 89Zr-MMOT0530A, 111In-amatuximab, 99mTc-A1, 89Zr-AMA, 89Zr-amatuximab, 64Cu-amatuximab, 89Zr-labeled MMOT0530A and 89Zr-B3 found application in detection of malignancies that overexpressed mesothelin. Only one article approached magnetic resonance imaging (MRI) diagnosis using superparamagnetic iron oxide nanoparticles linked to anti-mesothelin antibodies. The tracers proved to be highly sensitive in detecting mesothelin positive cells. 89Zr-labeled MMOT0530A could also be used to predict the suitability of patients to radioimmunotherapy.
Conclusions
Radiolabeled anti-mesothelin antibodies could be crucial as a treatment tool and for predicting the eligibility and the response of the patient to radioimmunotherapy through the study of the expression grade of mesothelin. They can be a relevant tool for pancreatic adenocarcinoma, lung cancer, human epidermoid carcinoma, ovarian cancer, malignant mesothelioma in which mesothelin is widely expressed.
Collapse
|
19
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems. Int J Nanomedicine 2020; 15:4541-4572. [PMID: 32617004 PMCID: PMC7326401 DOI: 10.2147/ijn.s248987] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Among modern drug formulations, stimuli-responsive hydrogels also called "smart hydrogels" deserve a special attention. The basic feature of this system is the ability to change their mechanical properties, swelling ability, hydrophilicity, bioactive molecules permeability, etc., influenced by various stimuli, such as temperature, pH, electromagnetic radiation, magnetic field and biological factors. Therefore, stimuli-responsive matrices can be potentially used in tissue engineering, cell cultures and technology of innovative drug delivery systems (DDSs), releasing the active substances under the control of internal or external stimuli. Moreover, smart hydrogels can be used as injectable DDSs, due to gel-sol transition connected with in situ cross-linking process. Innovative smart hydrogel DDSs can be utilized as matrices for targeted therapy, which enhances the effectiveness of tumor chemotherapy and subsequently limits systemic toxicity. External stimulus sensitivity allows remote control over the drug release profile and gel formation. On the other hand, internal factors provide drg accumulation in tumor tissue and reduce the concentration of active drug form in healthy tissue. In this report, we summarise the basic knowledge and chemical strategies for the synthetic smart hydrogel DDSs applied in antitumor therapy.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| |
Collapse
|
20
|
Padayachee J, Daniels A, Balgobind A, Ariatti M, Singh M. HER-2/neu and MYC gene silencing in breast cancer: therapeutic potential and advancement in nonviral nanocarrier systems. Nanomedicine (Lond) 2020; 15:1437-1452. [PMID: 32515263 DOI: 10.2217/nnm-2019-0459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Globally, breast cancer is the second leading cause of cancer-related mortality among women, with approximately 1.4 million new cases diagnosed annually. Associated genetic perturbations are emerging in the face of intense scientific enquiry, facilitating its classification, prognostication and treatment. RNAi, utilizing siRNA, is a powerful treatment strategy to silence disease-causing genes. However, therapeutic siRNA instability and poor cellular uptake have limited its clinical application, necessitating the use of nanocarriers. In this review, we highlight the RNAi mechanism, HER-2/neu and MYC as breast cancer gene targets, and nonviral nanocarriers as potentially safe and efficient delivery systems.
Collapse
Affiliation(s)
- Jananee Padayachee
- Nano-Gene & Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Aliscia Daniels
- Nano-Gene & Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Adhika Balgobind
- Nano-Gene & Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Mario Ariatti
- Nano-Gene & Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa
| | - Moganavelli Singh
- Nano-Gene & Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa
| |
Collapse
|
21
|
Getiren B, Çıplak Z, Gökalp C, Yıldız N. NIR
‐responsive
Fe
3
O
4
@
PPy
nanocomposite for efficient potential use in photothermal therapy. J Appl Polym Sci 2020. [DOI: 10.1002/app.49343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bengü Getiren
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Zafer Çıplak
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Ceren Gökalp
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| | - Nuray Yıldız
- Faculty of Engineering, Department of Chemical EngineeringAnkara University Ankara Turkey
| |
Collapse
|
22
|
Comparing the Effects of Intracellular and Extracellular Magnetic Hyperthermia on the Viability of BxPC-3 Cells. NANOMATERIALS 2020; 10:nano10030593. [PMID: 32213961 PMCID: PMC7153512 DOI: 10.3390/nano10030593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/22/2020] [Indexed: 12/20/2022]
Abstract
Magnetic hyperthermia involves the use of iron oxide nanoparticles to generate heat in tumours following stimulation with alternating magnetic fields. In recent times, this treatment has undergone numerous clinical trials in various solid malignancies and subsequently achieved clinical approval to treat glioblastoma and prostate cancer in 2011 and 2018, respectively. However, despite recent clinical advances, many questions remain with regard to the underlying mechanisms involved in this therapy. One such query is whether intracellular or extracellular nanoparticles are necessary for treatment efficacy. Herein, we compare the effects of intracellular and extracellular magnetic hyperthermia in BxPC-3 cells to determine the differences in efficacy between both. Extracellular magnetic hyperthermia at temperatures between 40–42.5 °C could induce significant levels of necrosis in these cells, whereas intracellular magnetic hyperthermia resulted in no change in viability. This led to a discussion on the overall relevance of intracellular nanoparticles to the efficacy of magnetic hyperthermia therapy.
Collapse
|
23
|
New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Nucl Med Mol Imaging 2020; 54:65-80. [PMID: 32377258 DOI: 10.1007/s13139-020-00635-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Supermagnetic Iron Oxide Nanoparticles (SPIONs) are nanoparticles that have an iron oxide core and a functionalized shell. SPIONs have recently raised much interest in the scientific community, given their exciting potential diagnostic and theragnostic applications. The possibility to modify their surface and the characteristics of their core make SPIONs a specific contrast agent for magnetic resonance imaging but also an intriguing family of tracer for nuclear medicine. An example is 68Ga-radiolabeled bombesin-conjugated to superparamagnetic nanoparticles coated with trimethyl chitosan that is selective for the gastrin-releasing peptide receptors. These receptors are expressed by several human cancer cells such as breast and prostate neoplasia. Since the coating does not interfere with the properties of the molecules bounded to the shell, it has been proposed to link SPIONs with antibodies. SPIONs can be used also to monitor the biodistribution of mesenchymal stromal cells and take place in various applications. The aim of this review of literature is to analyze the diagnostic aspect of SPIONs in magnetic resonance imaging and in nuclear medicine, with a particular focus on sentinel lymph node applications. Moreover, it is taken into account the possible toxicity and the effects on human physiology to determine the SPIONs' safety.
Collapse
|
24
|
Bonfanti P, Colombo A, Saibene M, Fiandra L, Armenia I, Gamberoni F, Gornati R, Bernardini G, Mantecca P. Iron nanoparticle bio-interactions evaluated in Xenopus laevis embryos, a model for studying the safety of ingested nanoparticles. Nanotoxicology 2019; 14:196-213. [DOI: 10.1080/17435390.2019.1685695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Patrizia Bonfanti
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milano, Italy
| | - Anita Colombo
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milano, Italy
| | - Melissa Saibene
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milano, Italy
| | - Luisa Fiandra
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milano, Italy
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Federica Gamberoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
25
|
Diogo P, F Faustino MA, P M S Neves MG, Palma PJ, P Baptista I, Gonçalves T, Santos JM. An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics-A Critical Review. J Funct Biomater 2019; 10:E44. [PMID: 31575005 PMCID: PMC6963755 DOI: 10.3390/jfb10040044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023] Open
Abstract
Apical periodontitis is a biofilm-mediated disease; therefore, an antimicrobial approach is essential to cure or prevent its development. In the quest for efficient strategies to achieve this objective, antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to classical endodontic irrigation solutions and antibiotics. The aim of the present critical review is to summarize the available evidence on photosensitizers (PSs) which has been confirmed in numerous studies from diverse areas combined with several antimicrobial strategies, as well as emerging options in order to optimize their properties and effects that might be translational and useful in the near future in basic endodontic research. Published data notably support the need for continuing the search for an ideal endodontic photosensitizer, that is, one which acts as an excellent antimicrobial agent without causing toxicity to the human host cells or presenting the risk of tooth discoloration. The current literature on experimental studies mainly relies on assessment of mixed disinfection protocols, combining approaches which are already available with aPDT as an adjunct therapy. In this review, several approaches concerning aPDT efficiency are appraised, such as the use of bacteriophages, biopolymers, drug and light delivery systems, efflux pump inhibitors, negative pressure systems, and peptides. The authors also analyzed their combination with other approaches for aPDT improvement, such as sonodynamic therapy. All of the aforementioned techniques have already been tested, and we highlight the biological challenges of each formulation, predicting that the collected information may encourage the development of other effective photoactive materials, in addition to being useful in endodontic basic research. Moreover, special attention is dedicated to studies on detailed conditions, aPDT features with a focus on PS enhancer strategies, and the respective final antimicrobial outcomes. From all the mentioned approaches, the two which are most widely discussed and which show the most promising outcomes for endodontic purposes are drug delivery systems (with strong development in nanoparticles) and PS solubilizers.
Collapse
Affiliation(s)
- Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE and Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
| | - Isabel P Baptista
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
- Institute of Periodontology, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
| | - Teresa Gonçalves
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
- FMUC, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal.
| |
Collapse
|
26
|
Khafaji M, Zamani M, Golizadeh M, Bavi O. Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 2019; 11:335-352. [PMID: 31102198 PMCID: PMC6557961 DOI: 10.1007/s12551-019-00532-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard, inorganic nanostructures have been of special interest for CT-PTT, owing to their high thermal conversion efficiency, application in bio-imaging, versatility, and ease of synthesis and surface modification. In addition to being used as the first type of CT-PTT agents, they also include the most novel CT-PTT systems as the potentials of new inorganic nanomaterials are being more and more discovered. Considering the variety of inorganic nanostructures introduced for CT-PTT applications, enormous effort is needed to perform translational research on the most promising nanomaterials and to comprehensively evaluate the potentials of newly introduced ones in preclinical studies. This review provides an overview of most novel strategies used to employ inorganic nanostructures for cancer CT-PTT as well as cancer imaging and discusses current challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Mona Khafaji
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Mortaza Golizadeh
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
27
|
Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: attenuation by thymoquinone. Sci Rep 2019; 9:6912. [PMID: 31061500 PMCID: PMC6502885 DOI: 10.1038/s41598-019-43188-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) are known to induce cytotoxicity in various cancer cell lines through the generation of reactive oxygen species (ROS). However, the studies on its potential to induce toxicity in normal cell lines and in vivo system are limited and ambiguity still exists. Additionally, small molecules are known to interact with the DNA and cause damage to the DNA. The present study is designed to evaluate the potential interaction of IONPs with DNA along with their other toxicological effects and subsequent attenuation by thymoquinone both in vitro (primary lymphocytes) and in vivo (Wistar rats). IONPs were characterized by TEM, SEM-EDS, and XRD. The results from DNA interaction studies showed that IONPs formed a complex with DNA and also got intercalated between the base pairs of the DNA. The decrease in percent cell viability of rat’s lymphocytes was observed along with an increase in ROS generation in a dose-dependent manner (50, 100, 200, 400 and 800 μg/ml of IONPs). The genetic damage in in vivo might be due to the generation of ROS as depletion in anti-enzymatic activity was observed along with an increase in lipid peroxidation in a dose–dependent manner (25, 50, 100 mg/kg of IONPs). Interestingly, supplementation of thymoquinone in combination with IONPs has significantly (P < 0.05) attenuated the genetic and oxidative damage in a dose-dependent manner both in vitro and in vivo. It can be concluded that thymoquinone has the potential to attenuate the oxidative stress and genetic toxicity in vitro and in vivo.
Collapse
|
28
|
Naz S, Shamoon M, Wang R, Zhang L, Zhou J, Chen J. Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer. Int J Mol Sci 2019; 20:ijms20040965. [PMID: 30813333 PMCID: PMC6413464 DOI: 10.3390/ijms20040965] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Numerous nanoparticles drug delivery systems for therapeutic implications in cancer treatment are in preclinical development as conventional chemotherapy has several drawbacks. A chemotherapeutic approach requires high doses of chemotherapeutic agents with low bioavailability, non-specific targeting, and above all, development of multiple drug resistance. In recent years, inorganic nano-drug delivery platforms (NDDPs; with a metal core) have emerged as potential chemotherapeutic systems in oncology. One of the major goals of developing inorganic NDDPs is to effectively address the targeted anti-cancer drug(s) delivery related problems by carrying the therapeutic agents to desired tumors sites. In this current review, we delve into summarizing the recent developments in targeted release of anti-cancer drugs loaded in inorganic NDDPs such as mesoporous silica nanoparticles, carbon nanotubes, layered double hydroxides, superparamagnetic iron oxide nanoparticles and calcium phosphate nanoparticles together with highlighting their therapeutic performance at tumor sites.
Collapse
Affiliation(s)
- Safia Naz
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Muhammad Shamoon
- Medical School, The Australian National University, Canberra ACT 2600, Australia.
| | - Rui Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Li Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Nanotheranostics Approaches in Antimicrobial Drug Resistance. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
30
|
Maity D, Kandasamy G, Sudame A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Q Mesquita M, J Dias C, P M S Neves MG, Almeida A, F Faustino MA. Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy. Molecules 2018; 23:E2424. [PMID: 30248888 PMCID: PMC6222430 DOI: 10.3390/molecules23102424] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial infection is a severe concern, requiring the use of significant amounts of antimicrobials/biocides, not only in the hospital setting, but also in other environments. The increasing use of antimicrobial drugs and the rapid adaptability of microorganisms to these agents, have contributed to a sharp increase of antimicrobial resistance. It is obvious that the development of new strategies to combat planktonic and biofilm-embedded microorganisms is required. Photodynamic inactivation (PDI) is being recognized as an effective method to inactivate a broad spectrum of microorganisms, including those resistant to conventional antimicrobials. In the last few years, the development and biological assessment of new photosensitizers for PDI were accompanied by their immobilization in different supports having in mind the extension of the photodynamic principle to new applications, such as the disinfection of blood, water, and surfaces. In this review, we intended to cover a significant amount of recent work considering a diversity of photosensitizers and supports to achieve an effective photoinactivation. Special attention is devoted to the chemistry behind the preparation of the photomaterials by recurring to extensive examples, illustrating the design strategies. Additionally, we highlighted the biological challenges of each formulation expecting that the compiled information could motivate the development of other effective photoactive materials.
Collapse
Affiliation(s)
- Mariana Q Mesquita
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Biomedical Sciences and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cristina J Dias
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|