1
|
Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res 2024; 38:2361-2387. [PMID: 38429891 DOI: 10.1002/ptr.8168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 03/03/2024]
Abstract
As the global population ages, preventing lifestyle- and aging-related diseases is increasing, necessitating the search for safe and affordable therapeutic interventions. Among nutraceuticals, quercetin, a flavonoid ubiquitously present in various plants, has garnered considerable interest. This review aimed to collate and analyze existing literature on the therapeutic potentials of quercetin, especially its interactions with SIRTs and its clinical applicability based on its bioavailability and safety. This narrative review was based on a literature survey spanning from 2015 to 2023 using PUBMED. The keywords and MeSH terms used were: "quercetin" AND "bioavailability" OR "metabolism" OR "metabolites" as well as "quercetin" AND "SIRTuin" OR "SIRT*" AND "cellular effects" OR "pathway" OR "signaling" OR "neuroprotective" OR "cardioprotective" OR "nephroprotective" OR "antiatherosclerosis" OR "diabetes" OR "antidiabetic" OR "dyslipidemia" AND "mice" OR "rats". Quercetin demonstrates multiple therapeutic activities, including neuroprotective, cardioprotective, and anti-atherosclerotic effects. Its antioxidant, anti-inflammatory, antiviral, and immunomodulatory properties are well-established. At a molecular level, it majorly interacts with SIRTs, particularly SIRT1 and SIRT6, and modulates numerous signaling pathways, contributing to its therapeutic effects. These pathways play roles in reducing oxidative stress, inflammation, autophagy regulation, mitochondrial biogenesis, glucose utilization, fatty acid oxidation, and genome stability. However, clinical trials on quercetin's effectiveness in humans are scarce. Quercetin exhibits a wide range of SIRT-mediated therapeutic effects. Despite the compelling preclinical data, more standardized clinical trials are needed to fully understand its therapeutic potential. Future research should focus on addressing its bioavailability and safety concerns.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, Department of Pharmacology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| |
Collapse
|
2
|
Aguilar-Rabiela AE, Homaeigohar S, González-Castillo EI, Sánchez ML, Boccaccini AR. Comparison between the Astaxanthin Release Profile of Mesoporous Bioactive Glass Nanoparticles (MBGNs) and Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV)/MBGN Composite Microspheres. Polymers (Basel) 2023; 15:polym15112432. [PMID: 37299231 DOI: 10.3390/polym15112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years, composite biomaterials have attracted attention for drug delivery applications due to the possibility of combining desired properties of their components. However, some functional characteristics, such as their drug release efficiency and likely side effects, are still unexplored. In this regard, controlled tuning of the drug release kinetic via the precise design of a composite particle system is still of high importance for many biomedical applications. This objective can be properly fulfilled through the combination of different biomaterials with unequal release rates, such as mesoporous bioactive glass nanoparticles (MBGN) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microspheres. In this work, MBGNs and PHBV-MBGN microspheres, both loaded with Astaxanthin (ASX), were synthesised and compared in terms of ASX release kinetic, ASX entrapment efficiency, and cell viability. Moreover, the correlation of the release kinetic to phytotherapeutic efficiency and side effects was established. Interestingly, there were significant differences between the ASX release kinetic of the developed systems, and cell viability differed accordingly after 72 h. Both particle carriers effectively delivered ASX, though the composite microspheres exhibited a more prolonged release profile with sustained cytocompatibility. The release behaviour could be fine-tuned by adjusting the MBGN content in the composite particles. Comparatively, the composite particles induced a different release effect, implying their potential for sustained drug delivery applications.
Collapse
Affiliation(s)
- Arturo E Aguilar-Rabiela
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland
| | - Shahin Homaeigohar
- School of Science & Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Eduin I González-Castillo
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mirna L Sánchez
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional Quilmes, Bernal B1876, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Park JE, Kim YK, Kim SY, Choi JB, Bae TS, Jang YS, Lee MH. Biocompatibility and Antibacterial Effect of Ginger Fraction Loaded PLGA Microspheres Fabricated by Coaxial Electrospray. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1885. [PMID: 36902998 PMCID: PMC10004112 DOI: 10.3390/ma16051885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Various poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with the ginger fraction were fabricated by controlling the electrospray parameters and their biocompatibility and antibacterial activity were identified in this study. The morphology of the microspheres was observed using scanning electron microscopy. The core-shell structures of the microparticles and the presence of ginger fraction in the microspheres were confirmed by fluorescence analysis using a confocal laser scanning microscopy system. In addition, the biocompatibility and antibacterial activity of PLGA microspheres loaded with ginger fraction were evaluated through a cytotoxicity test using osteoblast MC3T3-E1 cells and an antibacterial test using Streptococcus mutans and Streptococcus sanguinis, respectively. The optimum PLGA microspheres loaded with ginger fraction were fabricated under electrospray operational conditions with 3% PLGA concentration in solution, an applied voltage of 15.5 kV, a flow rate of 15 µL/min in the shell nozzle, and 3 µL/min in the core nozzle. The effectual antibacterial effect and enhanced biocompatibility were identified when a 3% ginger fraction in PLGA microspheres was loaded.
Collapse
Affiliation(s)
- Jung-Eun Park
- Department of Dental Biomaterials, Institute of Biodegradable Material, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
- Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
| | - Yu-Kyoung Kim
- Department of Dental Biomaterials, Institute of Biodegradable Material, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
- Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
| | - Seo-Young Kim
- Department of Dental Biomaterials, Institute of Biodegradable Material, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
- Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
| | - Ji-Bong Choi
- Department of Dental Biomaterials, Institute of Biodegradable Material, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
- Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
| | - Tae-Sung Bae
- Department of Dental Biomaterials, Institute of Biodegradable Material, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
- Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
| | - Yong-Seok Jang
- Department of Dental Biomaterials, Institute of Biodegradable Material, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
- Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials, Institute of Biodegradable Material, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
- Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeon-ju 54896, Republic of Korea
| |
Collapse
|
4
|
Nguyen TT, Pham DV, Park J, Phung CD, Nepal MR, Pandit M, Shrestha M, Son Y, Joshi M, Jeong TC, Park PH, Choi DY, Chang JH, Kim JH, Kim JR, Kim IK, Yong CS, Kim JO, Sung JH, Jiang HL, Kim HS, Yook S, Jeong JH. Engineering of hybrid spheroids of mesenchymal stem cells and drug depots for immunomodulating effect in islet xenotransplantation. SCIENCE ADVANCES 2022; 8:eabn8614. [PMID: 36001671 PMCID: PMC9401619 DOI: 10.1126/sciadv.abn8614] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Immunomodulation is an essential consideration for cell replacement procedures. Unfortunately, lifelong exposure to nonspecific systemic immunosuppression results in immunodeficiency and has toxic effects on nonimmune cells. Here, we engineered hybrid spheroids of mesenchymal stem cells (MSCs) with rapamycin-releasing poly(lactic-co-glycolic acid) microparticles (RAP-MPs) to prevent immune rejection of islet xenografts in diabetic C57BL/6 mice. Hybrid spheroids were rapidly formed by incubating cell-particle mixture in methylcellulose solution while maintaining high cell viability. RAP-MPs were uniformly distributed in hybrid spheroids and sustainably released RAP for ~3 weeks. Locoregional transplantation of hybrid spheroids containing low doses of RAP-MPs (200- to 4000-ng RAP per recipient) significantly prolonged islet survival times and promoted the generation of regional regulatory T cells. Enhanced programmed death-ligand 1 expression by MSCs was found to be responsible for the immunomodulatory performance of hybrid spheroids. Our results suggest that these hybrid spheroids offer a promising platform for the efficient use of MSCs in the transplantation field.
Collapse
Affiliation(s)
- Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyeung Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Raj Nepal
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Mahesh Pandit
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Manju Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Youlim Son
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Mili Joshi
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jae-Ryong Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Il-Kug Kim
- College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
- Epibiotech Co. Ltd., Incheon, 21983, Republic of Korea
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea
- Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
5
|
Regmi S, Seo Y, Ahn JS, Pathak S, Acharya S, Nguyen TT, Yook S, Sung JH, Park JB, Kim JO, Young CS, Kim HS, Jeong JH. Heterospheroid formation improves therapeutic efficacy of mesenchymal stem cells in murine colitis through immunomodulation and epithelial regeneration. Biomaterials 2021; 271:120752. [PMID: 33730631 DOI: 10.1016/j.biomaterials.2021.120752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Tissue repairing capacity and immunomodulatory effects of mesenchymal stem cells (MSCs) have been extensively utilized for treating various inflammatory disorders; however, inconsistent efficacy and therapeutic outcomes due to low survival rate after transplantation often restrain their clinical potential. To overcome these limitations, 3-dimensional culture (3D-culture) was established to augment stemness and paracrine functions of MSCs, although hypoxic stress at the core often leads to unexpected cell death. Thus, we designed a novel strategy to improve the microenvironment of MSCs by creating heterospheroids (HS) consisting of MSCs and quercetin (QUR)-loaded microspheres (MSCHS), to achieve local drug delivery to the cells. Notably, MSCHS exhibited resistance for senescence-associated phenotype and oxidative stress-induced apoptosis compared to 3D-cultured MSCs (MSC3D), as well as to 2D-cultured cells (MSC2D) in vitro. In a murine model of colitis, MSC3D and MSCHS exhibited enhanced anti-inflammatory impact than MSC2Dvia attenuating neutrophil infiltration and regulating helper T cell (Th) polarization into Th1 and Th17 cells. Interestingly, MSCHS provided better therapeutic outcomes compared to MSC3D, partially due to their enhanced survival capacity in vivo. Moreover, we found that MSC-derived paracrine factor, prostaglandin E2 (PGE2), can directly drive the epithelial regeneration process by inducing specialized tissue-repairing cell generation using the intestinal organoid culture. Importantly, MSC3D and MSCHS displayed an outstanding regeneration-inducing potency compared to MSC2D owing to their superior PGE2 secretion. Taken together, we suggest a convergent strategy of MSCHS formation with reactive oxygen species (ROS) scavenger, QUR, which can maximize the inflammation-attenuating and tissue-repairing capacity of MSCs, as well as the engraftment efficiency after transplantation.
Collapse
Affiliation(s)
- Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Yoojin Seo
- School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Ji-Su Ahn
- School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea; Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Tiep Tien Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea; STEMORE Co. Ltd., Incheon 21983, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Chul Soon Young
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hyung-Sik Kim
- School of Dentistry, Pusan National University, Yangsan, 50612, Republic of Korea; Dental and Life Science Institute, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
6
|
Rostamabadi H, Falsafi SR, Rostamabadi MM, Assadpour E, Jafari SM. Electrospraying as a novel process for the synthesis of particles/nanoparticles loaded with poorly water-soluble bioactive molecules. Adv Colloid Interface Sci 2021; 290:102384. [PMID: 33706198 DOI: 10.1016/j.cis.2021.102384] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Hydrophobicity and low aqueous-solubility of different drugs/nutraceuticals remain a persistent challenge for their development and clinical/food applications. A range of nanotechnology strategies have been implemented to address this issue, and amongst which a particular emphasis has been made on those that afford an improved biological performance and tunable release kinetic of bioactives through a one-step process. More recently, the technique of electrospraying (or electrohydrodynamic atomization) has attained notable impulse in virtue of its potential to tune attributes of nano/micro-structured particles (e.g., porosity, particle size, etc.), rendering a near zero-order release kinetics, diminished burst release manner, as well as its simplicity, reproducibility, and applicability to a broad spectrum of hydrophobic and poorly water-soluble bioactives. Controlled morphology or monodispersity of designed particles could be properly obtained via electrospraying, with a high encapsulation efficiency and without unfavorable denaturation of thermosensitive bioactives upon encapsulation. This paper overviews the recent technological advances in electrospraying for the encapsulation of low queues-soluble bioactive agents. State-of-the-art, advantages, applications, and challenges for its implementation in pharmaceutical/food researches are also discussed.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Mahdi Rostamabadi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
7
|
Gover Antoniraj M, Maria Leena M, Moses J, Anandharamakrishnan C. Cross-linked chitosan microparticles preparation by modified three fluid nozzle spray drying approach. Int J Biol Macromol 2020; 147:1268-1277. [DOI: 10.1016/j.ijbiomac.2019.09.254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/22/2023]
|
8
|
Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105376] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Phung CD, Tran TH, Kim JO. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: a review. Arch Pharm Res 2020; 43:32-45. [DOI: 10.1007/s12272-020-01218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
|
10
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today 2019; 25:209-222. [PMID: 31707120 DOI: 10.1016/j.drudis.2019.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
Quercetin is reported to have numerous pharmacological actions, including antidiabetic, anti-inflammatory and anticancer activities. The main mechanism responsible for its pharmacological activities is its ability to quench reactive oxygen species (ROS) and, hence, decrease the oxidative stress responsible for the development of various diseases. Despite its proven therapeutic potential, the clinical use of quercetin remains limited because of its low aqueous solubility, bioavailability, and substantial first-pass metabolism. To overcome this, several novel formulations have been reported. In this review, we focus on the applications of quercetin extract as well as its novel formulations for treating different disorders. We also examine its proposed mechanism of action of quercetin.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
11
|
Pivetta TP, Silva LB, Kawakami CM, Araújo MM, Del Lama MPF, Naal RMZ, Maria-Engler SS, Gaspar LR, Marcato PD. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|