1
|
Wang Z, Ye Q, Yu S, Akhavan B. Poly Ethylene Glycol (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv Healthc Mater 2023; 12:e2300105. [PMID: 37052256 PMCID: PMC11468892 DOI: 10.1002/adhm.202300105] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Hydrogel-based drug delivery systems (DDSs) can leverage therapeutically beneficial outcomes in cancer therapy. In this domain, polyethylene glycol (PEG) has become increasingly popular as a biomedical polymer and has found clinical use. Owing to their excellent biocompatibility, facile modifiability, and high drug encapsulation rate, PEG hydrogels have shown great promise as drug delivery platforms. Here, the progress in emerging novel designs of PEG-hydrogels as DDSs for anti-cancer therapy is reviewed and discussed, focusing on underpinning multiscale release mechanisms categorized under stimuli-responsive and non-responsive drug release. The responsive drug delivery approaches are discussed, and the underpinning release mechanisms are elucidated, covering the systems functioning based on either exogenous stimuli-response, such as photo- and magnetic-sensitive PEG hydrogels, or endogenous stimuli-response, such as enzyme-, pH-, reduction-, and temperature-sensitive PEG hydrogels. Special attention is paid to the commercial potential of PEG-based hydrogels in cancer therapy, highlighting the limitations that need to be addressed in future research for their clinical translation.
Collapse
Affiliation(s)
- Zihan Wang
- College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qinzhou Ye
- Sichuan Agricultural UniversitySichuan611130P. R. China
| | - Sheng Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceChina West Normal UniversityNanchong637000P. R. China
| | - Behnam Akhavan
- School of EngineeringUniversity of NewcastleCallaghanNSW2308Australia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNSW2305Australia
- School of PhysicsThe University of SydneySydneyNSW2006Australia
- School of Biomedical EngineeringThe University of SydneySydneyNSW2006Australia
- Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
3
|
Poloxamer 407/188 Binary Thermosensitive Gel as a Moxidectin Delivery System: In Vitro Release and In Vivo Evaluation. Molecules 2022; 27:molecules27103063. [PMID: 35630537 PMCID: PMC9144259 DOI: 10.3390/molecules27103063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/22/2022] Open
Abstract
Moxidectin (MXD) is an antiparasitic drug used extensively in veterinary clinics. In this study, to develop a new formulation of MXD, a thermosensitive gel of MXD (MXD-TG) was prepared based on poloxamer 407/188. Furthermore, the gelation temperature, the stability, in vitro release kinetics and in vivo pharmacokinetics of MXD-TG were evaluated. The results showed that the gelation temperature was approximately 27 °C. MXD-TG was physically stable and can be released continuously for more than 96 h in vitro. The Korsmeyer−Peppas model provided the best fit to the release kinetics, and the release mechanism followed a diffusive erosion style. MXD-TG was released persistently for over 70 days in sheep. Part of pharmacokinetic parameters had a difference in female and male sheep (p < 0.05). It was concluded that MXD-TG had a good stability, and its release followed the characteristics of a diffusive erosion style in vitro and a sustained release pattern in vivo.
Collapse
|
4
|
D'Angelo NA, Noronha MA, Kurnik IS, Câmara MCC, Vieira JM, Abrunhosa L, Martins JT, Alves TFR, Tundisi LL, Ataide JA, Costa JSR, Jozala AF, Nascimento LO, Mazzola PG, Chaud MV, Vicente AA, Lopes AM. Curcumin encapsulation in nanostructures for cancer therapy: A 10-year overview. Int J Pharm 2021; 604:120534. [PMID: 33781887 DOI: 10.1016/j.ijpharm.2021.120534] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Curcumin (CUR) is a phenolic compound present in some herbs, including Curcuma longa Linn. (turmeric rhizome), with a high bioactive capacity and characteristic yellow color. It is mainly used as a spice, although it has been found that CUR has interesting pharmaceutical properties, acting as a natural antioxidant, anti-inflammatory, antimicrobial, and antitumoral agent. Nonetheless, CUR is a hydrophobic compound with low water solubility, poor chemical stability, and fast metabolism, limiting its use as a pharmacological compound. Smart drug delivery systems (DDS) have been used to overcome its low bioavailability and improve its stability. The current work overviews the literature from the past 10 years on the encapsulation of CUR in nanostructured systems, such as micelles, liposomes, niosomes, nanoemulsions, hydrogels, and nanocomplexes, emphasizing its use and ability in cancer therapy. The studies highlighted in this review have shown that these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged CUR release, and reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Jorge M Vieira
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Luís Abrunhosa
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Joana T Martins
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Thais F R Alves
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - Louise L Tundisi
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Janaína A Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana S R Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Angela F Jozala
- Laboratory of Industrial Microbiology and Fermentation Process (LAMINFE), University of Sorocaba, Sorocaba, Brazil
| | - Laura O Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Priscila G Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology (LaBNUS), University of Sorocaba, Sorocaba, Brazil; College of Engineering of Bioprocess and Biotechnology, University of Sorocaba, Sorocaba, Brazil; Sorocaba Development and Innovation Agency (INOVA Sorocaba), Sorocaba Technology Park, Sorocaba, Brazil
| | - António A Vicente
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
5
|
Hu H, Zhou H, Xu D. A review of the effects and molecular mechanisms of dimethylcurcumin (ASC-J9) on androgen receptor-related diseases. Chem Biol Drug Des 2021; 97:821-835. [PMID: 33277796 DOI: 10.1111/cbdd.13811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Dimethylcurcumin (ASC-J9) is a curcumin analogue capable of inhibiting prostate cancer cell proliferation. The mechanism is associated with the unique role of ASC-J9 in enhancing androgen receptor (AR) degradation. So far, ASC-J9 has been investigated in typical AR-associated diseases such as prostate cancer, benign prostatic hypertrophy, bladder cancer, renal diseases, liver diseases, cardiovascular diseases, cutaneous wound, spinal and bulbar muscular atrophy, ovarian cancer and melanoma, exhibiting great potentials in disease control. In this review, the effects and molecular mechanisms of ASC-J9 on various AR-associated diseases are summarized. Importantly, the effects of ASC-J9 and AR antagonists enzalutamide/bicalutamide on prostate cancer are compared in detail and crucial differences are highlighted. At last, the pharmacological effects of ASC-J9 are summarized and the future applications of ASC-J9 in AR-associated disease control are discussed.
Collapse
Affiliation(s)
- Hang Hu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Huan Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| |
Collapse
|