1
|
Sepe F, Valentino A, Marcolongo L, Petillo O, Conte R, Margarucci S, Peluso G, Calarco A. Marine-Derived Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Compounds. Int J Mol Sci 2025; 26:764. [PMID: 39859476 PMCID: PMC11766179 DOI: 10.3390/ijms26020764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects. Finally, by using naturally sourced polysaccharides in hydrogel formulations, sustainability is promoted by reducing dependence on synthetic polymers, meeting the growing demand for eco-friendly materials. This review analyzes the interaction between marine polysaccharide hydrogels and encapsulating compounds and offers examples of how bioactive molecules can be encapsulated, released, and stabilized.
Collapse
Affiliation(s)
- Fabrizia Sepe
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
3
|
Yan Z, Ding N, Lin S, Zhang S, Xiao Y, Xie Y, Zhang S. Polysaccharide Based Self-Driven Tubular Micro/Nanomotors as a Comprehensive Platform for Quercetin Loading and Anti-inflammatory Function. Biomacromolecules 2024; 25:6840-6854. [PMID: 39315891 DOI: 10.1021/acs.biomac.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Quercetin (QR) is a natural flavonoid with strong anti-inflammatory properties, but it suffers from poor water solubility and bioavailability. Micro/nanomotors (NMs) are tiny devices that convert external energy or chemical fuels into an autonomous motion. They are characterized by their small size, rapid movement, and self-assembly capabilities, which can enhance the delivery of bioactive ingredients. The study synthesized natural polysaccharide-based nanotubes (NTs) using a layer-by-layer self-assembly method and combined with urease (Ure), glucose oxidase (GOx), and Fe3O4 to create three types of NMs. These NMs were well-dispersed and biocompatible. In vitro experiments showed that NMs-Fe3O4 has excellent photothermal conversion properties and potential for use in photothermal therapy. Cellular inflammation model results demonstrated that QR-loaded NMs were not only structurally stable but also improved bioavailability and effectively inhibited the release of inflammatory mediators such as IL-1β and IL-6, providing a safe and advanced carrier system for the effective use of bioactive components in food.
Collapse
Affiliation(s)
- Zhiyu Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Ni Ding
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Siqi Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yingchen Xiao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yuxin Xie
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Simin Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Stojmenovski A, Gatarić B, Vučen S, Railić M, Krstonošić V, Kukobat R, Mirjanić M, Škrbić R, Račić A. Formulation and Evaluation of Polysaccharide Microparticles for the Controlled Release of Propranolol Hydrochloride. Pharmaceutics 2024; 16:788. [PMID: 38931909 PMCID: PMC11207763 DOI: 10.3390/pharmaceutics16060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Propranolol hydrochloride, a non-cardio-selective beta blocker, is used to treat several conditions in children, including hypertension, arrhythmias, hyperthyroidism, hemangiomas, etc. Commercial liquid formulations are available in Europe and the US, but they have disadvantages, such as limited stability, bitter taste, and the need for multiple daily doses due to the drug's short half-life. Considering these limitations, controlled-release solid formulations, such as microparticles, may offer a better solution for pediatric administration. The main objective of this study was to formulate an encapsulation system for propranolol hydrochloride, based on sodium alginate and other polysaccharide polymers, to control and prolong its release. Microparticles were prepared using the ionotropic gelation method, which involves instilling a polymer solution into a solution of gelling ions via the extrusion technique. Physicochemical characterization was conducted by assessing the entrapment efficiency, drug loading, swelling index, microparticle size, rheological properties, and surface tension. In order to improve the characteristics of the tested microparticles, selected formulations were coated with chitosan. Further experimental work included differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) analysis, and SEM imaging. This in vitro release study showed that chitosan-coated microparticles demonstrate favorable properties, suggesting a novel approach to formulating pediatric dosage forms, although further optimization is necessary.
Collapse
Affiliation(s)
- Aneta Stojmenovski
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 16, 78000 Banja Luka, Bosnia and Herzegovina; (A.S.); (R.Š.)
| | - Biljana Gatarić
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Sonja Vučen
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland; (S.V.); (M.R.)
| | - Maja Railić
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland; (S.V.); (M.R.)
| | - Veljko Krstonošić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Radovan Kukobat
- Department of Chemical Engineering and Technology, Faculty of Technology, University of Banja Luka, B.V Stepe Stepanovica 73, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Maja Mirjanić
- Apoteke Bpharm, Kulska obala bb, 79220 Novi Grad, Bosnia and Herzegovina;
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Save Mrkalja 16, 78000 Banja Luka, Bosnia and Herzegovina; (A.S.); (R.Š.)
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 16, 78000 Banja Luka, Bosnia and Herzegovina
| | - Anđelka Račić
- Department of Pharmacy, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| |
Collapse
|
5
|
De Silva ND, Attanayake AP, Karunaratne DN, Arawwawala LDAM, Pamunuwa GK. Synthesis and bioactivity assessment of Coccinia grandis L. extract encapsulated alginate nanoparticles as an antidiabetic drug lead. J Microencapsul 2024; 41:1-17. [PMID: 37966469 DOI: 10.1080/02652048.2023.2282964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
AIM This study aimed to prepare, characterise, and evaluate the antidiabetic activity of Coccinia grandis (L.) extracts encapsulated alginate nanoparticles. METHODS Alginate nanoparticles were prepared using the ionic gelation method and characterised by encapsulation efficiency %w/w, loading capacity %w/w, particle size analysis, zeta potential, Fourier transform infra-red spectroscopy (FTIR), and scanning electron microscopy (SEM). In vitro antidiabetic activity was also evaluated. RESULTS Encapsulation efficiency %w/w, loading capacity %w/w, mean diameter, zeta potential of C. grandis encapsulated alginate nanoparticles ranged from 10.51 ± 0.51 to 62.01 ± 1.28%w/w, 0.39 ± 0.04 to 3.12 ± 0.11%w/w, 191.9 ± 76.7 to 298.9 ± 89.6 nm, -21.3 ± 3.3 to -28.4 ± 3.4 mV, respectively. SEM and FTIR confirmed that particles were in nano range with spherical shape and successful encapsulation of plant extracts into an alginate matrix. The antidiabetic potential of aqueous extract of C. grandis encapsulated alginate nanoparticles (AqCG-ANP) exhibited inhibition in α-amylase, α-glucosidase and dipeptidyl peptidase IV enzymes of 60.8%c/c, 19.1%c/c, and 30.3%c/c, respectively, compared to the AqCG. CONCLUSION The AqCG-ANP exerted promising antidiabetic potential as an antidiabetic drug lead.
Collapse
Affiliation(s)
| | | | | | | | - Geethi Kaushalya Pamunuwa
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Sri Lanka
| |
Collapse
|
6
|
A Bioengineered Quercetin-Loaded 3D Bio-Polymeric Graft for Tissue Regeneration and Repair. Biomedicines 2022; 10:biomedicines10123157. [PMID: 36551913 PMCID: PMC9775630 DOI: 10.3390/biomedicines10123157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Phytochemicals extracted from plant sources have potential remedial effects to cure a broad range of acute to severe illnesses and ailments. Quercetin is a flavonoid isolated from different dietary sources such as vegetables and fruits, exhibiting strong anti-inflammatory, anti-oxidative and non-toxic effects on the biological system. However, the direct uptake or administration of quercetin results in loss of functionality, poor activity, and reduced shelf-life of the bioactive component. In this regard, to improve the uptake, potential, and efficiency of natural components with prolonged storage in the host's body after administration, numerous polymer drug delivery systems have been created. In the current study, three-dimensional (3D) porous (porosity: 92%; pore size: 81 µm) bio-polymeric foaming gelatin-alginate (GA) beads were fabricated for the entrapment of quercetin as therapeutic drug molecules-gelatin-alginate-quercetin (GAQ). The GAQ beads showed a significant uptake of quercetin molecules resulting in a reduction of reduced porosity up to 64% and pore size 63 µm with a controlled release profile in the PBS medium, showing ~80% release within 24 h. Subsequently, the GAQ beads showed remarkable antioxidant effects, and 95% anti-inflammatory activities along with remarkable in vitro cell culture growth and the observed proliferation of seeded fibroblast cells. Thus, we can conclude that the consistent release of quercetin showed non-toxic effects on normal cell lines and the bioactive surface of the GAQ beads enhances cell adhesion, proliferation, and differentiation more effectively than control GA polymeric beads and tissue culture plates (TCP). In summary, these findings show that these GAQ beads act as a biocompatible 3D construct with enormous potential in medicinal administration and tissue regeneration for accelerated healing.
Collapse
|
7
|
Liu S, Fang Z, Ng K. Incorporating inulin and chitosan in alginate-based microspheres for targeted delivery and release of quercetin to colon. Food Res Int 2022; 160:111749. [DOI: 10.1016/j.foodres.2022.111749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 01/04/2023]
|
8
|
Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers (Basel) 2022; 14:polym14030490. [PMID: 35160478 PMCID: PMC8839549 DOI: 10.3390/polym14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of this paper was to formulate microspheres based on biodegradable polymers (chitosan and sodium alginate), using the complex coacervation technique. Subsequently, the prepared microspheres were loaded with quercetin (QUE), a pharmacological active ingredient insoluble in water and unstable to light, temperature and air. After preparation, the loaded microspheres underwent several studies for physical chemical characterization (performed by scanning electron microscopy-SEM, laser 3D scanning, and thermal analysis-TA). Furthermore, they were analyzed in order to obtain information regarding swelling index, drug entrapment, and in vitro release capacity. The obtained experimental data demonstrated 86.07% entrapment of QUE into the microspheres, in the case of the one with the highest Ch concentration. Additionally, it was proved that such systems allow the controlled release of the active drug over 24 h at the intestinal level. SEM micrographs proved that the prepared microspheres have a wrinkled surface, with compact structures and a large number of folds. On the basis of the TA analysis, it was concluded that the obtained microspheres were thermally stable, facilitating their usage at normal physiological temperatures as drug delivery systems.
Collapse
|
9
|
Stachowiak N, Kowalonek J, Kozlowska J. Freeze-Dried Matrices Composed of Degradable Polymers with Surfactant-Loaded Microparticles Based on Pectin and Sodium Alginate. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3044. [PMID: 34204985 PMCID: PMC8199913 DOI: 10.3390/ma14113044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
Gelatin/polyvinylpyrrolidone/hydroxyethyl cellulose/glycerol porous matrices with microspheres made of sodium alginate or pectin and sodium alginate were produced. A surfactant was loaded into these microparticles. The microspheres were characterized using optical microscopy, scanning electron microscopy SEM, and laser diffraction particle size analyzer. For the matrices, the density, porosity, swelling capacity, dissolution in phosphate saline buffer were determined and SEM, mechanical, and thermogravimetric studies were applied. The results showed that the size of the two-component microspheres was slightly larger than that of single-ingredient microparticles. The images confirmed the spherical shape of the microparticles. The prepared matrices had high water uptake ability and porosity due to the presence of hydrophilic polymers. The presence of microparticles in the matrices caused a decrease in these parameters. Degradation of the composites with the microspheres was significantly faster than the matrix without them. The addition of microparticles increased the stiffness and toughness of the prepared materials. The efficiency of the thermal decomposition main stage was reduced in the samples with microspheres, whereas a char residue increased in these composites.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (J.K.); (J.K.)
| | | | | |
Collapse
|
10
|
Özbilenler C, Altundağ EM, Gazi M. Synthesis of quercetin-encapsulated alginate beads with their antioxidant and release kinetic studies. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1817756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Cahit Özbilenler
- Polymeric Materials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta TRNC, Turkey
| | - Ergül Mutlu Altundağ
- Department of Medical Biochemistry, Faculty of Medicine, Eastern Mediterranean University, Famagusta TRNC, Turkey
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta TRNC, Turkey
| |
Collapse
|