1
|
Jaime-Rodríguez M, Del Prado-Audelo ML, Sosa-Hernández NA, Anaya-Trejo DP, Villarreal-Gómez LJ, Cabrera-Ramírez ÁH, Ruiz-Aguirre JA, Núñez-Tapia I, Puskar M, Marques dos Reis E, Letasiova S, Chávez-Santoscoy RA. Evaluation of Biocompatible Materials for Enhanced Mesenchymal Stem Cell Expansion: Collagen-Coated Alginate Microcarriers and PLGA Nanofibers. Biomolecules 2025; 15:345. [PMID: 40149881 PMCID: PMC11940223 DOI: 10.3390/biom15030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold significant potential in regenerative medicine, tissue engineering, and cultivated meat production. However, large-scale MSC production is limited by their need for surface adherence during growth. This study evaluates two biocompatible materials-collagen-coated alginate microcarriers and polylactic-co-glycolic acid (PLGA) nanofibers-as novel growth substrates to enhance MSC proliferation. Physicochemical characterization confirmed successful collagen integration on both materials. In vitro, bone marrow-derived MSCs (bmMSCs) cultured on collagen-coated alginate microcarriers exhibited significantly enhanced growth compared to commercial microcarriers, while PLGA nanofibers supported bmMSC growth comparable to traditional growth surfaces. Scanning Electron Microscopy (SEM) revealed that bmMSCs adhered not only to the surface but also grew within the porous structure of the alginate microcarriers. Mycoplasma testing confirmed that the bmMSCs were free from contamination. Both materials were assessed for biocompatibility using ISO-10993 guidelines, demonstrating no skin or ocular irritation, supporting their potential for in situ applications in clinical and therapeutic settings. This study highlights the promise of collagen-coated alginate microcarriers and PLGA nanofibers for scalable MSC production, offering efficient, biocompatible alternatives to traditional growth surfaces in regenerative medicine and cultivated meat manufacturing. Future research should focus on optimizing these materials for larger-scale production and exploring specific applications in therapeutic and food sectors.
Collapse
Affiliation(s)
- Manuel Jaime-Rodríguez
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - María Luisa Del Prado-Audelo
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - Norma Angélica Sosa-Hernández
- Biomedical Sciences Department, Universidad Nacional Autónoma de México, Av. Universidad 3004, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Dulce Patricia Anaya-Trejo
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - Luis Jesús Villarreal-Gómez
- Engineering and Technology Science Faculty, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial, Tijuana 22424, Baja California, Mexico
| | - Ángel Humberto Cabrera-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Parque Científico Tecnológico de Yucatán, Km.5 Carretera, Sierra Papacal-Chuburná, Chuburná, Mérida 97302, Yucatán, Mexico
| | - Jesus Augusto Ruiz-Aguirre
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| | - Israel Núñez-Tapia
- Materials Research Institute, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Circuito de la Investigación Científica, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Marek Puskar
- MatTek Europe, Mlynske Nivy 73, 82105 Bratislava, Slovakia
| | | | | | - Rocío Alejandra Chávez-Santoscoy
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Nuevo León, Mexico; (M.J.-R.)
| |
Collapse
|
2
|
Dhoundiyal S, Sharma A, Alam MA. Fiber Technology in Drug Delivery and Pharmaceuticals. Curr Drug Deliv 2025; 22:261-282. [PMID: 38279740 DOI: 10.2174/0115672018279628231221105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 01/28/2024]
Abstract
The field of fiber technology is a dynamic and innovative domain that offers novel solutions for controlled and targeted therapeutic interventions. This abstract provides an overview of key aspects within this field, encompassing a range of techniques, applications, commercial developments, intellectual property, and regulatory considerations. The foundational introduction establishes the significance of fiber-based drug delivery systems. Electrospinning, a pivotal technique, has been explored in this paper, along with its various methods and applications. Monoaxial, coaxial, triaxial, and side-by-side electrospinning techniques each offer distinct advantages and applications. Centrifugal spinning, solution and melt blowing spinning, and pressurized gyration further contribute to the field's diversity. The review also delves into commercial advancements, highlighting marketed products that have successfully harnessed fiber technology. The role of intellectual property is acknowledged, with patents reflecting the innovative strides in fiber-based drug delivery. The regulatory perspective, essential for ensuring safety and efficacy, is discussed in the context of global regulatory agencies' evaluations. This review encapsulates the multidimensional nature of fiber technology in drug delivery and pharmaceuticals, showcasing its potential to revolutionize medical treatments and underscores the importance of continued collaboration between researchers, industry, and regulators for its advancement.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aditya Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
El Fawal GF, Abu-Serie MM. Preparation of poly(vinyl alcohol) nanofibers containing disulfiram-copper complex by electrospinning: a potential delivery system against melanoma. Daru 2024; 32:573-583. [PMID: 38963538 PMCID: PMC11554976 DOI: 10.1007/s40199-024-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Melanoma poses a significant threat to human health, making the development of a safe and effective treatment a crucial challenge. Disulfiram (DS) is a proven anticancer drug that has shown effectiveness when used in combination with copper (DS-Cu complex). OBJECTIVES This study focuses on encapsulation of DS-copper complex into nanofiber scaffold from polyvinyl alcohol (PVA) (DS-Cu@PVA). In order to increase bioavailability towards melanoma cell lines and decrease its toxicity. METHODS The scaffold was fabricated through an electrospinning process using an aqueous solution, and subsequently analyzed using ART-Fourier transform infrared spectroscopy (ART-FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Additionally, cellular cytotoxicity, flow cytometry analysis, and determination of caspase 3 activity were conducted to further characterize the scaffold. RESULTS The results confirmed that encapsulation of DS-Cu complex into PVA was successful via different characterization. The scanning electron microscopy (SEM) analysis revealed that the diameter of the nanofibers remained consistent despite the addition of DS-Cu. Additionally, ATR-FTIR confirmed that the incorporation of DS-Cu into PVA did not significantly alter the characteristic peaks of PVA. Furthermore, the cytotoxicity assessment of the DS-Cu@PVA nanofibrous scaffold using human normal skin cells (HFB4) demonstrated its superior biocompatibility compared to DS-Cu-free counterparts. Notably, the presence of DS-Cu maintained its effectiveness in promoting apoptosis by increasing cellular reactive oxygen species, proapoptotic gene expression, and caspase 3 activity, while simultaneously reducing glutathione levels and oncogene expression in human and mouse melanoma cell lines (A375 and B16F10, respectively). Overall, these findings suggest that the addition of DS-Cu to PVA nanofibers enhances their biocompatibility and cytotoxic effects on melanoma cells, making them a promising candidate for biomedical applications. CONCLUSION The findings indicate that the targeted delivery of DS-Cu onto a PVA nanofiber scaffold holds potential approach to enhance the efficacy of DS-Cu in combating melanoma.
Collapse
Affiliation(s)
- Gomaa F El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
4
|
Qiang M, Liu H, Yang L, Wang H, Guo R. Immunotherapy for small cell lung cancer: the current state and future trajectories. Discov Oncol 2024; 15:355. [PMID: 39152301 PMCID: PMC11329494 DOI: 10.1007/s12672-024-01119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/21/2024] [Indexed: 08/19/2024] Open
Abstract
Small cell lung cancer (SCLC) constitutes approximately 10% to 15% of all lung cancer diagnoses and represents a pressing global public health challenge due to its high mortality rates. The efficacy of conventional treatments for SCLC is suboptimal, characterized by limited anti-tumoral effects and frequent relapses. In this context, emerging research has pivoted towards immunotherapy combined with chemotherapy, a rapidly advancing field that has shown promise in ameliorating the clinical outcomes of SCLC patients. Through originally developed for non-small cell lung cancer (NSCLC), these therapies have extended new treatment avenues for SCLC. Currently, a nexus of emerging hot-spot treatments has demonstrated significant therapeutic efficacy. Based on the amalgamation of chemotherapy and immunotherapy, and the development of new immunotherapy agents, the treatment of SCLC has seen the hoping future. Progress has been achieved in enhancing the tumor immune microenvironment through the concomitant use of chemotherapy, immunotherapy, and tyrosine kinase inhibitors (TKI), as evinced by emerging clinical trial data. Moreover, a tripartite approach involving immunotherapy, targeted therapy, and chemotherapy appears auspicious for future clinical applications. Overcoming resistance to post-immunotherapy regimens remains an urgent area of exploration. Finally, bispecific antibodies, adoptive cell transfer (ACT), oncolytic virus, monotherapy, including Delta-like ligand 3 (DLL3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT), as well as precision medicine, may present a prospective route towards achieving curative outcomes in SCLC. This review aims to synthesize extant literature and highlight future directions in SCLC treatment, acknowledging the persistent challenges in the field. Furthermore, the continual development of novel therapeutic agents and technologies renders the future of SCLC treatment increasingly optimistic.
Collapse
Affiliation(s)
- Min Qiang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyang Liu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lei Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Rui Guo
- Clinical Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Dragar Č, Roškar R, Kocbek P. The Incorporated Drug Affects the Properties of Hydrophilic Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:949. [PMID: 38869574 PMCID: PMC11173976 DOI: 10.3390/nano14110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Hydrophilic nanofibers offer promising potential for the delivery of drugs with diverse characteristics. Yet, the effects of different drugs incorporated into these nanofibers on their properties remain poorly understood. In this study, we systematically explored how model drugs, namely ibuprofen, carvedilol, paracetamol, and metformin (hydrochloride), affect hydrophilic nanofibers composed of polyethylene oxide and poloxamer 188 in a 1:1 weight ratio. Our findings reveal that the drug affects the conductivity and viscosity of the polymer solution for electrospinning, leading to distinct changes in the morphology of electrospun products. Specifically, drugs with low solubility in ethanol, the chosen solvent for polymer solution preparation, led to the formation of continuous nanofibers with uniform diameters. Additionally, the lower solubility of metformin in ethanol resulted in particle appearance on the nanofiber surface. Furthermore, the incorporation of more hydrophilic drugs increased the surface hydrophilicity of nanofiber mats. However, variations in the physicochemical properties of the drugs did not affect the drug loading and drug entrapment efficiency. Our research also shows that drug properties do not notably affect the immediate release of drugs from nanofibers, highlighting the dominant role of the hydrophilic polymers used. This study emphasizes the importance of considering specific drug properties, such as solubility, hydrophilicity, and compatibility with the solvent used for electrospinning, when designing hydrophilic nanofibers for drug delivery. Such considerations are crucial for optimizing the properties of the drug delivery system, which is essential for achieving therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Črt Dragar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Robert Roškar
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Petra Kocbek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
7
|
Amirsaadat S, Jafari-Gharabaghlou D, Dadashpour M, Zarghami N. Potential Anti-Proliferative Effect of Nano-formulated Curcumin Through Modulating Micro RNA- 132, Cyclin D1, and hTERT Genes Expression in Breast Cancer Cell Lines. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Jafari-Gharabaghlou D, Dadashpour M, Khanghah OJ, Salmani-Javan E, Zarghami N. Potentiation of Folate-Functionalized PLGA-PEG nanoparticles loaded with metformin for the treatment of breast Cancer: possible clinical application. Mol Biol Rep 2023; 50:3023-3033. [PMID: 36662452 DOI: 10.1007/s11033-022-08171-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 01/21/2023]
Abstract
AIM Folate receptor expression increase up to 30% in breast cancer cells and could be used as a possible ligand to couple to folate-functionalized nanoparticles. Metformin (Met) is an anti-hyperglycemic agent whose anti-cancer properties have been formerly reported. Consequently, in the current study, we aimed to synthesize and characterize folate-functionalized PLGA-PEG NPs loaded with Met and evaluate the anti-cancer effect against the MDA-MB-231 human breast cancer cell line. METHODS FA-PLGA-PEG NPs were synthesized by employing the W1/O/W2 technique and their physicochemical features were evaluated by FE-SEM, TEM, FTIR, and DLS methods. The cytotoxic effects of free and Nano-encapsulated drugs were analyzed by the MTT technique. Furthermore, RT-PCR technique was employed to assess the expression levels of apoptotic and anti-apoptotic genes. RESULT MTT result indicated Met-loaded FA-PLGA-PEG NPs exhibited cytotoxic effects in a dose-dependently manner and had more cytotoxic effects relative to other groups. The remarkable down-regulation (hTERT and Bcl-2) and up-regulation (Caspase7, Caspase3, Bax, and p53) gene expression were shown in treated MDA-MB-231 cells with Met-loaded FA-PLGA-PEG NPs. CONCLUSION Folate-Functionalized PLGA-PEG Nanoparticles are suggested as an appropriate approach to elevate the anticancer properties of Met for improving the treatment effectiveness of breast cancer cells.
Collapse
Affiliation(s)
- Davoud Jafari-Gharabaghlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Omid Joodi Khanghah
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
9
|
Gastrointestinal Tract, Microbiota and Multiple Sclerosis (MS) and the Link Between Gut Microbiota and CNS. Curr Microbiol 2023; 80:38. [DOI: 10.1007/s00284-022-03150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
|
10
|
Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010220. [PMID: 36615414 PMCID: PMC9822493 DOI: 10.3390/molecules28010220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.
Collapse
|
11
|
Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022; 14:2808. [PMID: 36559301 PMCID: PMC9785269 DOI: 10.3390/pharmaceutics14122808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Vania Margaret Flosi Paschoalin
- Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Quimica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149-sala 545-Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
12
|
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022; 14:5278. [PMID: 36501672 PMCID: PMC9736375 DOI: 10.3390/polym14235278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anticancer therapies and regenerative medicine are being developed to destroy tumor cells, as well as remodel, replace, and support injured organs and tissues. Nowadays, a suitable three-dimensional structure of the scaffold and the type of cells used are crucial for creating bio-inspired organs and tissues. The materials used in medicine are made of non-degradable and degradable biomaterials and can serve as drug carriers. Developing flexible and properly targeted drug carrier systems is crucial for tissue engineering, regenerative medicine, and novel cancer treatment strategies. This review is focused on presenting innovative biomaterials, i.e., electrospun nanofibers, 3D-printed scaffolds, and hydrogels as a novel approach for anticancer treatments which are still under development and awaiting thorough optimization.
Collapse
Affiliation(s)
| | | | - Paweł Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
13
|
Lahimchi MR, Eslami M, Yousefi B. New insight into GARP striking role in cancer progression: application for cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:33. [PMID: 36460874 DOI: 10.1007/s12032-022-01881-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022]
Abstract
T regulatory cells play a crucial role in antitumor immunity suppression. Glycoprotein-A repetitions predominant (GARP), transmembrane cell surface marker, is mostly expressed on Tregs and mediates intracellular organization of transforming growth factor-beta (TGF-β). The physiological role of GARP is immune system homeostasis, while it may cause tumor development by upregulating TGF-β secretion. Despite the vast application of anti- programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte Antigen-4 (CTLA-4) antibodies in immunotherapy, anti-GARP antibodies have the advantage of better response in patients who has resistance to anti-PD-1/PD-L1. Furthermore, simultaneous administration of anti-GARP antibody and anti-PD-1/PD-L1 antibody is much more effective than anti-PD-1/PD-L1 alone. It is worth mentioning that the GARP-mTGF-β complex is more potent than secretory TGF-β to induce T helper 17 cells differentiation in HIV + patients. On the other hand, TGF-β is an effective cytokine in cancer development, and some microRNAs could control its secretion by regulating GARP. In the present review, some information is provided about the undeniable role of GARP in cancer progression and its probable importance as a novel prognostic biomarker. Anti-GARP antibodies are also suggested for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Majid Eslami
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran. .,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
14
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
15
|
Gautam AK, Kumar P, Maity B, Routholla G, Ghosh B, Chidambaram K, Begum MY, Al Fatease A, Rajinikanth P, Singh S, Saha S, M. R. V. Synthesis and appraisal of dalbergin-loaded PLGA nanoparticles modified with galactose against hepatocellular carcinoma: In-vitro, pharmacokinetic, and in-silico studies. Front Pharmacol 2022; 13:1021867. [PMID: 36386226 PMCID: PMC9650263 DOI: 10.3389/fphar.2022.1021867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 07/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy which affects a substantial number of individuals all over the globe. It is the third primary cause of death among persons with neoplasm and has the fifth largest mortality rate among men and the seventh highest mortality rate among women. Dalbergin (DL) is described to be effective in breast cancer via changing mRNA levels of apoptosis-related proteins. DL belongs to neoflavonoids, a drug category with low solubility and poor bioavailability. We created a synthetic version of this naturally occurring chemical, DL, and then analyzed it using 1H-NMR, 13C-NMR, and LC-MS. We also made PLGA nanoparticles and then coated them with galactose. The design of experiment software was used to optimize DL-loaded galactose-modified PLGA nanoparticles. The optimized DL-nanoformulations (DLF) and DL-modified nanoformulations (DLMF) were analyzed for particle size, polydispersity index, shape, and potential interactions. In-vitro experiments on liver cancer cell lines (HepG2) are used to validate the anti-proliferative efficacy of the modified DLMF. The in-vitro research on HepG2 cell lines also demonstrated cellular accumulation of DLF and DLMF by FITC level. The in-vitro result suggested that DLMF has high therapeutic effectiveness against HCC. In-vivo pharmacokinetics and bio-distribution experiments revealed that DLMF excelled pristine DL in terms of pharmacokinetic performance and targeted delivery, which is related to galactose's targeting activity on the asialoglycoprotein receptor (ASGPR) in hepatic cells. Additionally, we performed an in-silico study of DL on caspase 3 and 9 proteins, and the results were found to be -6.7 kcal/mol and -6.6 kcal/mol, respectively. Our in-silico analysis revealed that the DL had strong apoptotic properties against HCC.
Collapse
Affiliation(s)
- Anurag Kumar Gautam
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
- Department of Pharmacology, Aryakul College of Pharmacy & Research, Lucknow, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Ganesh Routholla
- Department of Pharmacy, BITS-Pilani Hyderabad Campus Hyderabad, Hyderabad, India
| | - Balaram Ghosh
- Department of Pharmacy, BITS-Pilani Hyderabad Campus Hyderabad, Hyderabad, India
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, School of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Yasmin Begum
- Department of Pharmaceutics, King Khalid University, Abha, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, King Khalid University, Abha, Saudi Arabia
| | - P.S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sanjay Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Vijayakumar M. R.
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Azimi S, Esmaeil Lashgarian H, Ghorbanzadeh V, Moradipour A, Pirzeh L, Dariushnejad H. 5-FU and the dietary flavonoid carvacrol: a synergistic combination that induces apoptosis in MCF-7 breast cancer cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:253. [PMID: 36224408 DOI: 10.1007/s12032-022-01863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/26/2022] [Indexed: 10/17/2022]
Abstract
Along with the benefits of chemotherapy in the treatment of breast cancer, the side effects of these drugs along with drug resistance make their use complicated. One of the solutions to overcome this problem is the use of herbal products and combination therapy. In this research, we try to investigate the effects of carvacrol, a monoterpene flavonoid, in combination with the chemotherapy drug 5-FU. Combination index method was used for the drug-drug interactions analysis based on the Chou and Talalay method and the data from MTT assays. Apoptosis was assessed by the ELISA cell death method. P-glycoprotein expression was evaluated at the gene level by Real-time PCR. Here, we described the first experimental evidence for the existence of synergism between carvacrol and 5-FU in the in vitro model of breast cancer. MTT assay results showed combination treatment of the cells with carvacrol and 5-FU decreased 5-FU concentrations significantly. Incubation of the cells with carvacrol neutralized P-glycoprotein overexpression in qPCR assay (P ≤ 0.05). Compared with adding verapamil (a P-glycoprotein inhibitor) to 5-FU, the combination of carvacrol and 5-FU caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents. Our results suggest that carvacrol can downregulate P-gp expression and combination therapy with carvacrol and 5-FU is considered a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression.
Collapse
Affiliation(s)
- Saleh Azimi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeil Lashgarian
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ayat Moradipour
- Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Lale Pirzeh
- Institute for Vascular Signaling, Center for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfort am Main, Germany
| | - Hassan Dariushnejad
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
17
|
Synergistic anticancer effects of metformin and Achillea vermicularis Trin-loaded nanofibers on human pancreatic cancer cell line: An in vitro study. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Pouremamali F, Pouremamali A, Dadashpour M, Soozangar N, Jeddi F. An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun Signal 2022; 20:100. [PMID: 35773670 PMCID: PMC9245222 DOI: 10.1186/s12964-022-00906-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) protein is a basic-region leucine zipper transcription factor that defends against endogenous or exogenous stressors. By inducing several cytoprotective and detoxifying gene expressions, Nrf2 can increase the sensitivity of the cells to oxidants and electrophiles. Transient Nrf2 activation, by its specific activators, has protective roles against carcinogenesis and cancer development. However, permanent activation of Nrf2 promotes various cancer properties, comprising malignant progression, chemo/radio resistance, and poor patient prognosis. Taken together, these findings suggest that reaching an optimal balance between paradoxical functions of Nrf2 in malignancy may render a selective improvement to identify therapeutic strategies in cancer treatment. In this review, we describe lately discovered Nrf2 inducers and inhibitors, and their chemopreventive and/or anticancer activities. The Nrf2 pathway signifies one of the most significant cell defense procedures against exogenous or endogenous stressors. Certainly, by increasing the expression of several cytoprotective genes, the transcription factor Nrf2 can shelter cells and tissues from multiple sources of damage including electrophilic, xenobiotic, metabolic, and oxidative stress. Notably, the aberrant activation or accumulation of Nrf2, a common event in many tumors, confers a selective advantage to cancer cells and is connected to malignant progression, therapy resistance, and poor prognosis. Therefore, lately, Nrf2 has arisen as a hopeful target in treatment of cancer, and many struggles have been made to detect therapeutic strategies intended at disrupting its pro-oncogenic role. By summarizing the outcomes from past and recent studies, this review provided an overview concerning the Nrf2 pathway and the molecular mechanisms causing Nrf2 hyperactivation in cancer cells. Finally, this paper also described some of the most promising therapeutic approaches that have been successfully employed to counteract Nrf2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies. Video abstract
Collapse
Affiliation(s)
- Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Soozangar
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran. .,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
19
|
Shabestani N, Mousazadeh H, Shayegh F, Gholami S, Mota A, Zarghami N. Osteogenic differentiation of adipose-derived stem cells on dihydroartemisinin electrospun nanofibers. J Biol Eng 2022; 16:15. [PMID: 35739567 PMCID: PMC9229097 DOI: 10.1186/s13036-022-00294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Adipose tissue-derived stem cells (ASCs) are promising candidate in stem cell therapies, and maintaining their stemness potential is vital to achieve effective treatment. Natural-based scaffolds have been recently attracted increasing attention in nanomedicine and drug delivery. In this study, Dihydroartemisinin (DHART)-loaded polycaprolactone collagen nanofibers (PCL/Col NFs) were constructed as effective biocompatible scaffolds through adjusting the proportions of hydrophobic/ hydrophilic polymers for enhanced osteoblastic differentiation of human adipose-derived stem cells (hADSCs). Results The designed NFs were characterized through FTIR, XRD, TGA, FE-SEM, and tensile testing. DHART-loaded PCL/Col electrospun NFs provide an ideal solution, with the potential of sustained drug release as well as inhibition of drug re-crystallization. Interestingly, inhibiting DHART re-crystallization can improve its bioavailability and provide a more effective therapeutic efficacy. Besides, the data set found through FE-SEM, MTT, PicoGreen, qPCR, and alkaline phosphatase (ALP) assays revealed the improved adhesion and proliferation rate of hADSCs cultured on PCL/Col/DHART (5%) NFs after 14 and 21 days of incubation. Conclusions These findings confirmed the potential of the designed NF scaffolds for sustained/controlled release of DHART therapeutic molecules toward bone tissue regeneration and engineering. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Nazila Shabestani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mousazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahimeh Shayegh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Gholami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
20
|
The Effect of Dual Bioactive Compounds Artemisinin and Metformin Co-loaded in PLGA-PEG Nano-particles on Breast Cancer Cell lines: Potential Apoptotic and Anti-proliferative Action. Appl Biochem Biotechnol 2022; 194:4930-4945. [PMID: 35674922 DOI: 10.1007/s12010-022-04000-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The most prevalent malignancy among women is breast cancer. Phytochemicals and their derivatives are rapidly being recognized as possible cancer complementary therapies because they can modify signaling pathways that lead to cell cycle control or directly alter cell cycle regulatory molecules. The phytochemicals' poor bioavailability and short half-life make them unsuitable as anticancer drugs. Applying PLGA-PEG NPs improves their solubility and tolerance while also reducing drug adverse effects. According to the findings, combining anti-tumor phytochemicals can be more effective in regulating several signaling pathways linked to tumor cell development. The point of the study was to compare the anti-proliferative impacts of combined artemisinin and metformin on cell cycle arrest and expression of cyclin D1 and apoptotic genes (bcl-2, Bax, survivin, caspase-7, and caspase-3), and also hTERT genes in breast cancer cells. T-47D breast cancer cells were treated with different concentrations of metformin (MET) and artemisinin (ART) co-loaded in PLGA-PEG NPs and free form. The MTT test was applied to assess drug cytotoxicity in T47D cells. The cell cycle distribution was investigated using flow cytometry and the expression levels of cyclin D1, hTERT, Bax, bcl-2, caspase-3, and caspase-7, and survivin genes were then determined using real-time PCR. The findings of the MTT test and flow cytometry revealed that each state was cytotoxic to T47D cells in a time and dose-dependent pattern. Compared to various state of drugs (free and nano state, pure and combination state) Met-Art-PLGA/PEG NPs demonstrated the strongest anti-proliferative impact and considerably inhibited the development of T-47D cells; also, treatment with nano-formulated forms of Met-Art combination resulted in substantial downregulation of hTERT, Bcl-2, cyclin D1, survivin, and upregulation of caspase-3, caspase-7, and Bax, in the cells, as compared to the free forms, as indicated by real-time PCR findings. The findings suggested that combining an ART/MET-loaded PLGA-PEG NP-based therapy for breast cancer could significantly improve treatment effectiveness.
Collapse
|
21
|
Irani M, Nodeh SM. PVA/κ-carrageenan/Au/camptothecin/pegylated-polyurethane/paclitaxel nanofibers against lung cancer treatment. RSC Adv 2022; 12:16310-16318. [PMID: 35733668 PMCID: PMC9157738 DOI: 10.1039/d2ra02150a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/17/2022] [Indexed: 12/22/2022] Open
Abstract
Gold nanoparticles, paclitaxel (PTX), and camptothecin (CMPT) were loaded into the PVA/κ-carrageenan/pegylated-PU composite and core–shell nanofibers prepared by two-nozzle and coaxial electrospinning methods. The capability of composite and core–shell nanofibers was investigated for the targeted delivery of anticancer drugs in lung cancer treatment. In vitro and in vivo release of PTX and CMPT were investigated to find the release mechanism from nanofibers compared to direct administration of pristine PTX and CMPT. The mean fiber diameter for composite and core–shell nanofibers with shell feeding rates of 0.3, 0.5, and 0.7 mL h−1 was about 225, 330, 520, and 640 nm, respectively. In vivo release studies indicated that the blood concentration of CMPT and PTX for rats fed with core–shell nanofibers reached the highest values of 26.8 ± 0.04 μg mL−1, and 26.5 ± 0.05 μg mL−1 in 36 h, and 24 h and reduced slowly within 84 h, and 48 h, respectively. The maximum cytotoxicity was 75% in the presence PVA/κ-carrageenan/CMPT/Au/pegylated-PU/PTX core–shell nanofibers. In vivo antitumor activity results confirmed the synergic effect of Au, CMPT and PTX anticancer drugs on the reduction of tumor volume without change in mouse weight by the PVA/κ-carrageenan/CMPT/Au/pegylated PU/PTX core–shell nanofibers. The obtained results indicated that the simultaneous loading of CMPT and PTX anticancer drugs and Au nanoparticles is more beneficial for lung cancer treatment. Core–shell nanofibers and in vivo release from core–shell nanofibers against lung cancer.![]()
Collapse
Affiliation(s)
- Mohammad Irani
- Faculty of Pharmacy, Alborz University of Medical Sciences Karaj Iran
| | | |
Collapse
|
22
|
Alagheband Y, Jafari-gharabaghlou D, Imani M, Mousazadeh H, Dadashpour M, Firouzi-Amandi A, Zarghami N. Design and fabrication of a dual-drug loaded nano-platform for synergistic anticancer and cytotoxicity effects on the expression of leptin in lung cancer treatment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Dadashpour M, Ganjibakhsh M, Mousazadeh H, Nejati K. Increased Pro-Apoptotic and Anti-Proliferative Activities of Simvastatin Encapsulated PCL-PEG Nanoparticles on Human Breast Cancer Adenocarcinoma Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02217-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Mogheri F, Jokar E, Afshin R, Akbari AA, Dadashpour M, Firouzi-amandi A, Serati-Nouri H, Zarghami N. Co-delivery of metformin and silibinin in dual-drug loaded nanoparticles synergistically improves chemotherapy in human non-small cell lung cancer A549 cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Wang W, Yu C, Zhang F, Li Y, Zhang B, Huang J, Zhang Z, Jin L. Improved oral delivery of insulin by PLGA nanoparticles coated with 5 β-cholanic acid conjugated glycol chitosan. Biomed Mater 2021; 16. [PMID: 34571498 DOI: 10.1088/1748-605x/ac2a8c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
Oral insulin has been regarded as the best alternative to insulin injection in therapy of diabetes because of its convenience and painlessness. However, several obstacles in the gastrointestinal tract, such as gastric acid and enzyme, greatly reduce the bioavailability of oral insulin. Herein, we report design and preparation of poly (d, l-lactic-co-glycolic acid) nanoparticles (PLGA NPs) coated with 5β-cholanic acid modified glycol chitosan (GC-CA) (GC-CA@PLGA NPs) to improve the oral delivery of insulin. The GC-CA@PLGA NPs with the size of (302.73 ± 5.13 nm) and zeta potential of (25.03 ± 0.31 mV) were synthesized using the double-emulsion method. The insulin-loading capacity and encapsulation efficiency were determined to be 5.77 ± 0.58% and 51.99 ± 5.27%, respectively. Compared with GC-modified PLGA NPs (GC@PLGA NPs) and bare PLGA NPs, the GC-CA@PLGA NPs showed excellent stability and uptake by Caco-2 cells after simulated gastric acid digestion. Further experiment suggests good biocompatibility of GC-CA@PLGA NPs, including hemolysis and cytotoxicity. Inin vivoexperiment, the insulin loaded in the GC-CA@PLGA NPs exhibited a long-term and stable release profile for lowering blood glucose and presented 30.43% bioavailability in oral administration. In brief, we have developed an efficient and safe drug delivery system, GC-CA@PLGA NPs, for significantly improved oral administration of insulin, which may find potential application in the treatment of diabetes.
Collapse
Affiliation(s)
- Weizhi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Chenggong Yu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Bo Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drugability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, People's Republic of China
| |
Collapse
|
26
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
27
|
Bhusnure OG, Gholve SB, Giram PS, Gaikwad AV, Udumansha U, Mani G, Tae JH. Novel 5-flurouracil-Embedded non-woven PVA - PVP electrospun nanofibers with enhanced anti-cancer efficacy: Formulation, evaluation and in vitro anti-cancer activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Luo D, Wang X, Zhong X, Chang J, He M, Wang H, Li Y, Zhao C, Luo Y, Ran L. MPEG-PCL Nanomicelles Platform for Synergistic Metformin and Chrysin Delivery to Breast Cancer in Mice. Anticancer Agents Med Chem 2021; 22:280-293. [PMID: 34165412 DOI: 10.2174/1871520621666210623092725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Metformin (MET) is a well-known anti-diabetic drug that also has anti-cancer effects. However, high therapeutic doses of MET on cancer cells and the low efficacy of combinatory therapeutic approaches limit its clinical application. Recent studies have shown that chrysin (CHR) can improve the pharmaceutical efficacy of MET by suppressing human telomerase reverse transcriptase (hTERT) and cyclin D1 gene expression. OBJECTIVE This study aimed to develop different ratios of methoxy poly(ethylene glycol)-b-poly(e-caprolactone) (MPEG-PCL) micelles for breast cancer to co-deliver a synergistic CHR/MET combination. METHODS CHR/MET drug-loaded micelles were prepared by modified thin-film hydration. Fourier infrared spectrum, gel permeation chromatography, transmission electron microscopy, and high-performance liquid chromatography were used to evaluate the physicochemical properties of nanostructures. Cell proliferation and cell apoptosis were assessed by MTT and Annexin V-FITC/PI double staining method. The gene expression of hTERT and cyclin D1 was measured by real-time PCR assay. A subcutaneous mouse T47D xenograft model was established to evaluate the in vivo efficiency. RESULTS When the ratio of MPEG-PCL was 1:1.7, the highest drug loading rate and encapsulation efficiency of CHR (11.31±0.37) and MET (12.22±0.44) were observed. Uniform MPEG-PCL micelles of 51.70±1.91 nm allowed MET to incorporate with CHR, which were co-delivered to breast cancer cells. We demonstrated that CHR/MET co-delivery micelles showed a good synergistic effect on inhibiting proliferation in T47D cells (combination index=0.87) by suppressing hTERT and cyclin D1 gene expression. Compared with the free CHR/MET group, the apoptosis rate on T47D cells by CHR/MET nano-micelles significantly improved from 71.33% to 79.25%. The tumour volume and tumour weight of the CHR/MET group increased more slowly than that of the single-drug treatment group (P<0.05). Compared with the CHR/MET group, the tumour volume and tumour weight of the CHR/MET nano-micelle group decreased by 42% and 59%, respectively. CONCLUSIONS We demonstrated that ratiometric CHR/MET micelles could provide an effective technique for the treatment of breast cancer.
Collapse
Affiliation(s)
- Daiqin Luo
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Xinjun Wang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xiaomei Zhong
- The Second People's Hospital of Guiyang; GuiYang 550000, China
| | - Jianying Chang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Mingyuan He
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Heran Wang
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yongxia Li
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Chaofen Zhao
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| | - Yan Luo
- Guiyang Medical University Guiyang, 550001, P.R. China, Gui Zhou province, China
| | - Li Ran
- Guizhou Cancer Hospital/Affiliated Cancer Hospital of Guiyang Medical University/ Department of Oncology,The Affiliated Hospital of Guiyang Medical University; Gui Yang city, GuiZhou province, China
| |
Collapse
|