1
|
Abbasi M, Aghamollaei H, Vaez A, Amani AM, Kamyab H, Chelliapan S, Jamalpour S, Zambrano-Dávila R. Bringing ophthalmology into the scientific world: Novel nanoparticle-based strategies for ocular drug delivery. Ocul Surf 2025; 37:140-172. [PMID: 40147816 DOI: 10.1016/j.jtos.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The distinctive benefits and drawbacks of various drug delivery strategies to supply corneal tissue improvement for sense organs have been the attention of studies worldwide in recent decades. Static and dynamic barriers of ocular tissue prevent foreign chemicals from entering and inhibit the active absorption of therapeutic medicines. The distribution of different medications to ocular tissue is one of the most appealing and demanding tasks for investigators in pharmacology, biomaterials, and ophthalmology, and it is critical for cornea wound healing due to the controlled release rate and increased drug bioavailability. It should be mentioned that the transport of various types of medications into the different sections of the eye, particularly the cornea, is exceedingly challenging because of its distinctive structure and various barriers throughout the eye. Nanoparticles are being studied to improve medicine delivery strategies for ocular disease. Repetitive corneal drug delivery using biodegradable nanocarriers allows a medicine to remain in different parts of the cornea for extended periods of time and thus improve administration route effectiveness. In this review, we discussed eye anatomy, ocular delivery barriers, as well as the emphasis on the biodegradable nanomaterials ranging from organic nanostructures, such as nanomicelles, polymers, liposomes, niosomes, nanowafers, nanoemulsions, nanosuspensions, nanocrystals, cubosomes, olaminosomes, hybridized NPs, dendrimers, bilosomes, solid lipid NPs, nanostructured lipid carriers, and nanofiber to organic nanomaterials like silver, gold, and mesoporous silica nanoparticles. In addition, we describe the nanotechnology-based ophthalmic medications that are presently on the market or in clinical studies. Finally, drawing on current trends and therapeutic approaches, we discuss the challenges that innovative optical drug delivery systems confront and propose future research routes. We hope that this review will serve as a source of motivation and inspiration for developing innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Milad Abbasi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea; Universidad UTE, Quito, 170527, Ecuador.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Sajad Jamalpour
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Renato Zambrano-Dávila
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito, 170527, Ecuador
| |
Collapse
|
2
|
Darweesh RS, Al-Qawasmi FS, Khanfar MS. Ezetimibe oral solid lipid nanoparticle by effervescent dispersion method: in vitro characterization and in vivo pharmacokinetic study in rats. Pharm Dev Technol 2025; 30:268-279. [PMID: 39989184 DOI: 10.1080/10837450.2025.2471461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Ezetimibe (EZT) is a class II drug of the Biopharmaceutics classification system (BCS), with limited aqueous solubility and high permeability. This study aims to enhance the solubility and oral bioavailability of EZT by developing EZT solid lipid nanoparticles (SLNs). EZT-SLNs were developed through the effervescent dispersion technique. Different amounts of Tween-80, Compritol ATO 888, and mannitol as cryoprotectant were used. F11 was the optimum formula with 154 nm in size and 90.26% entrapment efficiency. It demonstrates significant enhancements in solubility across various pH values. In addition, F11 shows a significantly higher drug release than pure EZT at all time points, and that's related to the reduction in the particle size and increasing its surface area along with the transformation from a crystalline state to an amorphous state. The powder X-ray diffraction and Differential Scanning Calorimetry tests confirmed this conversion from crystalline form to amorphous. The in vivo animal study demonstrated that the Cmax and AUC 0 ∞ of the EZT-SLNs group were significantly higher than the pure EZT group, after oral administration. In conclusion, EZT-SLNs with enhanced in vitro and in vivo properties were successfully developed using the effervescent dispersion technique.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Farah S Al-Qawasmi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Cho DY, Lee JG, Kim MJ, Cho HJ, Cho JH, Kim KS. Approaches for Inclusion Complexes of Ezetimibe with Cyclodextrins: Strategies for Solubility Enhancement and Interaction Analysis via Molecular Docking. Int J Mol Sci 2025; 26:1686. [PMID: 40004150 PMCID: PMC11855275 DOI: 10.3390/ijms26041686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to improve the solubility of ezetimibe (EZT), which has low aqueous solubility, by preparing complexes using β-cyclodextrin (β-CD) derivatives. Phase solubility studies and Job's plot confirmed a high apparent stability constant for EZT with β-CD and even higher constants with its derivatives, establishing a 1:1 stoichiometric ratio. The composites were prepared using spray drying over a range of molar ratios, and their physicochemical properties were evaluated using techniques such as scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FT-IR). Saturation solubility and in vitro dissolution tests revealed that solubility increased with higher CD molar ratios. EZT/RM-β-CD inclusion complexes (ICs) and EZT/DM-β-CD ICs exhibited a similar solubility, which was greater than that of EZT/HP-β-CD ICs and EZT/SBE-β-CD ICs (where RM, DM, HP, and SEB represent H, CH3, -CH2-CHOH-CH3 and -(CH2)4-SO3Na synthetic derivatives, respectively). Most complexes, except for EZT/SBE-β-CD at 1:2 or higher ratios, showed superior solubility compared with EZT powder and commercial products. Molecular docking simulations confirmed EZT inclusion within the CD, revealing hydrogen bonds and binding energies that aligned with solubility trends. These findings suggest that EZT complexes with β-CD derivatives significantly improve solubility, highlighting their potential for developing more effective oral solid formulations for hyperlipidemia treatment.
Collapse
Affiliation(s)
- Dae-Yeong Cho
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Jeong-Gyun Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Moon-Jung Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Hyuk-Jun Cho
- Department of Innovative Drug Discovery and Development, College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea;
| | - Jung-Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| |
Collapse
|
4
|
Song Z, Tian W, Wang C, You Y, Li Y, Xiao J. Enhancing supersaturation maintenance of hydrophobic ingredients using nanostructured lipid carriers: The role of solid lipid type and level. Food Chem 2025; 465:142057. [PMID: 39550974 DOI: 10.1016/j.foodchem.2024.142057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
This research investigates the potential of nanostructure lipid carriers (NLCs) to enhance the supersaturation maintenance capacity (SMC) of emodin, focusing on the impacts of different solid lipids, specifically glycerol di-stearate (GDS), and beeswax (BW), and varying solid-liquid lipid ratios. The results demonstrated that GDS-based emulsions (GEs) had lower supersaturation (4.68-11.96) than BW-based emulsions (BEs) (13.73-58.50) but showed higher SMC (0.47-5.42). The difference arises from BW's higher β' content and lower solubility for emodin. SMC of GEs increased with higher GDS content, whereas BE showed the opposite trend. This may be attributed to the lower β' crystal content and more ordered interfacial structure in GEs than BEs, indicating that the reduced crystal transitions and enhanced interfacial rigidity in GEs synergistically hinder the expulsion of emodin. This study highlights NLCs as effective delivery vehicles for enhancing SMC and emphasizing the critical role of solid lipid type and concentration in determining overall performance.
Collapse
Affiliation(s)
- Zengliu Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Chujing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yang You
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, PR China
| | - Yunqi Li
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, PR China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
5
|
Elkhayat D, Abdelmalak NS, Amer R, Awad HH. Ezetimibe-Loaded Nanostructured Lipid Carrier for Oral Delivery: Response Surface Methodology; In Vitro Characterization and Assessing the Antihyperlipidemic Effect in Rats. ACS OMEGA 2024; 9:8103-8116. [PMID: 38405515 PMCID: PMC10882650 DOI: 10.1021/acsomega.3c08428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Among the independent risk factors for the occurrence of cardiovascular diseases like atherosclerosis is hyperlipidemia. To decrease cardiovascular events and patient mortality, antihyperlipidemia therapy is crucial. Our study aimed to enhance the solubility of the poorly soluble lipid-lowering agent ezetimibe (EZ), a member of class II as per the Biopharmaceutics Classification System (BCS). The drug was formulated as a nanostructured lipid carrier (NLC) employing the ultrasonication technique. A response surface D-optimal design was employed to study the effect of changing the liquid lipid type and the percentage of liquid lipid with respect to total lipid amount on the particle size, zeta potential, percentage entrapment efficiency, and percentage of drug released after 24 h. Nine NLC formulations were prepared and pharmaceutically evaluated, and the optimized NLC formulation was selected, further characterized, and evaluated as well. Optimized EZ-NLC was assessed in the high-fat diet model to induce hyperlipidemia in rats in comparison with the EZ suspension. The results of the optimized formulation showed that the prepared NLCs were spherical with no aggregation having a particle size of 204.3 ± 19.17 nm, zeta potential equal to -32 ± 7.59 mV, and entrapment efficiency of 81.5 ± 3.58% and 72.15 ± 4.58% drug released after 24 h. EZ-NLC significantly decreased the elevated serum lipid parameters, including total cholesterol, triglycerides, and LDL-C, but significantly normalized serum HDL-C levels of rats kept on a high-fat diet. The results demonstrated the improved efficacy of EZ-NLC in ameliorating the elevated serum lipid parameters compared to EZ.
Collapse
Affiliation(s)
- Dalia Elkhayat
- Department
of Pharmaceutics, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 26 July Mehwar Road intersection
with Wahat Road, Sixth October City, Giza 12451, Egypt
| | - Nevine S. Abdelmalak
- Department
of Pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt and School of pharmacy, New Giza University
NGU, Giza 3296121, Egypt
| | - Reham Amer
- Department
of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Al Azhar University Cairo, Cairo 4434003, Egypt
| | - Heba H. Awad
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza 12451, Egypt
| |
Collapse
|
6
|
Van NH, Vy NT, Van Toi V, Dao AH, Lee BJ. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Jung M, Jin M, Jeon WJ, Lee H, Kim H, Won JH, Yoo H, Bai HW, Han SC, Suh H, Kang KU, Lee HK, Cho CW. Development of a long-acting tablet with ticagrelor high-loaded nanostructured lipid carriers. Drug Deliv Transl Res 2022; 13:1212-1227. [PMID: 35794353 DOI: 10.1007/s13346-022-01205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Ticagrelor (TCG), an antiplatelet agent, has low solubility and permeability; thus, there are many trials to apply the pharmaceutical technology for the enhancement of TCG solubility and permeability. Herein, we have developed the TCG high-loaded nanostructured lipid carrier (HL-NLC) and solidified the HL-NLC to develop the oral tablet. The HL-NLC was successfully fabricated and optimized with a particle size of 164.5 nm, a PDI of 0.199, an encapsulation efficiency of 98.5%, and a drug loading of 16.4%. For the solidification of HL-NLC (S-HL-NLC), the adsorbent was determined based on the physical properties of the S-HL-NLC, such as bulk density, tap density, angle of repose, Hausner ratio, Carr's index, and drug content. Florite R was chosen because of its excellent adsorption capacity, excellent physical properties, and solubility of the powder after manufacturing. Using an S-HL-NLC, the S-HL-NLC tablet with HPMC 4 K was prepared, which is showed a released extent of more than 90% at 24 h. Thus, we have developed the sustained release tablet containing the TCG-loaded HL-NLC. Moreover, the formulations have exhibited no cytotoxicity against Caco-2 cells and improved the cellular uptake of TCG. In pharmacokinetic study, compared with raw TCG, the bioavailability of HL-NLC and S-HL-NLC was increased by 293% and 323%, respectively. In conclusion, we successfully developed the TCG high-loaded NLC tablet, that exhibited a sustained release profile and enhanced oral bioavailability.
Collapse
Affiliation(s)
- Minwoo Jung
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Minki Jin
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Woo-Jin Jeon
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - HaeSoo Lee
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Haeun Kim
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Jong-Hee Won
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Hyelim Yoo
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea
| | - Hyoung-Woo Bai
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea.,Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Su-Cheol Han
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea
| | - Hearan Suh
- Postera Health Science Inc, Han River Misa 1st at Hyundai Knowledge Industry Center 550, Misa-daero, Hanam-si, 1005, Gyeonggi-do, South Korea
| | - Kyoung Un Kang
- Postera Health Science Inc, Han River Misa 1st at Hyundai Knowledge Industry Center 550, Misa-daero, Hanam-si, 1005, Gyeonggi-do, South Korea
| | - Hong-Ki Lee
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Institute of Toxicology (KIT), Jeollabuk-do, Jeongeup, 53212, South Korea.
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Daejeon, 34134, South Korea.
| |
Collapse
|
8
|
Nogueira NC, de Sá LLF, de Carvalho ALM. Nanostructured Lipid Carriers as a Novel Strategy for Topical Antifungal Therapy. AAPS PharmSciTech 2021; 23:32. [PMID: 34931256 DOI: 10.1208/s12249-021-02181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Nanostructured lipid carriers (NLC) were developed as an alternative carrier system optimizing limitations found in topical treatments for superficial fungal infections, such as limited permeation through the skin. However, few published studies are focused on standardization and characterization of determinant variables of these lipid nanosystems' quality. Thus, this systematic review aims to compile information regarding the selection of lipids, surfactants, and preparation method that intimately relates to the final quality of this nanotechnology. For this, the search was carried with the following descriptors: 'nanostructured lipid carriers', 'topical', 'antifungal' separated by the Boolean operators 'and', present in the titles of the databases: Science Direct, Scopus and Pubmed. The review included experimental articles focused on the development of nanostructured lipid carriers targeted for topical application with antifungal activity, published from 2015 to 2021. Review articles, clinical studies, and studies on the development of other nanocarriers intended for other routes of administration were excluded from the study. The research included 26 articles, of which 58% were developed in India and Brazil, 53% published in the years 2019 and 2020. As for the selection of antifungal drugs incorporated into NLCs, the azole class had a preference over other classes, voriconazole being incorporated into 5 of the 26 developed NLC studied. It was also observed a predominance of medium chain triglycerides (MCT) as a liquid lipid and polysorbate 80 as a surfactant. Among other results, this review compiles the influences of each of the variables discussed in the quality parameters of NLCs, in order to guide future research involving the development of this technology. Graphical Abstract.
Collapse
|
9
|
Kim W, Kim JS, Choi HG, Jin SG, Cho CW. Novel ezetimibe-loaded fibrous microparticles for enhanced solubility and oral bioavailability by electrospray technique. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
|
11
|
Tessier N, Moawad F, Amri N, Brambilla D, Martel C. Focus on the Lymphatic Route to Optimize Drug Delivery in Cardiovascular Medicine. Pharmaceutics 2021; 13:1200. [PMID: 34452161 PMCID: PMC8398144 DOI: 10.3390/pharmaceutics13081200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
While oral agents have been the gold standard for cardiovascular disease therapy, the new generation of treatments is switching to other administration options that offer reduced dosing frequency and more efficacy. The lymphatic network is a unidirectional and low-pressure vascular system that is responsible for the absorption of interstitial fluids, molecules, and cells from the peripheral tissue, including the skin and the intestines. Targeting the lymphatic route for drug delivery employing traditional or new technologies and drug formulations is exponentially gaining attention in the quest to avoid the hepatic first-pass effect. The present review will give an overview of the current knowledge on the involvement of the lymphatic vessels in drug delivery in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Fatma Moawad
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Nada Amri
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| | - Davide Brambilla
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute Research Center, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
12
|
Gurumukhi VC, Bari SB. Quality by design (QbD)-based fabrication of atazanavir-loaded nanostructured lipid carriers for lymph targeting: bioavailability enhancement using chylomicron flow block model and toxicity studies. Drug Deliv Transl Res 2021; 12:1230-1252. [PMID: 34110597 DOI: 10.1007/s13346-021-01014-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Atazanavir (ATV) is widely used as anti-HIV agent having poor aqueous solubility needs to modulate novel drug delivery system to enhance therapeutic efficiency and safety. The main objective of the present work was to fabricate ATV-loaded nanostructured lipid carriers (NLCs) employing quality by design (QbD) approach to address the challenges of bioavailability and their safety after oral administration. Herein, the main objective was to identify the influencing variables for the production of quality products. Considering this objective, quality target product profile (QTPP) was assigned and a systematic risk assessment study was performed to identify the critical material attributes (CMAs) and critical process parameter (CPP) having an influence on critical quality attributes (CQAs). Lipid concentrations, surfactant concentrations, and pressure of high-pressure homogenizer were identified as CMAs and CPP. ATV-NLCs were prepared by emulsification-high pressure homogenization method and further lyophilized to obtain solid-state NLCs. The effect of formulation variables (CMAs and CPP) on responses like particle size (Y1), polydispersity index (Y2), and zeta potential (Y3) was observed by central composite rotatable design (CCRD). The data were statistically evaluated by ANOVA for confirmation of a significant level (p < 0.05). The optimal conditions of NLCs were obtained by generating design space and desirability value. The lyophilized ATV-NLCs were characterized by DSC, powder X-ray diffraction, and FT-IR analysis. The morphology of NLCs was revealed by TEM and FESEM. In vitro study suggested a sustained release pattern of drug (92.37 ± 1.03%) with a mechanism of Korsmeyer-Peppas model (r2 = 0.925, and n = 0.63). In vivo evaluation in Wistar rats showed significantly higher (p < 0.001) plasma drug concentration of ATV-NLCs as compared to ATV-suspension using chylomicron flow block model. The relative bioavailability of ATV-NLCs was obtained to be 2.54 folds. Thus, a safe and promising drug targeting system was successfully developed to improve bioavailability and avoiding first-pass effect ensures to circumvent the acute-toxicity of liver.
Collapse
Affiliation(s)
- Vishal C Gurumukhi
- Department of Pharmaceutics and Quality Assurance, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India.
| | - Sanjaykumar B Bari
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425 405, Maharashtra, India
| |
Collapse
|
13
|
El-Laithy HM, Youssef A, El-Husseney SS, El Sayed NS, Maher A. Enhanced alveo pulmonary deposition of nebulized ciclesonide for attenuating airways inflammations: a strategy to overcome metered dose inhaler drawbacks. Drug Deliv 2021; 28:826-843. [PMID: 33928836 PMCID: PMC8812587 DOI: 10.1080/10717544.2021.1905747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ciclesonide (CIC), an inhaled corticosteroid for bronchial asthma is currently available as metered dose inhaler (CIC–MDI) which possesses a major challenge in the management of the elderly, critically ill patients and children. In this work, nebulized CIC nano-structure lipid particles (CIC-NLPs) were prepared and evaluated for their deep pulmonary delivery and cytotoxicity to provide additional clinical benefits to patients in controlled manner and lower dose. The bio-efficacy following nebulization in ovalbumin (OVA) induced asthma Balb/c mice compared to commercial (CIC–MDI) was also assessed. The developed NLPs of 222.6 nm successfully entrapped CIC (entrapment efficiency 93.3%) and exhibited favorable aerosolization efficiency (mass median aerodynamic diameter (MMAD) 2.03 μm and fine particle fraction (FPF) of 84.51%) at lower impactor stages indicating deep lung deposition without imparting any cytotoxic effect up to a concentration of 100 μg/ml. The nebulization of 40 µg dose of the developed CIC-NLPs revealed significant therapeutic impact in the mitigation of the allergic airways inflammations when compared to 80 µg dose of the commercial CIC–MDI inhaler (Alvesco®). Superior anti-inflammatory and antioxidative stress effects characterized by significant decrease (p< .0001) in inflammatory cytokines IL-4 and 13, serum IgE levels, malondialdehyde (MDA), nitric oxide (NO), TNF-α, and activated nuclear factor-κB (NF-κB) activity were obvious with concomitant increase in superoxide dismutase (SOD) activity. Histological examination with inhibition of inflammatory cell infiltration in the respiratory tract was correlated well with observed biochemical improvement.
Collapse
Affiliation(s)
- Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Amal Youssef
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | | | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Maher
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
14
|
Saghafi Z, Mohammadi M, Mahboobian MM, Derakhshandeh K. Preparation, characterization, and in vivo evaluation of perphenazine-loaded nanostructured lipid carriers for oral bioavailability improvement. Drug Dev Ind Pharm 2021; 47:509-520. [PMID: 33650445 DOI: 10.1080/03639045.2021.1892745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The main scope of the present investigation was to improve the bioavailability of perphenazine (PPZ) by incorporating it into the nanostructured lipid carriers (NLCs). SIGNIFICANCE As a result of lipophilic nature and poor aqueous solubility, as well as extensive hepatic metabolism, PPZ has low systemic bioavailability via the oral route. NLCs have shown potentials to surmount the oral delivery drawbacks of poorly water-soluble drugs. METHODS The PPZ-NLCs were prepared by the emulsification-solvent evaporation method and subjected for particle size, zeta potential, and entrapment efficiency (EE) analysis. The optimized NLCs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Besides, in vitro release behavior, storage stability, and pharmacokinetic studies followed by a single-dose oral administration in rats were performed. RESULTS Optimized PPZ-NLCs showed a particle size of less than 180 nm with appropriate EE of more than 95%. Microscopic images captured with SEM and TEM exhibited that NLCs were approximately spherical in shape. DSC and PXRD analysis confirmed reduced crystallinity of PPZ after incorporation in NLCs. FTIR spectra demonstrated no chemical interactions between PPZ and NLC components. In vitro release studies confirmed the extended-release properties of NLC formulations. PPZ-NLCs exhibited good stability at 4 °C within three months. The oral bioavailability of NLC-6 and NLC-12 was enhanced about 3.12- and 2.49-fold, respectively, compared to the plain drug suspension. CONCLUSION NLC can be designated as an effective nanocarrier for oral delivery of PPZ.
Collapse
Affiliation(s)
- Zahra Saghafi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Arafa MF, Alshaikh RA, Abdelquader MM, El Maghraby GM. Co-processing of Atorvastatin and Ezetimibe for Enhanced Dissolution Rate: In Vitro and In Vivo Correlation. AAPS PharmSciTech 2021; 22:59. [PMID: 33517486 DOI: 10.1208/s12249-021-01925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Development of fixed dose combinations is growing and many of these drug combinations are being legally marketed. However, the development of these requires careful investigation of possible physicochemical changes during co-processing. This requires investigation of the effect of co-processing of drug combination in absence of excipients to maximize the chance of interaction (if any). Accordingly, the aim was to investigate the effect of co-processing of ezetimibe and atorvastatin on drugs dissolution rate. The objective was extended to in vitro in vivo correlation. Drugs were subjected to wet co-processing in presence of ethanol after being mixed at different ratios. The prepared formulations were characterized using FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and in vitro dissolution testing. These investigations proved the possibility of eutectic system formation after drugs co-processing. This was reflected on drugs dissolution rate which was significantly enhanced at dose ratio and 2:1 atorvastatin:ezetimibe molar ratio compared to the corresponding pure drugs. In vivo antihyperlipidemic effects of the co-processed drugs were monitored in albino mice which were subjected to hyperlipidemia induction using poloxamer 407. The results showed significant enhancement in pharmacological activity as revealed from pronounced reduction in cholesterol level in mice administering the co-processed form of both drugs. Besides, histopathological examinations of the liver showed marked decrease in hepatic vacuolation. In conclusion, co-processing of atorvastatin with ezetimibe resulted in beneficial eutexia which hastened the dissolution rate and pharmacological effects of both drugs.Graphical abstract.
Collapse
|