1
|
Verma K, Kathuria D, Ram A, Verma K, Sharma S, Tohra SK, Sharma A. Evaluation of Cytotoxic and Antioxidant Potential of Green-Synthesized Silver and Gold Nanoparticles From Nepeta leucophylla Benth. Chem Biodivers 2025:e202402679. [PMID: 39984311 DOI: 10.1002/cbdv.202402679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
In the present study, silver (AgNPs) and gold (AuNPs) nanoparticles (NPs) have been prepared using the ethanolic extract of Nepeta leucophylla (NLe). This plant was considered owing to its richness in natural polyphenols and antioxidants that are well known for their reducing potential. Different techniques, such as UV (ultraviolet-visible spectrophotometer), FTIR (Fourier transform infrared radiation), and XRD (X-ray diffraction), were utilized for the characterization of NPs. The UV absorption peak was observed at 434 and 535 nm for NLe-AgNPs and NLe-AuNPs, respectively. FTIR suggested about the possible classes of biomolecules involved in the formation of metal NPs. XRD pattern confirmed the crystalline structure of gold and silver NPs and validated that the crystal structure under consideration is a face-centered cubic (FCC) pattern. High-resolution transmission electron microscopy (HR-TEM) images revealed that the NLe-AgNPs and NLe-AuNPs NPs were spherical in shape, with average diameter of 11.4 and 7.8 nm, respectively. The antioxidant potential was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which revealed that NLe exhibited the highest antioxidant potential (79.37%) compared to synthesized metal NPs. Further, cytotoxic potential was evaluated using MTT assay against Hep G2 cell lines. The IC50 values were determined to be 5.97 µg/mL for NLe, 12.31 µg/mL for NLe-AgNPs, and 34.58 µg/mL for NLe-AuNPs, demonstrating their effectiveness in inhibiting cancer cell proliferation. The present results revealed that NLe may play a promising role in the cure of different deteriorative diseases. In future, more detailed studies based on animal model may be useful to support the present results and to evaluate further health benefits of NLe.
Collapse
Affiliation(s)
- Kashish Verma
- Department of Biosciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Deepika Kathuria
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Arjun Ram
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, Punjab, India
| | - Kurangi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Sheetal Sharma
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh, Punjab, India
| | - Suneel Kumar Tohra
- Department of Biosciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ajay Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
2
|
Anghel N, Spiridon I, Dinu MV, Vlad S, Pertea M. Xanthan-Polyurethane Conjugates: An Efficient Approach for Drug Delivery. Polymers (Basel) 2024; 16:1734. [PMID: 38932084 PMCID: PMC11207320 DOI: 10.3390/polym16121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The antifungal agent, ketoconazole, and the anti-inflammatory drug, piroxicam, were incorporated into matrices of xanthan or oleic acid-esterified xanthan (Xn) and polyurethane (PU), to develop topical drug delivery systems. Compared to matrices without bioactive compounds, which only showed a nominal compressive stress of 32.18 kPa (sample xanthan-polyurethane) at a strain of 71.26%, the compressive resilience of the biomaterials increased to nearly 50.04 kPa (sample xanthan-polyurethane-ketoconazole) at a strain of 71.34%. The compressive strength decreased to around 30.67 kPa upon encapsulating a second drug within the xanthan-polyurethane framework (sample xanthan-polyurethane-piroxicam/ketoconazole), while the peak sustainable strain increased to 87.21%. The Weibull model provided the most suitable fit for the drug release kinetics. Unlike the materials based on xanthan-polyurethane, those made with oleic acid-esterified xanthan-polyurethane released the active ingredients more slowly (the release rate constant showed lower values). All the materials demonstrated antimicrobial effectiveness. Furthermore, a higher volume of piroxicam was released from oleic acid-esterified xanthan-polyurethane-piroxicam (64%) as compared to xanthan-polyurethane-piroxicam (44%). Considering these results, materials that include polyurethane and either modified or unmodified xanthan showed promise as topical drug delivery systems for releasing piroxicam and ketoconazole.
Collapse
Affiliation(s)
- Narcis Anghel
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.S.); (M.-V.D.); (S.V.)
| | - Iuliana Spiridon
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.S.); (M.-V.D.); (S.V.)
| | - Maria-Valentina Dinu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.S.); (M.-V.D.); (S.V.)
| | - Stelian Vlad
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.S.); (M.-V.D.); (S.V.)
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, ”Sf. Spiridon” Emergency County Hospital Iasi, “Gr. T. Popa” University of Medicine and Pharmacy Iasi, Bulevardul Independentei No. 1, 700115 Iasi, Romania;
| |
Collapse
|
3
|
Aghaei A, Sadiqi H, Khwaja Mohammad AA, Gulmohammad AW, Likozar B, Nosrati H, Danafar H, Shaterian M. Magnetic ferrite nanoparticles coated with bovine serum albumin and glycine polymers for controlled release of curcumin as a model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2537-2550. [PMID: 37768315 DOI: 10.1080/09205063.2023.2265181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
To conquer the low water solubility and bioavailability of curcumin (CUR), to corroborate its functional qualities and to broaden its applicability in the pharmaceutical sector, numerous nanoscale methods have been widely exploited for its administration. Because of its polycystic, biodegradable, biocompatibility, non-toxicity, and non-allergenic properties, bovine serum albumin (BSA) and glycine (Gly) have been actively investigated as natural biopolymers for decades. Various BSA and Gly-based nanocarriers with unique features for CUR delivery, such as magnetic ferrite nanoparticles, are being developed (MNPs). In this work, magnesium ferrite (MgFe2O4)/BSA and nickel ferrite (NiFe2O4)/Gly nanocomposites loaded with CUR (drug model) were manufactured for the first time using a chemical co-precipitation approach to create biocompatible drug nanocarriers. It was found that the synthesized MgFe2O4/BSA and NiFe2O4/Gly nanoparticles have a uniform particle distribution and their size is much less than 100 nm. Saturation magnetization in MgFe2O4 and NiFe2O4 reaches 13.07 and 33.4 emu/g the remarkable peak of magnetization decreases to 10.99 and 32.36 emu/g after the addition of polymers. These analyses also showed the presence of chemical bonds in the structure of the nanocomposite. The curcumin diffusion process in NPs were determined using a mathematical modeling. The yielding of the product for MgFe2O4/BSA and NiFe2O4/Gly in 200 h is about 72 and 63%, respectively. Also, regressed relative diffusivities (D/R2), including effective steric hindrance, were determined as 5.75 × 10-4 and 2.72 × 10-4 h-1 for MgFe2O4/BSA and NiFe2O4/Gly, respectively. It shows that there is a significant steric barrier that significantly deviates from the molecular diffusion of the liquid. As a result, the low effective release of curcumin in the particles is more noticeable. Our study demonstrated the effective relationship between the polymer architecture and the biophysical properties of the resulting nanoparticles and shed light on new approaches for the design of efficient NP-based drug carriers.
Collapse
Affiliation(s)
- Afsoon Aghaei
- Department of Chemistry, University of Zanjan, Zanjan, Islamic Republic of Iran
| | - Hazratuddin Sadiqi
- Department of Chemistry, University of Zanjan, Zanjan, Islamic Republic of Iran
| | | | | | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hamed Nosrati
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Shaterian
- Department of Chemistry, University of Zanjan, Zanjan, Islamic Republic of Iran
| |
Collapse
|
4
|
Damiri F, Fatimi A, Santos ACP, Varma RS, Berrada M. Smart stimuli-responsive polysaccharide nanohydrogels for drug delivery: a review. J Mater Chem B 2023; 11:10538-10565. [PMID: 37909361 DOI: 10.1039/d3tb01712e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Polysaccharides have found extensive utilization as biomaterials in drug delivery systems owing to their remarkable biocompatibility, simple functionalization, and inherent biological properties. Within the array of polysaccharide-based biomaterials, there is a growing fascination for self-assembled polysaccharide nanogels (NG) due to their ease of preparation and enhanced appeal across diverse biomedical appliances. Nanogel (or nanohydrogel), networks of nanoscale dimensions, are created by physically or chemically linking polymers together and have garnered immense interest as potential carriers for delivering drugs due to their favorable attributes. These include biocompatibility, high stability, the ability to adjust particle size, the capacity to load drugs, and their inherent potential to modify their surface to actively target specific cells or tissues via the attachment of ligands that can recognize corresponding receptors. Nanogels can be engineered to respond to specific stimuli, such as pH, temperature, light, or redox conditions, allowing controlled release of the encapsulated drugs. This intelligent targeting capability helps prevent drug accumulation in unintended tissues and reduces the potential side effects. Herein, an overview of nanogels is offered, comprising their methods of preparation and the design of stimulus-responsive nanogels that enable controlled release of drugs in response to specific stimuli.
Collapse
Affiliation(s)
- Fouad Damiri
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), Department of Chemistry, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal 23000, Morocco.
| | - Ana Cláudia Paiva Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos - SP, Brazil.
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco.
| |
Collapse
|
5
|
Abdullaev SS, Althomali RH, Abdu Musad Saleh E, Robertovich MR, Sapaev IB, Romero-Parra RM, Alsaab HO, Gatea MA, Fenjan MN. Synthesis of novel antibacterial and biocompatible polymer nanocomposite based on polysaccharide gum hydrogels. Sci Rep 2023; 13:16800. [PMID: 37798276 PMCID: PMC10556060 DOI: 10.1038/s41598-023-42146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
According to recent studies on the benefits of natural polymer-based hydrogels in biomedical applications, gellan gum (GG)/acacia gum (AG) hydrogel was prepared in this study. In order to regulate the mechanical behavior of the hydrogel, graphite carbon nitride (g-C3N4) was included in the hydrogel matrix. In addition, metal oxide nanoparticles ZnCuFe2O4 were added to the composite for antibacterial activity. The prepared GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite was characterized by using FE-SEM, FTIR, EDX, XRD and TGA. The nanobiocomposite exhibited spherical morphology, which was related to the incorporation of the metal oxide nanoparticles. GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanobiocomposite showed 95.11%, 92.73% and 88.97% biocompatibility toward HEK293T cell lines within 24 h, 48 h and 72 h incubation, respectively, which indicates that this nanobiocomposite is completely biocompatible with healthy cells. Also, the nanobiocomposite was able to inhibit Pseudomonas aeruginosa biofilm growth on its surface up to 87%. Rheological studies showed that the nanobiocomposite has a viscoelastic structure and has a water uptake ratio of 93.2%. In comparison with other similar studies, this nanobiocomposite has exhibited superior antibacterial activity complete biocompatibility and proper mechanical properties, high swelling and water absorption capability. These results indicate that GG-AG hydrogel/g-C3N4/ZnCuFe2O4 nanocomposite can be considered as a potential candidate for biomedical applications such as tissue engineering and wound healing.
Collapse
Affiliation(s)
- Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan
- Scientific Department, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | - Raed H Althomali
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, 11991, Wadi Al-Dawasir, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, College of Arts and Science, Prince Sattam Bin Abdulaziz University, 11991, Wadi Al-Dawasir, Saudi Arabia
| | | | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, National Research University, Tashkent, Uzbekistan
- New Uzbekistan University, Tashkent, Uzbekistan
| | | | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia.
| | - M Abdulfadhil Gatea
- Technical Engineering Department College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Physics, College of Science, University of Kufa, Kufa, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
6
|
Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomater Sci Eng 2023. [PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
Collapse
Affiliation(s)
- Nur Hidayah Shahemi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Ain Najihah Asri
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Abid Amir
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Arif Kasri
- Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
7
|
Yousefi M, Zandavar H, Pourmortazavi SM, Rajabi HR, Sajadiasl F, Ganjali MR, Mirsadeghi S. UV and visible-assisted photocatalytic degradation of pharmaceutical pollutants in the presence of rational designed biogenic Fe 3O 4-Au nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12932-8. [PMID: 33641093 DOI: 10.1007/s11356-021-12932-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
In this study, we designed Fe3O4 nanoparticles and heterogeneous Fe3O4-Au nanocomposites with a mean size of 21 and 27 nm that synthesized by Foeniculum vulgare seed extract to photodegrade organic micropollutants under UV and visible light irradiation. The physiochemical characteristics of biogenic nanoparticles/nanocomposite are described by XRD, FTIR, UV-Vis, SEM, EDX, and X-ray elemental mapping. In the presence of nanoparticles and nanocomposites under UV irradiation, the total degradation of contaminants is about 85-90% after 2100 s, while under visible light irradiation, degradation efficiencies are about 70-85% after 4800-s irradiation. Total organic carbon analysis results confirmed photodegradation efficacies. Also, the scavenger's experiments show that hydroxyl radical is the most important specie in the degradation of pollutant model. It can be concluded clearly that Fe3O4 green nanoparticles and Fe3O4-Au green nanocomposite are very simple and effective photocatalyst for degradation of organic pollutants in very short time under illumination.
Collapse
Affiliation(s)
- Mohammad Yousefi
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Zandavar
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | | | | | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
- Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713137, Iran.
| |
Collapse
|
8
|
Sadeghi M, Rafiee Z. Chiral poly(amide-imide)/ZnS nanocomposite as a new adsorbent for simultaneous removal of cationic dyes from aqueous solution. HIGH PERFORM POLYM 2021. [DOI: 10.1177/0954008320939144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new adsorbent, poly(amide-imide)/zinc sulfide nanocomposite (PAI/ZnS NC), was fabricated and identified by Fourier-transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission-scanning electron microscopy, and transmission electron microscopy. Then, the obtained NC was applied for the simultaneous removal of auramine O (AO) and rhodamine B (RB) dyes from aqueous solution via the interactions of hydrogen bonding, π– π stacking, and Lewis acid–base interaction. The effects of operational variables including pH, PAI/ZnS NC mass, AO and RB concentration, and sonication time on removal efficiency were examined and optimized values were found to be 8.0, 16 mg, 11 mg L−1, and 6 min, respectively. The adsorption capacities of PAI/ZnS NC for the removal of AO and RB dyes were found to be 70.92 and 91.74 mg g−1, respectively. Ultraviolet–visible spectrophotometer was used to determine the amount of residual dye in solution. Fitting the experimental equilibrium data to isotherm models such as Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich reveals the suitability of the Langmuir model with high correlation coefficients ( R2 = 0.998 for AO and R2 = 0.999 for RB). Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich kinetic models applicability was tested and the pseudo-second-order equation controls the kinetics of the adsorption process. Furthermore, this study establishes that PAI/ZnS NC can be successfully applied as a low-cost adsorbent and conserve its high efficiency after nine cycles for the removal of AO and RB dyes.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Department of Chemistry, Yasouj University, Yasouj, Islamic Republic of Iran
| | - Zahra Rafiee
- Department of Chemistry, Yasouj University, Yasouj, Islamic Republic of Iran
| |
Collapse
|
9
|
Myint KZ, Yu Q, Xia Y, Qing J, Zhu S, Fang Y, Shen J. Bioavailability and antioxidant activity of nanotechnology-based botanic antioxidants. J Food Sci 2021; 86:284-292. [PMID: 33438274 DOI: 10.1111/1750-3841.15582] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
Botanic bioactive substances have issues with their solubility, stability, and oral bioavailability in the application, which could be improved by nanotechnologies. In another hands, green synthesis of nanoparticles (NPs) with plant extract is also a promising technology for preparation of NPs due to its safety advantage, yet the bioactive botanic substances that could be more than the assistant of the green synthesis of NPs. Based on the above concerns, this review summarized the preparation of botanic NPs with various plant extract, their solubility, stability, and oral bioavailability; specific attention has been paid to the botanic Ag/Au NPs, their capacity of antioxidant, bioavailability, antimicrobial, anti-inflammatory, and anticancer.
Collapse
Affiliation(s)
- Khaing Zar Myint
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Qiannan Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.,Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jiu Qing
- Nantong Acetic Acid Chemical Co. Ltd., 968 Jiangshan Road Nantong Economic and Technological Development Zone, Nantong, Jiangsu, 226017, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Yun Fang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Jie Shen
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
10
|
Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr 2020; 62:1912-1935. [DOI: 10.1080/10408398.2020.1848789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| |
Collapse
|
11
|
Rodríguez F, Montoya-Ruiz C, Estiati I, Saldarriaga JF. Removal of Drugs in Polluted Waters with Char Obtained by Pyrolysis of Hair Waste from the Tannery Process. ACS OMEGA 2020; 5:24389-24402. [PMID: 33015455 PMCID: PMC7528177 DOI: 10.1021/acsomega.0c02768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/08/2020] [Indexed: 05/12/2023]
Abstract
The presence and final destination of pharmaceutical compounds in waters constitute one of the emerging events in current environmental chemistry. Two widely consumed compounds have been evaluated in this study, amoxicillin (AMOX) and diclofenac (DFC), at a concentration of 200 mg L-1. The presence of both in wastewater has been verified, generating problems in ecosystems and human health. Pyrolysis of hair waste from a tannery process was performed in a fixed-bed reactor. Char was obtained at different operating temperatures (300, 350, 400, and 450 °C), which underwent a characterization of heavy metals and elemental composition. An activation process was applied to the char obtained at 450 °C by means of physicochemical processes and with two chemical agents (KOH and K2CO3). For the removal of drugs, two separate tests were performed, one for 28 days and the other one for 4 h, to assess the efficiency and the percentage of removal. It was found that the char obtained at 450 °C is the one that removes most of both compounds: more than 90% of AMOX and more than 80% of DFC.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Department
of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá 111711, Colombia
| | - Carolina Montoya-Ruiz
- Facultad
de Ciencias, Universidad Nacional de Colombia, Sede Medellín Calle 59A #63-20, Medellín 050034, Colombia
| | - Idoia Estiati
- Department
of Chemical Engineering, University of the
Basque Country, P.O. Box 644, E48080 Bilbao, Spain
| | - Juan F. Saldarriaga
- Department
of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, Bogotá 111711, Colombia
| |
Collapse
|
12
|
Biswal A, Sethy PK, Swain SK. Change in Orientation of Polyacrylic Acid and Chitosan Networks by Imprintment of Gold Nanoparticles. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1793196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| | - Pramod K. Sethy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| |
Collapse
|