1
|
Ragab EM, Gamal DME, El-Najjar FF, Elkomy HA, Ragab MA, Elantary MA, Basyouni OM, Moustafa SM, El-Naggar SA, Elsherbiny AS. New insights into Notch signaling as a crucial pathway of pancreatic cancer stem cell behavior by chrysin-polylactic acid-based nanocomposite. Discov Oncol 2025; 16:107. [PMID: 39891818 PMCID: PMC11787125 DOI: 10.1007/s12672-025-01846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
Pancreatic cancer is an extremely deadly illness for which there are few reliable treatments. Recent research indicates that malignant tumors are highly variable and consist of a tiny subset of unique cancer cells, known as cancer stem cells (CSCs), which are responsible for the beginning and spread of tumors. These cells are typically identified by the expression of specific cell surface markers. A population of pancreatic cancer stem cells with aberrantly active developmental signaling pathways has been identified in recent studies of human pancreatic tumors. Among these Notch signaling pathway has been identified as a key regulator of CSCs self-renewal, making it an attractive target for therapeutic intervention. Chrysin-loaded polylactic acid (PLA) as polymeric nanoparticles systems have been growing interest in using as platforms for improved drug delivery. This review aims to explore innovative strategies for targeted therapy and optimized drug delivery in pancreatic CSCs by manipulating the Notch pathway and leveraging PLA-based drug delivery systems. Furthermore, we will assess the capability of PLA nanoparticles to enhance the bioavailability and effectiveness of gemcitabine in pancreatic cancer cells. The insights gained from this review have the potential to contribute to the development of novel treatment approaches that combine targeted therapy with advanced drug delivery utilizing biodegradable polymeric nanoparticles.
Collapse
Affiliation(s)
- Eman M Ragab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doaa M El Gamal
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Fares F El-Najjar
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hager A Elkomy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A Ragab
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mariam A Elantary
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar M Basyouni
- Chemistry/Zoology Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sherif M Moustafa
- Chemistry/Biochemistry Division, chemistry department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Shimaa A El-Naggar
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abeer S Elsherbiny
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Villapiano F, Piccioni M, D’Aria F, Crispi S, Rassu G, Giunchedi P, Gavini E, Giancola C, Serri C, Biondi M, Mayol L. Silibinin-Loaded Amphiphilic PLGA-Poloxamer Nanoparticles: Physicochemical Characterization, Release Kinetics, and Bioactivity Evaluation in Lung Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5480. [PMID: 39597304 PMCID: PMC11595691 DOI: 10.3390/ma17225480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Despite its potential against several carcinomas, the pharmacological efficacy of silibinin (SLB) is hampered by poor solubility, absorption, and oral bioavailability. To face these issues, we developed polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) coated with hydrophilic polyethene oxide (PEO) for controlled and targeted SLB delivery. NPs were produced at two different SLB loadings and presented a spherical shape with smooth surfaces and stable size in water and cell culture medium. The encapsulation efficiencies were found to be >84%, and thermal analysis revealed that the SLB was present in an amorphous state within the NPs. In vitro SLB release experiments revealed that at the lowest SLB loading, desorption of the active molecule from the surface or nanoporosities of the NPs mainly dictates release. In contrast, at the highest SLB loading, diffusion primarily regulates release, with negligible contributions from other mechanisms. Cell experiments showed that, compared with the free drug, SLB loaded in the produced NPs significantly increased the bioactivity against H1299, H1975, and H358 cells.
Collapse
Affiliation(s)
- Fabrizio Villapiano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Miriam Piccioni
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100 Naples, Italy; (M.P.); (S.C.)
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Stefania Crispi
- Institute of Biosciences and Bio-Resources, National Research Council (CNR-IBBR), 80100 Naples, Italy; (M.P.); (S.C.)
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (G.R.); (P.G.); (E.G.)
| | - Marco Biondi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Motesano 49, 80131 Naples, Italy; (F.V.); (F.D.); (C.G.)
| | - Laura Mayol
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 80131 Naples, Italy;
| |
Collapse
|
3
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
4
|
Farooq U, Mirza MA, Alshetaili A, Mohapatra S, Jain P, Hassan N, Iqbal Z, Ali A. In silico and in vitro assessment of an optimized QbD-guided myoinositol and metformin-loaded mucus-penetrating particle-based gel for the amelioration of PCOS. NANOSCALE ADVANCES 2024; 6:648-668. [PMID: 38235090 PMCID: PMC10791119 DOI: 10.1039/d3na00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Polycystic ovarian syndrome (PCOS) is a multi-factorial endocrine disorder affecting women of reproductive age. However, its high prevalence and the unsuccessful translation of conventional modalities have made PCOS a pharmaco-therapeutic challenge. In the present study, we explored bi-formulations (comprising metformin-loaded mucus-penetrating nanoparticles, MTF-MPPs, and myoinositol-loaded mucus-penetrating particles, MI-MPPs) incorporated in a carbomer gel tailored for intravaginal administration. For the development and optimization of the MPPs-gel, a QbD (quality by design) approach was employed, including the initial and final risk assessment, central composite design of experts, and method validation. The optimized MTF-MPPs and MI-MPPs possessed an optimum nanometric particle size (195.0 nm and 178.8 nm, respectively) and a PDI of 0.150 and 0.123, respectively, together with a negligible negative zeta potential (-5.19 mV and -6.19 mV, respectively) through the vaginal mucus. It was observed that the MPPs are small and monodisperse with a neutral surface charge. It was observed that the MPPs-gel formulations released approximately 69.86 ± 4.65% of MTF and 67.14 ± 5.74% of MI within 120 h (5 days), which was observed to be sustained unlike MFT-MI-gel with approximately 94.89 ± 4.17% of MTF and 90.91 ± 15% of MI drugs released within 12 h. The confocal microscopy study of rhodamine-loaded MPPs indicated that they possessed a high fluorescence intensity at a depth of 15 μm, while as the penetration trajectory in the vaginal tissue increased to 35 μm, their intensity was reduced, appearing to be more prominent in the blood vessels. The analyzed data of MPPs-gel suggest that the optimized MPPs-gel formulation has potential to reach the targeted area via the uterovaginal mucosa, which has a wide network of blood vessels. Subsequently, in vivo studies were conducted and the results revealed that the proposed MPPs-gel formulation could regulate the estrous cycle of the reproductive system compared to the conventional formulation. Moreover, the formulation significantly reduced the weight of the ovaries compared to the control and conventional vaginal gel. Biochemical estimation showed improved insulin and sex hormone levels. Thus, the obtained data revealed that the deep penetration and deposition of MTF and MI on the targeted area through intravaginal delivery resulted in better therapeutic effects than the conventional vaginal gel. The obtained results confirmed the amelioration of PCOS upon treatment using the prepared MPPs-gel formulation. According to the relevant evaluation studies, it was concluded that MPPs-gel was retained in the vaginal cavity for systemic effects. Also, the sustained and non-irritating therapeutic effect meets the safety aspects. This work serves as a promising strategy for intravaginal drug delivery.
Collapse
Affiliation(s)
- Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj Saudi Arabia
| | - Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India +91-9899571726 +91-9811733016
| |
Collapse
|
5
|
Haque S, Hussain A, Joshi H, Sharma U, Sharma B, Aggarwal D, Rani I, Ramniwas S, Gupta M, Tuli HS. Melittin: a possible regulator of cancer proliferation in preclinical cell culture and animal models. J Cancer Res Clin Oncol 2023; 149:17709-17726. [PMID: 37919474 DOI: 10.1007/s00432-023-05458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, 13306, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markendashwar College of Medical Sciences and Research (MMCMSR), Sadopur, Ambala, 134007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
6
|
Salmani-Javan E, Jafari-Gharabaghlou D, Bonabi E, Zarghami N. Fabricating niosomal-PEG nanoparticles co-loaded with metformin and silibinin for effective treatment of human lung cancer cells. Front Oncol 2023; 13:1193708. [PMID: 37664043 PMCID: PMC10471189 DOI: 10.3389/fonc.2023.1193708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
Background Despite current therapies, lung cancer remains a global issue and requires the creation of novel treatment methods. Recent research has shown that biguanides such as metformin (MET) and silibinin (SIL) have a potential anticancer effect. As a consequence, the effectiveness of MET and SIL in combination against lung cancer cells was investigated in this study to develop an effective and novel treatment method. Methods Niosomal nanoparticles were synthesized via the thin-film hydration method, and field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR), atomic force microscopy (AFM), and dynamic light scattering (DLS) techniques were used to evaluate their physico-chemical characteristics. The cytotoxic effects of free and drug-loaded nanoparticles (NPs), as well as their combination, on A549 cells were assessed using the MTT assay. An apoptosis test was used while under the influence of medication to identify the molecular mechanisms behind programmed cell death. With the use of a cell cycle test, it was determined whether pharmaceutical effects caused the cell cycle to stop progressing. Additionally, the qRT-PCR technique was used to evaluate the levels of hTERT, BAX, and BCL-2 gene expression after 48-h medication treatment. Results In the cytotoxicity assay, the growth of A549 lung cancer cells was inhibited by both MET and SIL. Compared to the individual therapies, the combination of MET and SIL dramatically and synergistically decreased the IC50 values of MET and SIL in lung cancer cells. Furthermore, the combination of MET and SIL produced lower IC50 values and a better anti-proliferative effect on A549 lung cancer cells. Real-time PCR results showed that the expression levels of hTERT and BCL-2 were significantly reduced in lung cancer cell lines treated with MET and SIL compared to single treatments (p< 0.001). Conclusion It is anticipated that the use of nano-niosomal-formed MET and SIL would improve lung cancer treatment outcomes and improve the therapeutic efficiency of lung cancer cells.
Collapse
Affiliation(s)
- Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| |
Collapse
|
7
|
Jafari-Gharabaghlou D, Dadashpour M, Khanghah OJ, Salmani-Javan E, Zarghami N. Potentiation of Folate-Functionalized PLGA-PEG nanoparticles loaded with metformin for the treatment of breast Cancer: possible clinical application. Mol Biol Rep 2023; 50:3023-3033. [PMID: 36662452 DOI: 10.1007/s11033-022-08171-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023]
Abstract
AIM Folate receptor expression increase up to 30% in breast cancer cells and could be used as a possible ligand to couple to folate-functionalized nanoparticles. Metformin (Met) is an anti-hyperglycemic agent whose anti-cancer properties have been formerly reported. Consequently, in the current study, we aimed to synthesize and characterize folate-functionalized PLGA-PEG NPs loaded with Met and evaluate the anti-cancer effect against the MDA-MB-231 human breast cancer cell line. METHODS FA-PLGA-PEG NPs were synthesized by employing the W1/O/W2 technique and their physicochemical features were evaluated by FE-SEM, TEM, FTIR, and DLS methods. The cytotoxic effects of free and Nano-encapsulated drugs were analyzed by the MTT technique. Furthermore, RT-PCR technique was employed to assess the expression levels of apoptotic and anti-apoptotic genes. RESULT MTT result indicated Met-loaded FA-PLGA-PEG NPs exhibited cytotoxic effects in a dose-dependently manner and had more cytotoxic effects relative to other groups. The remarkable down-regulation (hTERT and Bcl-2) and up-regulation (Caspase7, Caspase3, Bax, and p53) gene expression were shown in treated MDA-MB-231 cells with Met-loaded FA-PLGA-PEG NPs. CONCLUSION Folate-Functionalized PLGA-PEG Nanoparticles are suggested as an appropriate approach to elevate the anticancer properties of Met for improving the treatment effectiveness of breast cancer cells.
Collapse
Affiliation(s)
- Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Omid Joodi Khanghah
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
8
|
Dristant U, Mukherjee K, Saha S, Maity D. An Overview of Polymeric Nanoparticles-Based Drug Delivery System in Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231152083. [PMID: 36718541 PMCID: PMC9893377 DOI: 10.1177/15330338231152083] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Cancer is recognized as one of the world's deadliest diseases, with more than 10 million new cases each year. Over the past 2 decades, several studies have been performed on cancer to pursue solutions for effective treatment. One of the vital benefits of utilizing nanoparticles (NPs) in cancer treatment is their high adaptability for modification and amalgamation of different physicochemical properties to boost their anti-cancer activity. Various nanomaterials have been designed as nanocarriers attributing nontoxic and biocompatible drug delivery systems with improved bioactivity. The present review article briefly explained various types of nanocarriers, such as organic-inorganic-hybrid NPs, and their targeting mechanisms. Here a special focus is given to the synthesis, benefits, and applications of polymeric NPs (PNPs) involved in various anti-cancer therapeutics. It has also been discussed about the drug delivery approach by the functionalized/encapsulated PNPs (without/with targeting ability) that are being applied in the therapy and diagnostic (theranostics). Overall, this review can give a glimpse into every aspect of PNPs, from their synthesis to drug delivery application for cancer cells.
Collapse
Affiliation(s)
- Utkarsh Dristant
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Koel Mukherjee
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sumit Saha
- Materials Chemistry Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, Odisha, India
| | - Dipak Maity
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| |
Collapse
|
9
|
Wang Y, Yuan AJ, Wu YJ, Wu LM, Zhang L. Silymarin in cancer therapy: Mechanisms of action, protective roles in chemotherapy-induced toxicity, and nanoformulations. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Curr Microbiol 2023; 80:38. [DOI: 10.1007/s00284-022-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
|
11
|
Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010220. [PMID: 36615414 PMCID: PMC9822493 DOI: 10.3390/molecules28010220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.
Collapse
|
12
|
Lahimchi MR, Eslami M, Yousefi B. New insight into GARP striking role in cancer progression: application for cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:33. [PMID: 36460874 DOI: 10.1007/s12032-022-01881-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022]
Abstract
T regulatory cells play a crucial role in antitumor immunity suppression. Glycoprotein-A repetitions predominant (GARP), transmembrane cell surface marker, is mostly expressed on Tregs and mediates intracellular organization of transforming growth factor-beta (TGF-β). The physiological role of GARP is immune system homeostasis, while it may cause tumor development by upregulating TGF-β secretion. Despite the vast application of anti- programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte Antigen-4 (CTLA-4) antibodies in immunotherapy, anti-GARP antibodies have the advantage of better response in patients who has resistance to anti-PD-1/PD-L1. Furthermore, simultaneous administration of anti-GARP antibody and anti-PD-1/PD-L1 antibody is much more effective than anti-PD-1/PD-L1 alone. It is worth mentioning that the GARP-mTGF-β complex is more potent than secretory TGF-β to induce T helper 17 cells differentiation in HIV + patients. On the other hand, TGF-β is an effective cytokine in cancer development, and some microRNAs could control its secretion by regulating GARP. In the present review, some information is provided about the undeniable role of GARP in cancer progression and its probable importance as a novel prognostic biomarker. Anti-GARP antibodies are also suggested for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Majid Eslami
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran. .,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Gautam AK, Kumar P, Maity B, Routholla G, Ghosh B, Chidambaram K, Begum MY, Al Fatease A, Rajinikanth P, Singh S, Saha S, M. R. V. Synthesis and appraisal of dalbergin-loaded PLGA nanoparticles modified with galactose against hepatocellular carcinoma: In-vitro, pharmacokinetic, and in-silico studies. Front Pharmacol 2022; 13:1021867. [PMID: 36386226 PMCID: PMC9650263 DOI: 10.3389/fphar.2022.1021867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 07/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy which affects a substantial number of individuals all over the globe. It is the third primary cause of death among persons with neoplasm and has the fifth largest mortality rate among men and the seventh highest mortality rate among women. Dalbergin (DL) is described to be effective in breast cancer via changing mRNA levels of apoptosis-related proteins. DL belongs to neoflavonoids, a drug category with low solubility and poor bioavailability. We created a synthetic version of this naturally occurring chemical, DL, and then analyzed it using 1H-NMR, 13C-NMR, and LC-MS. We also made PLGA nanoparticles and then coated them with galactose. The design of experiment software was used to optimize DL-loaded galactose-modified PLGA nanoparticles. The optimized DL-nanoformulations (DLF) and DL-modified nanoformulations (DLMF) were analyzed for particle size, polydispersity index, shape, and potential interactions. In-vitro experiments on liver cancer cell lines (HepG2) are used to validate the anti-proliferative efficacy of the modified DLMF. The in-vitro research on HepG2 cell lines also demonstrated cellular accumulation of DLF and DLMF by FITC level. The in-vitro result suggested that DLMF has high therapeutic effectiveness against HCC. In-vivo pharmacokinetics and bio-distribution experiments revealed that DLMF excelled pristine DL in terms of pharmacokinetic performance and targeted delivery, which is related to galactose's targeting activity on the asialoglycoprotein receptor (ASGPR) in hepatic cells. Additionally, we performed an in-silico study of DL on caspase 3 and 9 proteins, and the results were found to be -6.7 kcal/mol and -6.6 kcal/mol, respectively. Our in-silico analysis revealed that the DL had strong apoptotic properties against HCC.
Collapse
Affiliation(s)
- Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Department of Pharmacology, Aryakul College of Pharmacy & Research, Lucknow, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Ganesh Routholla
- Department of Pharmacy, BITS-Pilani Hyderabad Campus Hyderabad, Hyderabad, India
| | - Balaram Ghosh
- Department of Pharmacy, BITS-Pilani Hyderabad Campus Hyderabad, Hyderabad, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Yasmin Begum
- Department of Pharmaceutics, King Khalid University, Abha, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, King Khalid University, Abha, Saudi Arabia
| | - P.S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Vijayakumar M. R.
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Azimi S, Esmaeil Lashgarian H, Ghorbanzadeh V, Moradipour A, Pirzeh L, Dariushnejad H. 5-FU and the dietary flavonoid carvacrol: a synergistic combination that induces apoptosis in MCF-7 breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:253. [PMID: 36224408 DOI: 10.1007/s12032-022-01863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 10/17/2022]
Abstract
Along with the benefits of chemotherapy in the treatment of breast cancer, the side effects of these drugs along with drug resistance make their use complicated. One of the solutions to overcome this problem is the use of herbal products and combination therapy. In this research, we try to investigate the effects of carvacrol, a monoterpene flavonoid, in combination with the chemotherapy drug 5-FU. Combination index method was used for the drug-drug interactions analysis based on the Chou and Talalay method and the data from MTT assays. Apoptosis was assessed by the ELISA cell death method. P-glycoprotein expression was evaluated at the gene level by Real-time PCR. Here, we described the first experimental evidence for the existence of synergism between carvacrol and 5-FU in the in vitro model of breast cancer. MTT assay results showed combination treatment of the cells with carvacrol and 5-FU decreased 5-FU concentrations significantly. Incubation of the cells with carvacrol neutralized P-glycoprotein overexpression in qPCR assay (P ≤ 0.05). Compared with adding verapamil (a P-glycoprotein inhibitor) to 5-FU, the combination of carvacrol and 5-FU caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents. Our results suggest that carvacrol can downregulate P-gp expression and combination therapy with carvacrol and 5-FU is considered a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression.
Collapse
Affiliation(s)
- Saleh Azimi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeil Lashgarian
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayat Moradipour
- Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Lale Pirzeh
- Institute for Vascular Signaling, Center for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfort am Main, Germany
| | - Hassan Dariushnejad
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
15
|
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20:361. [PMID: 35918688 PMCID: PMC9344723 DOI: 10.1186/s12951-022-01567-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Ocular drug delivery is one of the most challenging endeavors among the various available drug delivery systems. Despite having suitable drugs for the treatment of ophthalmic disease, we have not yet succeeded in achieving a proper drug delivery approach with the least adverse effects. Nanotechnology offers great opportunities to overwhelm the restrictions of common ocular delivery systems, including low therapeutic effects and adverse effects because of invasive surgery or systemic exposure. The present review is dedicated to highlighting and updating the recent achievements of nano-based technologies for ocular disease diagnosis and treatment. While further effort remains, the progress illustrated here might pave the way to new and very useful ocular nanomedicines.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
The Effect of Dual Bioactive Compounds Artemisinin and Metformin Co-loaded in PLGA-PEG Nano-particles on Breast Cancer Cell lines: Potential Apoptotic and Anti-proliferative Action. Appl Biochem Biotechnol 2022; 194:4930-4945. [PMID: 35674922 DOI: 10.1007/s12010-022-04000-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The most prevalent malignancy among women is breast cancer. Phytochemicals and their derivatives are rapidly being recognized as possible cancer complementary therapies because they can modify signaling pathways that lead to cell cycle control or directly alter cell cycle regulatory molecules. The phytochemicals' poor bioavailability and short half-life make them unsuitable as anticancer drugs. Applying PLGA-PEG NPs improves their solubility and tolerance while also reducing drug adverse effects. According to the findings, combining anti-tumor phytochemicals can be more effective in regulating several signaling pathways linked to tumor cell development. The point of the study was to compare the anti-proliferative impacts of combined artemisinin and metformin on cell cycle arrest and expression of cyclin D1 and apoptotic genes (bcl-2, Bax, survivin, caspase-7, and caspase-3), and also hTERT genes in breast cancer cells. T-47D breast cancer cells were treated with different concentrations of metformin (MET) and artemisinin (ART) co-loaded in PLGA-PEG NPs and free form. The MTT test was applied to assess drug cytotoxicity in T47D cells. The cell cycle distribution was investigated using flow cytometry and the expression levels of cyclin D1, hTERT, Bax, bcl-2, caspase-3, and caspase-7, and survivin genes were then determined using real-time PCR. The findings of the MTT test and flow cytometry revealed that each state was cytotoxic to T47D cells in a time and dose-dependent pattern. Compared to various state of drugs (free and nano state, pure and combination state) Met-Art-PLGA/PEG NPs demonstrated the strongest anti-proliferative impact and considerably inhibited the development of T-47D cells; also, treatment with nano-formulated forms of Met-Art combination resulted in substantial downregulation of hTERT, Bcl-2, cyclin D1, survivin, and upregulation of caspase-3, caspase-7, and Bax, in the cells, as compared to the free forms, as indicated by real-time PCR findings. The findings suggested that combining an ART/MET-loaded PLGA-PEG NP-based therapy for breast cancer could significantly improve treatment effectiveness.
Collapse
|
17
|
Khodadadi M, Jafari-Gharabaghlou D, Zarghami N. An update on mode of action of metformin in modulation of meta-inflammation and inflammaging. Pharmacol Rep 2022; 74:310-322. [PMID: 35067907 DOI: 10.1007/s43440-021-00334-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common chronic metabolic condition. Several genetic and environmental factors are involved in developing T2DM. Aging, inflammation, and obesity are the main contributors to the initiation of T2DM. They cause chronic sterile meta-inflammation and insulin resistance, thereby making a person more susceptible to developing T2DM. Metformin, a natural cationic biguanide, is widely used as the first-line treatment of T2DM. The exact action mechanism behind the glucose-lowering effect of metformin is not clear, but, presumably, metformin utilizes a broad spectrum of molecular mechanisms to control blood glucose including decreasing intestinal glucose absorption, inhibition of the hepatic gluconeogenesis, decreasing insulin resistance, etc. Recent studies have shown that metformin exerts its effects through the inhibition of mitochondrial respiratory chain complex 1 and the AMP-activated protein kinase (AMPK) activation, but it has been identified in the other studies that AMPK is not the sole hub in metformin mode of action or there are other unknown mechanisms which are involved and yet to be explored. Therefore, here, we discuss the updated findings of the mechanism of action of metformin that contributes to the meta-inflammation and inflammaging action. It is proposed that figuring out the precise mechanism of action of metformin could improve its application in the fields of obesity, inflammation, aging, and inflammaging.
Collapse
Affiliation(s)
- Meysam Khodadadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey. .,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Stimulus-responsive drug/gene delivery system based on polyethylenimine cyclodextrin nanoparticles for potential cancer therapy. Carbohydr Polym 2022; 276:118747. [PMID: 34823779 DOI: 10.1016/j.carbpol.2021.118747] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Combination therapy through simultaneous delivery of anti-cancer drugs and genes with nano-assembled structure has been proved to be a simple and effective approach for treating breast cancer. In this study, redox-sensitive folate-appended-polyethylenimine-β-cyclodextrin (roFPC) host-guest supramolecular nanoparticles (HGSNPs) were developed as a targeted co-delivery system of doxorubicin (Dox) and Human telomerase reverse transcriptase-small interfering RNA) hTERT siRNA) for potential cancer therapy. The nanotherapeutic system was prepared by loading adamantane-conjugated doxorubicin (Ad-Dox) into roFPC through the supramolecular assembly, followed by electrostatically-driven self-assembly between hTERT siRNA and roFPC/Ad-Dox. The roFPC' host-guest structures allow pH-dependent intracellular drug release in a sustained manner, as well as simultaneous and effective gene transfection. This co-delivery vector displayed combined anti-tumor properties of the Dox-enhanced gene transfection, good water-solubility, and biocompatibility, possesses considerably enhanced hemocompatibility, and especially targets folate receptor-positive cells only at low N/P levels to prompt effective cell apoptosis for cancer treatment.
Collapse
|
19
|
Dadashpour M, Ganjibakhsh M, Mousazadeh H, Nejati K. Increased Pro-Apoptotic and Anti-Proliferative Activities of Simvastatin Encapsulated PCL-PEG Nanoparticles on Human Breast Cancer Adenocarcinoma Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02217-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Kanugo A, Gautam RK, Kamal MA. Recent advances of nanotechnology in the diagnosis and therapy of triple-negative breast cancer (TNBC). Curr Pharm Biotechnol 2021; 23:1581-1595. [PMID: 34967294 DOI: 10.2174/1389201023666211230113658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of advanced treatment of triple-negative breast cancer (TNBC) is the utmost need of an era. TNBC is recognized as the most aggressive, metastatic cancer and the leading cause of mortality in females worldwide. The lack of expression of triple receptors namely, estrogen, progesterone, and human epidermal receptor2 defined TNBC. OBJECTIVE The current review introduced the novel biomarkers such as miRNA and family, PD1, EGFR, VEGF, TILs, P53, AR and PI3K, etc. contributed significantly to the prognosis and diagnosis of TNBC. Once diagnosed the utilization advanced approaches available for TNBC because of the limitations of chemotherapy. Novel approaches include lipid-based (liposomes, SLN, NLC, and SNEDDS), polymer-based (micelle, nanoparticles, dendrimers, and quantum dots), advanced nanocarriers such as (exosomes, antibody and peptide-drug conjugates), carbon-based nanocarriers (Carbon nanotubes, and graphene oxide). Lipid-based delivery is used for excellent carriers for hydrophobic drugs, biocompatibility, and lesser systemic toxicities than chemotherapeutic agents. Polymer-based approaches are preferred over lipids for providing longer circulation time, nanosize, high loading efficiency, high linking; avoiding the expulsion of drugs, targeted action, diagnostic and biosensing abilities. Advanced approaches like exosomes, conjugated moieties are preferred over polymeric for possessing potency, high penetrability, biomarkers, and avoiding the toxicity of tissues. Carbon-based gained wide applicability for their unique properties like a versatile carrier, prognostic, diagnostic, sensing, photodynamic, and photothermal characteristics. CONCLUSION The survival rate can be increased by utilizing several kinds of biomarkers. The advanced approaches can also be significantly useful in the prognosis and theranostic of triple-negative breast cancer. One of the biggest successes in treating with nanotechnology-based approaches is the marked reduction of systemic toxicity with high therapeutic effectiveness compared with chemotherapy, surgery, etc. The requirements such as prompt diagnosis, longer circulation time, high efficiency, and high potency, can be fulfilled with these nanocarriers.
Collapse
Affiliation(s)
- Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India
| | - Rupesh K Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala (Haryana) India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
21
|
Budurova D, Momekova D, Momekov G, Shestakova P, Penchev H, Rangelov S. PEG-Modified tert-Octylcalix[8]arenes as Drug Delivery Nanocarriers of Silibinin. Pharmaceutics 2021; 13:2025. [PMID: 34959307 PMCID: PMC8709077 DOI: 10.3390/pharmaceutics13122025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The hepatoprotective properties of silibinin, as well its therapeutic potential as an anticancer and chemo-preventive agent, have failed to progress towards clinical development and commercialization due to this material's unfavorable pharmacokinetics and physicochemical properties, low aqueous solubility, and chemical instability. The present contribution is focused on the feasibility of using PEGylated calixarene, in particular polyoxyethylene-derivatized tert-octylcalix[8]arene, to prepare various platforms for the delivery of silibinin, such as inclusion complexes and supramolecular aggregates thereof. The inclusion complex is characterized by various instrumental methods. At concentrations exceeding the critical micellization concentration of PEGylated calixarene, the tremendous solubility increment of silibinin is attributed to the additional solubilization and hydrophobic non-covalent interactions of the drug with supramolecular aggregates. PEG-modified tert-octylcalix[8]arenes, used as drug delivery carriers for silibinin, were additionally investigated for cytotoxicity against human tumor cell lines.
Collapse
Affiliation(s)
- Desislava Budurova
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St. Bldg 9, 1113 Sofia, Bulgaria;
| | - Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| |
Collapse
|
22
|
Formulation of Genistein-HP β Cyclodextrin-Poloxamer 188 Ternary Inclusion Complex: Solubility to Cytotoxicity Assessment. Pharmaceutics 2021; 13:pharmaceutics13121997. [PMID: 34959278 PMCID: PMC8707042 DOI: 10.3390/pharmaceutics13121997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The current study was designed to prepare the inclusion complex Genistein (GS) using Hydroxypropyl β cyclodextrin (HP β CD) and poloxamer 188 (PL 188). The binary inclusion complex (GS BC) and ternary inclusion complex (GS TC) were developed by microwave irradiation technique and evaluated for a comparative dissolution study. Further, the samples were assessed for FTIR, DSC, XRD, and NMR for the confirmation of complex formation. Finally, antioxidant and antimicrobial studies and cytotoxicity studies on a breast cancer (MCF-7) cell line were conducted. The dissolution study result showed a marked increment in GS dissolution/release after incorporation in binary (GS: HP β CD, 1:1) and ternary (GS: HP β CD: PL 188; 1:1:0.5) inclusion complexes. Moreover, the ternary complex exhibited a significant enhancement (p < 0.05) in dissolution than did the binary complexes. This might be due to the presence of PL 188, which helps in solubility enhancement of GS. DSC, XRD and SEM evaluation confirmed the modification in the structure of GS. FTIR and NMR results indicated the formation of an inclusion complex. The antioxidant and antimicrobial activity results revealed that GS TC has shown significant (p < 0.05) higher activity than pure GS. The cytotoxicity study results also depicted concentration-dependent cytotoxicity. GS TC exhibited significantly (p < 0.05) high cytotoxicity to cancer cells (IC50 = 225 µg/mL) than pure GS (IC50 = 480 µg/mL). Finally, it was concluded that a remarkable enhancement in the dissolution was observed after the inclusion of GS in the ternary complex and it therefore has significant potential for the treatment of breast cancer.
Collapse
|
23
|
Abd-Rabou AA, Abdelaziz AM, Shaker OG, Ayeldeen G. Metformin-loaded lecithin nanoparticles induce colorectal cancer cytotoxicity via epigenetic modulation of noncoding RNAs. Mol Biol Rep 2021; 48:6805-6820. [PMID: 34468912 DOI: 10.1007/s11033-021-06680-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is major aliment around the word, with a cumulative rate of mortality. Metformin (MT) was recently approved as anticancer drug against solid tumors, such as CRC. Resistance to MT therapy remains to be a challenging matter facing the development of possible anti-cancer strategy. To circumvent this problem, MT nano-encapsulation has been introduced to sensitize resistant cancer cells. The purpose of the current study is to explore the MT's aptitude encapsulated in lecithin (LC) and chitosan (CS) nanoparticles to inhibit CRC proliferation through modulations of long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and some biochemical markers. METHODS AND RESULTS Cytotoxic screenings of the newly synthesized MT-based regimens; MT, MT-LC NPs (NP1), MT-CS NPs (NP2), and MT-LC-CS NPs (NP3) against colorectal cancerous Caco-2 and HCT116 cell lines versus normal WI-38 cells were performed. The epigenetic mechanistic effects of these proposed regimens on lncRNAs and miRNAs were investigated. Additionally, some protein levels were assessed in CRC cells upon treatments; YKL-40, PPARγ, E-cadherin (ECN), and VEGF. We resulted that NP1 recorded the highest significant cytotoxic effect on CRC cells. HCT116 cells were more sensitive to the NP1 compared to Caco-2 cells. Intriguingly, it was suggested that NP1 tackled the CRC cells through down-regulation of the H19, HOTTIP, HULC, LINC00641, miR-200, miR-92a, miR-21, YKL-40, PPARγ, and VEGF expressions, as well as up-regulation of the miR-944 and ECN expressions. CONCLUSIONS We concluded that the NP1 can potentially be cytotoxic to CRC cells in-vitro by modulating noncoding RNA.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Medical Research Division, Hormones Department, National Research Center, Dokki, Giza, 12622, Egypt.
- Stem Cell Lab., Centre of Excellence for Advanced Science, National Research Center, Dokki, Giza, 12622, Egypt.
| | - Ahmed M Abdelaziz
- Ahmed Mahr Teaching Hospital (AMTH), Cairo, Egypt
- Supplementary General Sciences, Future University, Cairo, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Colpan RD, Erdemir A. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. J Microencapsul 2021; 38:381-393. [PMID: 34189998 DOI: 10.1080/02652048.2021.1948623] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM This study aimed to synthesise quercetin- caffeic-acid phenethyl ester (CAPE)-co-loaded poly(lactic-co-glycolic-acid) (PLGA) nanoparticles (QuCaNP) and investigate their anti-cancer activity on human colorectal carcinoma HT-29 cells. METHODS QuCaNPs were synthesised using single-emulsion (o/w) solvent evaporation method. Particle size, zeta potential, polydispersity index, in vitro release profile, and surface morphology of QuCaNPs were determined. Cytotoxicity, anti-migration, anti-proliferation and apoptotic activities of QuCaNPs were studied. RESULTS Mean diameter of QuCaNP was 237.8 ± 9.670 nm, with a polydispersity index (PDI) of 0.340 ± 0.027. Encapsulation efficiency was 74.28% (quercetin) and 65.24% (CAPE). Particle size and drug content of QuCaNP remained stable for 30 days at -20 °C. The half-maximal inhibitory concentration (IC50) values of QuCaNP-treated HT-29 cells were calculated as 11.2 µg/mL (24 h) and 8.2 µg/mL (48 h). QuCaNP treatment increased mRNA levels of caspase-3 (2.38 fold) and caspase-9 (2-fold) and expressions of key proteins in the intrinsic apoptosis pathway in HT-29 cells. CONCLUSION Overall, our results demonstrated QuCaNPs exhibits improved anti-cancer activity on HT-29 cells.
Collapse
Affiliation(s)
- Reyhan Dilsu Colpan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Aysegul Erdemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
25
|
Akbari E, Mousazadeh H, Hanifehpour Y, Mostafavi E, Gorabi AM, Nejati K, keyhanvar P, Pazoki-Toroudi H, Mohammadhosseini M, Akbarzadeh A. Co-Loading of Cisplatin and Methotrexate in Nanoparticle-Based PCL-PEG System Enhances Lung Cancer Chemotherapy Effects. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02101-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|