1
|
Takeuchi Y, Hayakawa F, Takeuchi H. Formulation Design of Orally Disintegrating Film Using Two Cellulose Derivatives as a Blend Polymer. Pharmaceutics 2025; 17:84. [PMID: 39861732 PMCID: PMC11768685 DOI: 10.3390/pharmaceutics17010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Orally disintegrating film (ODF) is prepared using water-soluble polymers as film-forming agents. To improve mechanical and disintegration properties, some polymers need to be blended with others. This study aimed to investigate the utility of hydroxypropyl cellulose (HPC) and hydroxypropyl methyl cellulose (HPMC) as blend film-forming components for ODFs. Methods: Placebo ODFs were prepared using polymer mixtures with blend ratios ranging from 20% to 80% HPC with HPMC. Mechanical properties, including tensile strength, elastic modulus, elongation at break, and folding endurance, as well as disintegration times, were evaluated. Additionally, blend films incorporating donepezil hydrochloride (DH) as a model active pharmaceutical ingredient (API) were prepared and assessed to determine their mechanical properties and disintegration behavior. Results: Blend films were successfully formed using HPMC/HPC solutions. The 40/60 and 20/80 HPMC/HPC blends exhibited the lowest mechanical strength and elongation, whereas blends containing more than 40% HPC demonstrated shorter disintegration times. Films with DH were successfully formed, though the addition of DH reduced tensile strength and elongation. The decline in mechanical properties was mitigated in HPMC/HPC blend films. Our results, including DSC and FTIR results, led us to conclude that the HPMC/HPC blend films were micro-immiscible, but they were macro-miscible when the amount of the minor component was sufficiently small. Conclusions: HPMC/HPC blends in appropriate ratios are effective as film-forming polymers for ODFs. The addition of DH impacts the mechanical properties, but the decline is less pronounced when using HPMC/HPC blends.
Collapse
|
2
|
Kanugo A. Design Optimization and Evaluation of Patented Fast-Dissolving Oral Thin Film of Ambrisentan for the Treatment of Hypertension. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:296-309. [PMID: 39563214 DOI: 10.2174/0118722105298163240823100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Cardiovascular diseases, including hypertension, are the prominent source of death globally. High blood pressure is responsible for heart failure and also damages the vital organs of the body, which also creates mortality. The activation of the sympathetic nervous system in the primary sunrise period is a highly critical condition, and several persons have lost their tissue due to the unavailability of medicine at this time. OBJECTIVE The present research deals with the progress of fast-dissolving oral thin film (OTF) of Ambrisentan for the prevention and cure of hypertension. METHODS The OTF was established using the solvent casting method. The compatibility of Ambrisentan with film former HPMC E15 was checked with FTIR and DSC. The optimization was assessed using the design of the experiment using 32 Box-Behnken designs. The independent parameters were filmed former (X1: HPMC E15), plasticizer (X2: PEG 400), and super disintegrant (X3: cross povidone) and dependable parameters were disintegration time (Y1) and dissolution release (Y2). RESULTS The optimized batch F7 showed the least disintegration time (9 sec), folding endurance of (99), content uniformity (98.57%), pH (6.4), and dissolved within 5 min. The scanning electron microscopy confirmed the evenness and smoothness of the film with a particle size of 10 μm. Patent related with OTF (Indian- 202321050359), US (11701339). CONCLUSION The investigation indicated that fast dissolving oral thin film of Ambrisentan improves the solubility and therapeutic efficacy in the prevention and treatment of cardiovascular complications. The prompt release of Ambrisentan minimizes the mortality associated with heart attack and hypertension.
Collapse
Affiliation(s)
- Abhishek Kanugo
- SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, 425405, India
- Department of Pharmaceutical Quality Assurance, SVKM Institute of Pharmacy, Dhule, 424001, India
| |
Collapse
|
3
|
Rashid A, Irfan M, Kamal Y, Asghar S, Khalid SH, Hussain G, Alshammari A, Albekairi TH, Alharbi M, Khan HU, Chauhdary Z, Vandamme TF, Khan IU. In Vitro and Biological Evaluation of Oral Fast-Disintegrating Films Containing Ranitidine HCl and Syloid ® 244FP-Based Ternary Solid Dispersion of Flurbiprofen. Pharmaceutics 2024; 16:164. [PMID: 38399224 PMCID: PMC10892821 DOI: 10.3390/pharmaceutics16020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Flurbiprofen (FBP), a nonsteroidal anti-inflammatory drug (NSAID), is commonly used to treat the pain of rheumatoid arthritis, but in prolonged use it causes gastric irritation and ulcer. To avoid these adverse events of NSAIDs, the simultaneous administration of H2 receptor antagonists such as ranitidine hydrochloride (RHCl) is obligatory. Here, we developed composite oral fast-disintegrating films (ODFs) containing FBP along with RHCl to provide a gastroprotective effect as well as to enhance the solubility and bioavailability of FBP. The ternary solid dispersion (TSD) of FBP was fabricated with Syloid® 244FP and poloxamer® 188 using the solvent evaporation technique. The synthesized FBP-TSD (coded as TSD) was loaded alone (S1) and in combination with plain RHCl (S2) in the composite ODFs based on hydroxypropyl methyl cellulose E5 (HPMC E5). The synthesized composite ODFs were evaluated by in vitro (thickness, folding endurance, tensile strength, disintegration, SEM, FTIR, XRD and release study) and in vivo (analgesic, anti-inflammatory activity, pro-inflammatory cytokines and gastroprotective assay) studies. The in vitro characterization revealed that TSD preserved its integrity and was effectively loaded in S1 and S2 with optimal compatibility. The films were durable and flexible with a disintegration time ≈15 s. The release profile at pH 6.8 showed that the solid dispersion of FBP improved the drug solubility and release when compared with pure FBP. After in vitro studies, it was observed that the analgesic and anti-inflammatory activity of S2 was higher than that of pure FBP and other synthesized formulations (TSD and S1). Similarly, the level of cytokines (TNF-α and IL-6) was also markedly reduced by S2. Furthermore, a gastroprotective assay confirmed that S2 has a higher safety profile in comparison to pure FBP and other synthesized formulations (TSD and S1). Thus, composite ODF (S2) can effectively enhance the FBP solubility and its therapeutic efficacy, along with its gastroprotective effect.
Collapse
Affiliation(s)
- Aisha Rashid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Yousaf Kamal
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Karachi, Islamabad Campus, Islamabad 45550, Pakistan;
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (T.H.A.); (M.A.)
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (T.H.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (T.H.A.); (M.A.)
| | - Hafeez Ullah Khan
- Department of Pharmaceutics, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | - Zunera Chauhdary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Thierry F. Vandamme
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Inserm/Unistra, UMR 1260 Regenerative NanoMedecine, Université de Strasbourg, 1 Rue Eugène Boeckel, 67000 Strasbourg, France;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (M.I.); (S.A.); (S.H.K.)
| |
Collapse
|
4
|
Jacob S, Boddu SHS, Bhandare R, Ahmad SS, Nair AB. Orodispersible Films: Current Innovations and Emerging Trends. Pharmaceutics 2023; 15:2753. [PMID: 38140094 PMCID: PMC10747242 DOI: 10.3390/pharmaceutics15122753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Richie Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Samiullah Shabbir Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
5
|
Bogdan C, Hales D, Cornilă A, Casian T, Iovanov R, Tomuță I, Iurian S. Texture analysis – a versatile tool for pharmaceutical evaluation of solid oral dosage forms. Int J Pharm 2023; 638:122916. [PMID: 37019322 DOI: 10.1016/j.ijpharm.2023.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In the past few decades, texture analysis (TA) has gained importance as a valuable method for the characterization of solid oral dosage forms. As a result, an increasing number of scientific publications describe the textural methods that evaluate the extremely diverse category of solid pharmaceutical products. Within the current work, the use of texture analysis in the characterization of solid oral dosage forms is summarised with a focus on the evaluation of intermediate and finished oral pharmaceutical products. Several texture methods are reviewed regarding the applications in mechanical characterization, and mucoadhesion testing, but also in estimating the disintegration time and in vivo specific features of oral dosage forms. As there are no pharmacopoeial standards for pharmaceutical products tested through texture analysis, and there are important differences between reported results due to different experimental conditions, the choice of testing protocol and parameters is challenging. Thereby, this work aims to guide the research scientists and quality assurance professionals involved in different stages of drug development into the selection of optimal texture methodologies depending on the product characteristics and quality control needs.
Collapse
Affiliation(s)
- Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Yu JY, Kim HW, Park HJ. Customized oral mucosal adhesive film-based functional-substance delivery system using embedded 3D printing method. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ramli NA, Adam F, Mohd Amin KN, M. Nor A, Ries ME. Evaluation of Mechanical and Thermal Properties of Carrageenan/Hydroxypropyl Methyl Cellulose Hard Capsule. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nur Amalina Ramli
- Faculty of Chemical and Process Engineering Technology Universiti Malaysia Pahang Kuantan Pahang Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology Universiti Malaysia Pahang Kuantan Pahang Malaysia
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Kuantan Pahang Malaysia
| | - Khairatun Najwa Mohd Amin
- Faculty of Chemical and Process Engineering Technology Universiti Malaysia Pahang Kuantan Pahang Malaysia
| | - Adibi M. Nor
- Institute for Advanced Studies University of Malaya Kuala Lumpur Malaysia
| | - Michael E. Ries
- School of Physics & Astronomy University of Leeds Leeds United Kingdom
| |
Collapse
|
8
|
Orally Disintegrating Film: A New Approach to Nutritional Supplementation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Kittipongpatana OS, Trisopon K, Wattanaarsakit P, Kittipongpatana N. Fabrication and Characterization of Orodispersible Composite Film from Hydroxypropylmethyl Cellulose-Crosslinked Carboxymethyl Rice Starch. MEMBRANES 2022; 12:membranes12060594. [PMID: 35736301 PMCID: PMC9227285 DOI: 10.3390/membranes12060594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Crosslinked carboxymethyl rice starch (CLCMRS), prepared via dual modifications of native rice starch (NRS) with chloroacetic acid and sodium trimetaphosphate, was employed to facilitate the disintegration of hydroxypropylmethylcellulose (HPMC) orodispersible films (ODFs), with or without the addition of glycerol. Fabricated by using the solvent casting method, the composite films, with the HPMC--LCMRS ratios of 9:1, 7:1, 5:1 and 4:1, were then subjected to physicochemical and mechanical evaluations, including weight, thickness, moisture content and moisture absorption, swelling index, transparency, folding endurance, scanning electron microscopy, Fourier transform infrared spectroscopy, tensile strength, elongation at break, and Young’s modulus, as well as the determination of disintegration time by using the Petri dish method (PDM) and slide frame and bead method (SFM). The results showed that HPMC-CLCMRS composite films exhibited good film integrity, uniformity, and transparency with up to 20% CLCMRS incorporation (4:1 ratio). Non-plasticized composite films showed no significant changes in the average weight, thickness, density, folding endurance (96−122), tensile strength (2.01−2.13 MPa) and Young’s modulus (10.28−11.59 MPa) compared to HPMC film (135, 2.24 MPa, 10.67 MPa, respectively). On the other hand, the moisture content and moisture absorption were slightly higher, whereas the elongation at break (EAB; 4.31−5.09%) and the transparency (4.73−6.18) were slightly lowered from that of the HPMC film (6.03% and 7.03%, respectively). With the addition of glycerol as a plasticizer, the average weight and film thickness increased, and the density decreased. The folding endurance was improved (to >300), while the transparency remained in the acceptable range. Although the tensile strength of most composite films decreased (0.66−1.75 MPa), they all exhibited improved flexibility (EAB 7.27−11.07%) while retaining structural integrity. The disintegration times of most composite films (PDM 109−331, SFM 70−214 s) were lower than those of HPMC film (PDM 345, SFM 229 s). In conclusion, the incorporation of CLCMRS significantly improved the disintegration time of the composite films whereas it did not affect or only slightly affected the physicochemical and mechanical characteristics of the films. The 5:1 and 4:1 HPMC:CLCMRS composite films, in particular, showed promising potential application as a film base for the manufacturing of orodispersible film dosage forms.
Collapse
Affiliation(s)
- Ornanong S Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karnkamol Trisopon
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phanphen Wattanaarsakit
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nisit Kittipongpatana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Devi LS, Das AJ, Das AB. Characterization of high amylose starch-microcrystalline cellulose based floatable gel for enhanced gastrointestinal retention and drug delivery. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Formulation Design and Cell Cytotoxicity of Curcumin-Loaded Liposomal Solid Gels for Anti-Hepatitis C Virus. Adv Pharmacol Pharm Sci 2022; 2022:3336837. [PMID: 35295681 PMCID: PMC8920649 DOI: 10.1155/2022/3336837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/16/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Backgrounds. Curcumin (CUR) is a low-molecular-weight polyphenolic substance obtained from the tuber part of Curcuma species. Anti-inflammatory and anti-hepatitis C virus (HCV) activities have been associated with CUR. However, its poor aqueous solubility and low systemic bioavailability have been the challenges in improving the therapeutic efficacy of curcumin. Aim. The study aimed to produce CUR-loaded liposomal solid gels as anti-HCV delivery systems. Parameters including the physical characteristics and the cell cytotoxicity properties were evaluated. Methods. The freeze-drying technique was applied to manufacture the CUR-loaded liposomal solid gels. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and differential thermal analysis (DTA) were involved to reveal the characteristics of the solid gels. Such characteristics were as follows: the morphology and the microscopic structure of the solid gels, the crystallinity structure of the curcumin, and the thermal properties of the mixtures. Furthermore, their cell cytotoxicity was investigated using a Huh7it cell line. Results. The SEM images confirmed that curcumin liposomes were intact and trapped in the solid gel matrix. The XRD data showed flat patterns diffractograms of the formulations, confirming the transformation of CUR from crystalline to amorphous form. The DTA thermograms showed a single melting endothermic peak at a higher temperature around 200°C, indicating a single-phase transition of the mixtures. The XRD and DTA data revealed the molecular dispersion of CUR in the developed formulations. The cytotoxicity data provided as cell cytotoxicity 50 (CC50) for all formulations were ≥25 mg. These data confirmed that the developed liposomal solid gels were not cytotoxic to Huh7it cell line, indicating that the anti-HCV activity would be through a specific pathway and not by its toxicity. Conclusion. The CUR-loaded liposomal solid gels exhibited the potential and offered an alternative dosage form to improve the therapeutic efficacy of curcumin as an anti-HCV.
Collapse
|
12
|
Herbal buccal films with in vitro antibacterial and anti-inflammatory effects. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Sha H, Yuan C, Cui B, Zhao M, Wang J. Pre-gelatinized cassava starch orally disintegrating films: Influence of β-Cyclodextrin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Investigation of Surface Properties and Free Volumes of Chitosan-Based Buccal Mucoadhesive Drug Delivery Films Containing Ascorbic Acid. Pharmaceutics 2022; 14:pharmaceutics14020345. [PMID: 35214077 PMCID: PMC8875152 DOI: 10.3390/pharmaceutics14020345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
Nowadays, the buccal administration of mucoadhesive films is very promising. Our aim was to prepare ascorbic acid-containing chitosan films to study the properties and structures important for applicability and optimize the composition. During the formulation of mucoadhesive films, chitosan as the polymer basis of the film was used. Ascorbic acid, which provided the acidic pH, was used in different concentrations (2–5%). The films were formulated by the solvent casting method. The properties of films important for applicability were investigated, such as physical parameters, mucoadhesive force, surface free energy, and breaking strength. The fine structure of the films was analyzed by atomic force microscopy, and the free volume was analyzed by PALS, which can be important for drug release kinetics and the location of the drug in the film. The applicability of the optimized composition was also tested with two different types of active ingredients. The structure of the films was also analyzed by XRPD and FTIR. Ascorbic acid can be used well in chitosan films, where it can function as a permeation enhancer when reacting to chitosan, it is biodegradable, and can be applied in 2% of our studies.
Collapse
|
15
|
Lourenço CAM, Garcia VA, Borges JG, Yoshida CMP, Vanin FM, Carvalho RA. A novel phenolic compounds delivery system: Oral films with extract from camu‐camu industrial residue. J Appl Polym Sci 2022. [DOI: 10.1002/app.52092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla Alves Monaco Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Vitor Augusto Garcia
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Josiane Gonçalves Borges
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Cristiana Maria Pedroso Yoshida
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, UNIFESP Federal University of Sao Paulo Diadema São Paulo Brazil
| | - Fernanda Maria Vanin
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| | - Rosemary Aparecida Carvalho
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga São Paulo Brazil
| |
Collapse
|
16
|
Zheng M, Chen J, Tan KB, Chen M, Zhu Y. Development of hydroxypropyl methylcellulose film with xanthan gum and its application as an excellent food packaging bio-material in enhancing the shelf life of banana. Food Chem 2021; 374:131794. [PMID: 34906803 DOI: 10.1016/j.foodchem.2021.131794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022]
Abstract
A novel film composed of xanthan gum (XG) and hydroxypropyl methylcellulose (HPMC) was prepared (XH). The films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The light transmittance, mechanical properties and water vapor transmission rate (WVTR) indicated the good compatibility between XG and HPMC with hydrogen-bond interaction and XG had a significant effect on the chemical structure, crystalline texture and microstructure of the XH composite film. The best XH sample with optimum XG concentration of 2 g/L was used as food packaging via coating onto banana, whereby the weight loss rate on banana was able to decreased from 25 ± 3% (without XH coating) to 16 ± 4% (with XH coating). Consequently, the release of flavor substances was also decreased. Banana shelf life has qualitatively improved with XH composite film for food preservation and affirmed the uses in food packaging applications.
Collapse
Affiliation(s)
- Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, PR China
| | - Kok Bing Tan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Meichun Chen
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Yujing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China.
| |
Collapse
|
17
|
Maciel VB, Remedio LN, Yoshida CM, Carvalho RA. Carboxymethyl cellulose-based orally disintegrating films enriched with natural plant extract for oral iron delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Limpongsa E, Soe MT, Jaipakdee N. Modification of release and penetration behavior of water-soluble active ingredient from ball-milled glutinous starch matrix via carboxymethylcellulose blending. Int J Biol Macromol 2021; 193:2271-2280. [PMID: 34785201 DOI: 10.1016/j.ijbiomac.2021.11.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
This present work describes the possible advantages of carboxymethylcellulose (CMC) blending with ball-milled glutinous starch (BMGS) on the modification of release and penetration of model water-soluble active ingredient, lidocaine hydrochloride, from the blended matrix. The 20-67% CMC mass containing CMC-BMGS matrices were fabricated by casting the aqueous dispersion of CMC-BMGS onto the tray and oven-dried. BMGS and CMC were compatible as revealed by SEM and ATR-FTIR. Irrespective of the CMC mass, all CMC-BMGS matrices showed comparable matrix mass, thickness, moisture content, moisture absorption as well as mechanical and mucoadhesive properties. The surface pH of CMC-BMGS tended to increase with the CMC mass. Depends on CMC mass, matrix properties, release, and penetration rates were modulated significantly. CMC had shown a substantial role in the swelling and erosion behaviors of BMGS films, and thus modulated the release and penetration significantly. The release and penetration mechanisms of active ingredient from the CMC-BMGS matrices were Fickian diffusion-controlled, with rates of release and penetration ranging from 2.05 ± 0.21 to 7.55 ± 1.08%/min½, and from 3.48 ± 0.28 to 8.04 ± 0.64 μg/cm2/min½, respectively. The capability of CMC-BMGS matrices as mucoadhesive delivery systems to provide sustained delivery of water-soluble active ingredients was disclosed.
Collapse
Affiliation(s)
- Ekapol Limpongsa
- College of Pharmacy, Rangsit University, Pathumthani 12000, Thailand..
| | - May Thu Soe
- Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand..
| | - Napaphak Jaipakdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand..
| |
Collapse
|
19
|
Improved Bioavailability of Ebastine through Development of Transfersomal Oral Films. Pharmaceutics 2021; 13:pharmaceutics13081315. [PMID: 34452276 PMCID: PMC8401636 DOI: 10.3390/pharmaceutics13081315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022] Open
Abstract
The main objective of this research work was the development and evaluation of transfersomes integrated oral films for the bioavailability enhancement of Ebastine (EBT) to treat allergic rhinitis. The flexible transfersomes, consisting of drug (EBT), lipid (Phosphatidylcholine) and edge activator (EA) Polyoxyethylene sorbitan monooleate or Sorbitan monolaurate, were prepared with the conventional thin film hydration method. The developed transfersomes were further integrated into oral films using the solvent casting method. Transfersomes were evaluated for their size distribution, surface charge, entrapment efficiency (EE%) and relative deformability, whereas the formulated oral films were characterized for weight, thickness, pH, folding endurance, tensile strength, % of elongation, degree of crystallinity, water content, content uniformity, in vitro drug release and ex vivo permeation, as well as in vivo pharmacokinetic and pharmacodynamics profile. The mean hydrodynamic diameter of transfersomes was detected to be 75.87 ± 0.55 nm with an average PDI and zeta potential of 0.089 ± 0.01 and 33.5 ± 0.39 mV, respectively. The highest deformability of transfersomes of 18.52 mg/s was observed in the VS-3 formulation. The average entrapment efficiency of the transfersomes was about 95.15 ± 1.4%. Transfersomal oral films were found smooth with an average weight, thickness and tensile strength of 174.72 ± 2.3 mg, 0.313 ± 0.03 mm and 36.4 ± 1.1 MPa, respectively. The folding endurance, pH and elongation were found 132 ± 1, 6.8 ± 0.2 and 10.03 ± 0.4%, respectively. The ex vivo permeability of EBT from formulation ETF-5 was found to be approximately 2.86 folds higher than the pure drug and 1.81 folds higher than plain film (i.e., without loaded transfersomes). The relative oral bioavailability of ETF-5 was 2.95- and 1.7-fold higher than that of EBT-suspension and plain film, respectively. In addition, ETF-5 suppressed the wheal and flare completely within 24 h. Based on the physicochemical considerations, as well as in vitro and in vivo characterizations, it is concluded that the highly flexible transfersomal oral films (TOFs) effectively improved the bioavailability and antihistamine activity of EBT.
Collapse
|
20
|
Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J. An Updated Overview of the Emerging Role of Patch and Film-Based Buccal Delivery Systems. Pharmaceutics 2021; 13:1206. [PMID: 34452167 PMCID: PMC8399227 DOI: 10.3390/pharmaceutics13081206] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
- Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| |
Collapse
|
21
|
Mucoadhesion and Mechanical Assessment of Oral Films. Eur J Pharm Sci 2021; 159:105727. [DOI: 10.1016/j.ejps.2021.105727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
|
22
|
Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int J Biol Macromol 2021; 178:504-513. [PMID: 33647337 DOI: 10.1016/j.ijbiomac.2021.02.180] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
In recent years, orally disintegrating films (ODFs) have been studied as alternative ways for drug administration. They can easily be applied into the mouth and quickly disintegrate, releasing the drug with no need of water ingestion and enabling absorption through the oral mucosa. The ODFs matrices are typically composed of hydrophilic polymers, in which the natural polymers are highlighted since they are polymers extracted from natural sources, non-toxic, biocompatible, biodegradable, and have favorable properties for this application. Besides that, natural polymers such as polysaccharides and proteins can be applied either alone or blended with other synthetic, semi-synthetic, or natural polymers to achieve better mechanical and mucoadhesive properties and fast disintegration. In this review, we analyzed ODFs developed using natural polymers or blends involving natural polymers, such as maltodextrin, pullulan, starch, gelatin, collagen, alginate, chitosan, pectin, and others, to overview the recent publications and discuss how natural polymers can influence ODFs properties.
Collapse
Affiliation(s)
- Murilo Santos Pacheco
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Douglas Barbieri
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Classius Ferreira da Silva
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil.
| |
Collapse
|
23
|
Islam N, Irfan M, Khan SUD, Syed HK, Iqbal MS, Khan IU, Mahdy A, Raafat M, Hossain MA, Inam S, Munir R, Ishtiaq M. Poloxamer-188 and d-α-Tocopheryl Polyethylene Glycol Succinate (TPGS-1000) Mixed Micelles Integrated Orodispersible Sublingual Films to Improve Oral Bioavailability of Ebastine; In Vitro and In Vivo Characterization. Pharmaceutics 2021; 13:54. [PMID: 33406587 PMCID: PMC7823785 DOI: 10.3390/pharmaceutics13010054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Orodispersible sublingual films (OSFs) composed of hydrophilic polymers were loaded with poloxamer-188 and d-α-tocopheryl polyethylene glycol succinate (TPGS-1000) mixed micelles to improve the oral bioavailability of a poorly soluble drug, ebastine (EBT). Mixed micelles formed by thin-film hydration method were incorporated into orodispersible sublingual film, consisting of HPMC and glycerol, using solvent casting technique. The mixed micelles and films were thoroughly evaluated for physicochemical characterization (size, polydispersity index, zeta potential, entrapment efficiency, thickness, weight, surface pH studies, disintegration time, swelling indices, mechanical properties, FTIR, PXRD, DSC, SEM, AFM, in vitro drug release, in vivo bioavailability, and toxicological studies). The results showed that the average particle size of mixed micelles was 73 nm. The mean zeta potential and PDI of the optimal mixed micelles formulation were -26 mV and 0.16, respectively. Furthermore, the maximum entrapment efficiency 82% was attained. The film's disintegration time was in the range of 28 to 102 s in aqueous media. The integrity of micelles was not affected upon incorporation in films. Importantly, the micelles-loaded films revealed rapid absorption, high permeability, and increased bioavailability of EBT as compared to the pure drug. The existence of ebastine loaded mixed micelles in the films enhanced the bioavailability about 2.18 folds as compared to pure drug. Further, the results evidently established in-vitro and in-vivo performance of bioavailability enhancement, biocompatibility, and good safety profile of micelles-loaded orodispersible EBT films. Finally, it was concluded that film loaded with poloxamer-188/TPGS-1000 mixed micelles could be an effective carrier system for enhancing the bioavailability of ebastine.
Collapse
Affiliation(s)
- Nayyer Islam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Haroon Khalid Syed
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Amina Mahdy
- Pharmacology Department, International School of Medicine, Medipol University, Istanbul 34810, Turkey; or
| | - Mohamed Raafat
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Mohammad Akbar Hossain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al Qura University, Makkah P.O. Box 715, Saudi Arabia;
| | - Sana Inam
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Rabia Munir
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| | - Memoona Ishtiaq
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (N.I.); (H.K.S.); (I.U.K.), (S.I.), (R.M.), (M.I.)
| |
Collapse
|
24
|
Drug-Loaded Lipid-Core Micelles in Mucoadhesive Films as a Novel Dosage Form for Buccal Administration of Poorly Water-Soluble and Biological Drugs. Pharmaceutics 2020; 12:pharmaceutics12121168. [PMID: 33266132 PMCID: PMC7761273 DOI: 10.3390/pharmaceutics12121168] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to develop a novel buccal dosage form to transport rhodamine 123 and human insulin as models for poorly water-soluble and biological drugs, using lipid-core micelles (LCMs)-loaded mucoadhesive films. LCMs were synthesized by a low-energy hot emulsification process, yielding spherically shaped, small-sized, monodispersed and negatively charged carriers with high entrapment efficiency. In vitro release studies demonstrated a higher release of insulin rather than rhodamine from LCMs in simulated physiological conditions, due to an initial burst release effect; however, both release profiles are mainly explained by a diffusion mechanism. Furthermore, LCMs-loaded mucoadhesive films were manufactured and preserved with similar mechanical properties and optimal mucoadhesive behavior compared to nonloaded films. Ex vivo permeation experiments using excised porcine buccal epithelium reveal that both rhodamine and insulin-loaded LCM films elicited a significantly enhanced permeation effect compared to LCMs in suspension and free drugs in solution as controls. Hence, LCMs-loaded mucoadhesive films are suitable as buccal dosage form for the transport and delivery of rhodamine 123 and insulin, as models for poorly water-soluble and biological drugs, respectively.
Collapse
|
25
|
Vecchi CF, Cesar GB, Souza PRD, Caetano W, Bruschi ML. Mucoadhesive polymeric films comprising polyvinyl alcohol, polyvinylpyrrolidone, and poloxamer 407 for pharmaceutical applications. Pharm Dev Technol 2020; 26:138-149. [PMID: 33183099 DOI: 10.1080/10837450.2020.1849283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) have been extensively studied for their use in film formation. Poloxamer 407 (P407) is a block copolymer that has thermo-responsive and surfactant properties when used in pharmaceutical systems. These polymers are already used in liquid or semi-solid systems for ocular and parenteral drug delivery. However, the effect of P407 presence in solid pharmaceutical films composed of different PVA:PVP ratios have not been investigated yet. Therefore, this work investigated the influence of P407 added to the binary polymer mixture of PVA and PVP for the development of solid films aiming for pharmaceutical applications. The rheological properties of dispersions were investigated, and films were prepared by solvent casting method using different P407:PVA:PVP ratios according to a factorial design 23 (plus center point). The mechanical and in vitro mucoadhesive properties of films, as well as the disintegration time were investigated. Systems presented high mechanical resistance, mucoadhesion, and disintegration timeless than 180 s. It was found that higher concentrations of PVA increase mechanical properties and decrease disintegration time, and higher proportions of PVP and P407 increased mucoadhesion. The films could be classified as fast disintegrating films and represent a promising alternative for modifying drug delivery and pharmaceutical applications.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | | | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
26
|
Soe MT, Pongjanyakul T, Limpongsa E, Jaipakdee N. Films Fabricated with Native and Ball‐Milled Modified Glutinous Rice Starch: Physicochemical and Mucoadhesive Properties. STARCH-STARKE 2020. [DOI: 10.1002/star.202000012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- May Thu Soe
- Graduate School Khon Kaen University Khon Kaen 40002 Thailand
| | - Thaned Pongjanyakul
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen 40002 Thailand
| | - Ekapol Limpongsa
- Center for Research and Development of Herbal Health Products Khon Kaen University Khon Kaen 40002 Thailand
- College of Pharmacy Rangsit University Pathumthani 12000 Thailand
| | - Napaphak Jaipakdee
- Faculty of Pharmaceutical Sciences Khon Kaen University Khon Kaen 40002 Thailand
- Center for Research and Development of Herbal Health Products Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
27
|
Bodini RB, Pugine SMP, de Melo MP, de Carvalho RA. Antioxidant and anti-inflammatory properties of orally disintegrating films based on starch and hydroxypropyl methylcellulose incorporated with Cordia verbenacea (erva baleeira) extract. Int J Biol Macromol 2020; 159:714-724. [DOI: 10.1016/j.ijbiomac.2020.05.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
|
28
|
Vecchi CF, Said Dos Santos R, Bassi da Silva J, Rosseto HC, Sakita KM, Svidzinski TIE, Bonfim-Mendonça PDS, Bruschi ML. Development and in vitro evaluation of buccal mucoadhesive films for photodynamic inactivation of Candida albicans. Photodiagnosis Photodyn Ther 2020; 32:101957. [PMID: 32818649 DOI: 10.1016/j.pdpdt.2020.101957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Candidiasis is one of the most common diseases that occur in the oral cavity, caused mainly by the species Candida albicans. Methylene blue (MB) has a potential for microbial photoinactivation and can cause the destruction of fungi when applied in Photodynamic Therapy (PDT). Mucoadhesive films are increasingly being studied as a platform for drug application due to their advantages when compared to other pharmaceutical forms. The aim of this work was to develop mucoadhesive buccal film containing poloxamer 407 (P407), alcohol polyvinyl (PVA) and polyvinylpyrrolidone (PVP) for the release of MB aiming the photoinactivation of Candida albicans in buccal infections. Different amounts of P407 were added to the binary polymeric blends composed PVA and PVP. Formulations were characterized as morphology, thickness, density, bending strength, mechanical properties, water vapor transmission, disintegration time, mucoadhesion, DSC, ATR-FTIR, in vitro drug release profile and photodynamic inactivation. The films displayed physicochemical characteristics dependent of polymeric composition, mucoadhesive properties, fast MB release and were effective in photo inactivate the local growth of Candida albicans isolates. The formulation containing the lowest PVA and P407 amounts displayed the best performance. Therefore, data obtained from the film system show its potentially useful role as a platform for buccal MB delivery in photoinactivation of C. albicans, showing its potential for in vivo evaluation.
Collapse
Affiliation(s)
- Camila Felix Vecchi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Rafaela Said Dos Santos
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Jéssica Bassi da Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Hélen Cassia Rosseto
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil
| | - Karina Mayumi Sakita
- Medical Mycology Laboratory, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | | | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, Maringa, Parana, Brazil.
| |
Collapse
|
29
|
Transition from binder to matrix-forming: The effect of hydroxypropylmethylcellulose concentration on the properties of starch/hydroxypropylmethylcellulose granules prepared in a high shear granulator. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Technological development of mucoadhesive film containing poloxamer 407, polyvinyl alcohol and polyvinylpyrrolidone for buccal metronidazole delivery. Ther Deliv 2020; 11:431-446. [DOI: 10.4155/tde-2020-0031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: This work aimed to develop a mucoadhesive film composed of a triblock copolymer (poloxamer 407), polyvinyl alcohol and polyvinylpyrrolidone for buccal modified delivery of metronidazole. Materials & methods: Three film formulations containing different polymer amounts were prepared by solvent casting. They were characterized as physicochemical, mechanical and mucoadhesive properties, and in vitro metronidazole release profiles. Results: Films displayed physicochemical, mechanical and mucoadhesive characteristics dependent of polymeric composition and drug presence. They could rapidly swell and promote the fast drug release (80% in 20 min) that was governed by Fickian diffusion. The films showed total disintegration in less than 90 s and total drug release in 30 min. Conclusion: Therefore, the formulations represent a promising alternative for modifying of buccal metronidazole delivery for pharmaceutical applications.
Collapse
|
31
|
Thai glutinous rice starch modified by ball milling and its application as a mucoadhesive polymer. Carbohydr Polym 2020; 232:115812. [DOI: 10.1016/j.carbpol.2019.115812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/29/2019] [Indexed: 01/28/2023]
|
32
|
Ghadermazi R, Hamdipour S, Sadeghi K, Ghadermazi R, Khosrowshahi Asl A. Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose-A review. Food Sci Nutr 2019; 7:3363-3377. [PMID: 31762990 PMCID: PMC6848826 DOI: 10.1002/fsn3.1206] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Edible films and coating materials are commonly used as appropriate packaging materials to extend the shelf life of fresh food. Due to all their properties, edible film and coating materials have been received much attention. They are biodegradable, edible, and good barrier against environmental parameters; thereby, they could carry and deliver food additives protecting food quality. Hydroxypropyl methylcellulose (HPMC), a cellulose derivatives, can act as an excellent film-forming agent for coating food produces. The aim of this study was to provide an overview of the HPMC properties and investigate the effects of various additives on its film-forming properties, such as rheological behavior, water vapor, and gas permeability, as well as mechanical, optical, antioxidant, and antimicrobial properties, with a focus on the recent progress and outputs, which has been recently published. Hydroxypropyl methylcellulose is prone to be commonly used as an advanced film-forming and coating materials for the sake of well miscibility with a wide range of organic and inorganic materials. However, this polymer requires further improvements regarding moisture susceptibility and thermal properties.
Collapse
Affiliation(s)
- Reza Ghadermazi
- Department of Food Science and TechnologyFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Saeid Hamdipour
- Department of Food Science and TechnologyFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Kambiz Sadeghi
- Department of PackagingCollege of Science and TechnologyYonsei UniversityWonjuKorea
| | - Rojin Ghadermazi
- Department of PharmaceuticsSchool of PharmacyHamadan University of Medical SciencesHamadanIran
| | | |
Collapse
|