1
|
Nosratabadi M, Rahimnia SM, Barogh RE, Abastabar M, Haghani I, Akhtari J, Hajheydari Z, Ebrahimnejad P. Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains. Sci Rep 2024; 14:30708. [PMID: 39730396 DOI: 10.1038/s41598-024-79225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024] Open
Abstract
Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains. The LCZ-NLCs were synthesized using a modified emulsification-solvent evaporation technique. Characterization involved assessing parameters such as poly-dispersity index (PDI), zeta potential, encapsulation efficiency (EE %), Field Emission Scanning Electron Microscopy (FESEM), Differential Scanning Calorimetry (DSC) analysis, and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR). Furthermore, in vitro drug release experiments, analysis of release kinetics, cytotoxicity assessments, and in vitro antifungal susceptibility tests were performed as part of the study. The findings indicated that LCZ-NLCs displayed nanoscale dimensions, uniform dispersion, and a favorable zeta potential. The encapsulation efficiency of LCZ in NLCs was approximately 90%. FESEM analysis revealed spherical nanoparticles with consistent shape. ATR-FTIR analysis indicated no chemical interaction between LCZ and excipients. In vitro drug release experiments demonstrated that LCZ-NLCs notably improved the drug's dissolution rate. The stability testing confirmed consistent colloidal nanometer ranges in the LCZ-NLCs samples. Additionally, cytotoxicity tests revealed no toxicity within the tested concentration. Moreover, in vitro antifungal susceptibility tests demonstrated potent antifungal activity of LCZ-NLCs against the tested resistant fungal isolates. The study findings suggest that the LCZ-NLCs formulation developed in this research could be a promising topical treatment for superficial fungal infections, especially in cases of resistant infections. However, the study needs further ex vivo and in vivo tests to ensure safety and efficacy.
Collapse
Affiliation(s)
- Mohsen Nosratabadi
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Seyyed Mobin Rahimnia
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran
| | - Robab Ebrahimi Barogh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Abastabar
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran.
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Iman Haghani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Hajheydari
- Department of Dermatology, Faculty of Medicine , Mazandaran University of Medical Sciences, Sari, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, PO Box. 48175-1665, Sari, Iran.
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy. Sci Rep 2024; 14:29265. [PMID: 39587206 PMCID: PMC11589782 DOI: 10.1038/s41598-024-80879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Despite all prevention programs, many cases of colorectal cancer (CRC) are diagnosed when they have already metastasized. Herein, chemotherapy is required, and combination of 5-fluorouracil, irinotecan, and leucovorin (FOLFIRI) is one of the first-line treatments chosen. However, it is so toxic that compromises patient outcomes. Thus, with the aim of improving FOLFIRI pharmacokinetics while reducing its side effects, the three compounds that make it up were simultaneously absorbed in this work into polydopamine nanoparticles (PDA NPs), also loaded with an antibody to target CRC cells overexpressing the epithermal growth factor receptor (EGFR). All adsorptions, which were successfully executed without toxic solvents, were electrostatic in nature according to the calorimetry results obtained. Otherwise, based on the experiments done, 5-flurouracil, irinotecan, and leucovorin release from PDA NPs followed a burst-like pattern, which was possibly mediated by Fickian diffusion mechanisms. Finally, the assays performed with two EGFR-overexpressing CRC cell lines showed that the uptake of the nanosystem was rapid, and that its therapeutic effect was very significant. It managed to greatly reduce the viability of these cells to 22-30% after 72 h of incubation. Furthermore, when tumor spheroids were developed and treated with PDA NPs loaded with FOLFIRI and the anti-EGFR antibody (FOLFIRI-CTX@PDA NPs), these demonstrated to continue to have very marked therapeutic activity. In addition, FOLFIRI-CTX@PDA NPs affected to a lesser extent the survival rate of stromal cells, with which viability experiments were also done. Therefore, the novel developed PDA nanocarrier could be a promising strategy to enhance metastatic CRC therapy hereafter.
Collapse
Affiliation(s)
- Rania Djermane
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
| | - Celia Nieto
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain
| | - Milena A Vega
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| | - Eva M Martín Del Valle
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| |
Collapse
|
3
|
Soroushmanesh M, Dinari M, Farrokhpour H. Comprehensive Computational Investigation of the Porphyrin-Based COF as a Nanocarrier for Delivering Anti-Cancer Drugs: A Combined MD Simulation and DFT Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19073-19085. [PMID: 39189806 DOI: 10.1021/acs.langmuir.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As nanomaterials have gained prominence in drug delivery technology, exploring their feasibility through computational methods is beneficial before practical tests. In this study, we aim to evaluate the capability of the porphyrin-based covalent organic framework COF-366 as a nanocarrier for two anticancer drugs, irinotecan (IRI) and doxorubicin (DOX). The optimal binding conformation of the drug molecules on the COF surface was predicted by using molecular docking. Subsequently, molecular dynamic simulation (MD) was performed to assess the adsorption mechanism of drug molecules on the COF in the aqueous environment. The free energy of adsorption for DOX and IRI was estimated to be -20.07 and -23.89 kcal/mol, respectively. The adsorption of both drugs on the COF surface is mainly influenced by the π-π interaction. Furthermore, density functional theory (DFT) calculation, natural bond orbital (NBO), and quantum theory of atoms in molecules (QTAIM) analyses were employed to investigate the structural stability of Drug@COF complexes and gain a detailed understanding of the interaction between them at the molecular level. Based on DFT results, it was found that in addition to π-π interaction, the bis-piperidine-phenylene interaction affects the adsorption of IRI on the COF surface. Moreover, the diffusion behavior of the drug molecule inside the COF pore was simulated using a ten-layer COF. Based on the mean square displacement analysis, the diffusion coefficients of DOX and IRI within the COF pore were calculated to be 108 and 97 um2/s, respectively. This computational study sheds light on how different types of interactions between the drug molecule and COF affect the adsorption and diffusion process. Our findings validated that the porphyrin-based COF-366 can serve as a nanobased platform for delivering DOX and IRI.
Collapse
Affiliation(s)
- Mohsen Soroushmanesh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
4
|
Yadav R, Bhawale R, Srivastava V, Pardhi E, Bhalerao HA, Sonti R, Mehra NK. Innovative Nanoparticulate Strategies in Colon Cancer Treatment: A Paradigm Shift. AAPS PharmSciTech 2024; 25:52. [PMID: 38429601 DOI: 10.1208/s12249-024-02759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.
Collapse
Affiliation(s)
- Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Rohit Bhawale
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
5
|
Kumar M, Gupta S, Kalia K, Kumar D. Role of Phytoconstituents in Cancer Treatment: A Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:115-137. [PMID: 38369892 DOI: 10.2174/012772574x274566231220051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/20/2024]
Abstract
Over the years, natural compounds have become a significant advancement in cancer treatment, primarily due to their effectiveness, safety, bio-functionality, and wide range of molecular structures. They are now increasingly preferred in drug discovery due to these attributes. These compounds, whether occurring naturally or with synthetic modifications, find applications in various fields like biology, medicine, and engineering. While chemotherapy has been a successful method for treating cancer, it comes with systemic toxicity. To address this issue, researchers and medical practitioners are exploring the concept of combinational chemotherapy. This approach aims to reduce toxicity by using a mix of natural substances and their derivatives in clinical trials and prescription medications. Among the most extensively studied natural anticancer compounds are quercetin, curcumin, vincristine, and vinblastine. These compounds play crucial roles as immunotherapeutics and chemosensitizers, both as standalone treatments and in combination therapies with specific mechanisms. This review article provides a concise overview of the functions, potentials, and combinations of natural anticancer compounds in cancer treatment, along with their mechanisms of action and clinical applications.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| | | | | | - Dharmendra Kumar
- Department of Pharmacy, IEC College of Eng & Tech. Gautam Buddha Nagar, India
| |
Collapse
|
6
|
Costa KMN, Barros LA, da Silva Soares IL, Oshiro-Junior JA. Potential of Nanomedicines as an Alternative for the Treatment of Colorectal Cancer - A Review. Anticancer Agents Med Chem 2024; 24:477-487. [PMID: 38265381 DOI: 10.2174/0118715206269415231128100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024]
Abstract
Colorectal cancer is the third most common cancer and the second in cases of cancer-related death. Polytherapy generates many adverse effects, leading the patient to give up. Nanotechnology has been studied in recent years to circumvent limitations. Groups composed of polymeric, lipid, and inorganic nanoparticles are the most purpose. Thus, the objective of this work is to bring information on how nanosystems can improve the chemotherapeutic treatment for colorectal cancer. Therefore, a search in journals such as "LILACS", "SciELO" and "PubMed/Medline" was performed, resulting in 25,000 articles found when applied the search engines "nanoparticle," "colorectal cancer," "malignant neoplasms," and "chemotherapy." After inclusion and exclusion factors, 24 articles remained, which were used as the basis for this integrative review. The results reveal that, regardless of the choice of matrix, nanoparticles showed an increase in bioavailability of the active, increasing the half-life by up to 13 times, modified release, as well as a significant reduction in tumor size, with cell viability up to 20% lower than the free drug tested, in different colorectal cancer cell lines, such as HCT-116, HT-29, and CaCo-2. However, more in vivo and clinical studies need to be performed, regardless of the formulation of its matrix, aiming at a higher rate of safety for patients and stability of the formulations, as well as knowledge of detailed indices of its pharmacokinetics and pharmacodynamics, seeking to avoid further damage to the recipient organism.
Collapse
Affiliation(s)
- Kammila Martins Nicolau Costa
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | | | - João Augusto Oshiro-Junior
- Post-graduation Program in Technological Development and Innovation in Medicines (PPgDITM) - Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
7
|
Razavi MS, Ebrahimnejad P, Javar HA, Weppelmann TA, Akbari J, Amoli FA, Atyabi F, Dinarvand R. Development of dual-functional core-shell electrospun mats with controlled release of anti-inflammatory and anti-bacterial agents for the treatment of corneal alkali burn injuries. BIOMATERIALS ADVANCES 2023; 154:213648. [PMID: 37812983 DOI: 10.1016/j.bioadv.2023.213648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
In this study, a novel dual-drug carrier for the co-administration of an anti-inflammatory and antibiotic agent consisting of core-shell nanofibers for the treatment of cornea alkali burns was designed. The core-shell nanofibers were prepared via coaxial electrospinning of curcumin-loaded silk fibroin as the core and vancomycin-loaded chitosan/polyvinyl alcohol (PVA) as the shell. Electron microscopy (SEM and TEM) images confirmed the preparation of smooth, bead-free, and continuous fibers that formed clear core-shell structures. For further studies, nanofiber mats were cross-linked by heat treatment to avoid rapid disintegration in water and improve both mechanical properties and drug release. The release profile of curcumin and vancomycin indicated an initial burst release, continued by the extended release of both drugs within 72 hours. Rabbit corneal cells demonstrated high rates of proliferation when evaluated using a cell metabolism assay. Finally, the therapeutic efficiency of core/shell nanofibers in healing cornea alkali burn was studied by microscopic and macroscopic observation, fluorescence staining, and hematoxylin-eosin assay on rabbit eyes. The anti-inflammatory activity of fabricated fibers was evaluated by enzyme-linked immunosorbent assay and Immunofluorescence analysis. In conclusion, using a robust array of in vitro and in vivo experiments this study demonstrated the ability of the dual-drug carriers to promote corneal re-epithelialization, minimize inflammation, and inhibit corneal neovascularization. Since these parameters are critical to the healing of corneal wounds from alkali burns, we suggest that this discovery represents a promising future therapeutic agent that warrants further study in humans.
Collapse
Affiliation(s)
- Malihe Sadat Razavi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas A Weppelmann
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fahimeh Asadi Amoli
- Ophthalmic Pathology Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, De Montfort University, Leicester, UK.
| |
Collapse
|
8
|
Zhang J, Hu M, Wen C, Liu J, Yu F, Long J, Lin XC. CeO 2@CuS@PDA-FA as targeted near-infrared PTT/CDT therapeutic agents for cancer cells. Biomed Mater 2023; 18:065006. [PMID: 37683677 DOI: 10.1088/1748-605x/acf825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023]
Abstract
Single tumor treatment method usually has some defects, which makes it difficult to achieve good therapeutic effect. The ingenious combination of multiple tumor treatment methods on a single nanoplatform to achieve multifunctional treatment can effectively improve the efficiency of treatment. The targeted modification of nanomaterials can augment the precision of nanotherapeutic drugs in tumor treatment. Herein, a multifunctional nanoplatform (CeO2@CuS@PDA-FA) based on cerium dioxide nanoparticles engineered with copper sulfide (CeO2@CuS) has been constructed for synergistic photothermal therapy (PTT) and chemodynamic therapy (CDT). The CeO2@CuS were coated using polydopamine (PDA), and the modification of PDA surface by folic acid, in order to achieve the targeted effect for tumors. The localized hyperthermia induced by PTT can further improve the CDT efficiency of the nanoplatform, leading to a PTT/CDT synergistic effect. The nanoplatform possessed the capability of cancer cell-targeted and achieved better therapeutic efficacyin vitro. This work provided a new strategy for combined multifunctional theranostic platform and shows strong potential in practical applications.
Collapse
Affiliation(s)
- Jing Zhang
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Miaomiao Hu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Fang Yu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Juan Long
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
9
|
Miclea LC, Mihailescu M, Tarba N, Brezoiu AM, Sandu AM, Mitran RA, Berger D, Matei C, Moisescu MG, Savopol T. Evaluation of intracellular distribution of folate functionalized silica nanoparticles using fluorescence and hyperspectral enhanced dark field microscopy. NANOSCALE 2022; 14:12744-12756. [PMID: 36000453 DOI: 10.1039/d2nr01821g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using nanoparticles as carriers for drug delivery systems has become a widely applied strategy in therapeutics and diagnostics. However, the pattern of their intracellular distribution is yet to be clarified. Here we present an in vitro study on the incorporation of mesoporous silica nanoparticles conjugated with folate and loaded with a cytotoxic drug, Irinotecan. The nanoparticles count and distribution within the cell frame were evaluated by means of enhanced dark field microscopy combined with hyperspectral imagery and 3D reconstructions from double-labeled fluorescent samples. An original post-processing procedure was developed to emphasize the nanoparticles' localization in 3D reconstruction of cellular compartments. By these means, it has been shown that the conjugation of mesoporous silica nanoparticles with folate increases the efficiency of nanoparticles entering the cell and their preferential localization in the close vicinity of the nucleus. As revealed by metabolic viability assays, the nanoparticles functionalized with folate enhance the cytotoxic efficiency of Irinotecan.
Collapse
Affiliation(s)
- Luminita Claudia Miclea
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Mona Mihailescu
- Digital Holography Imaging and Processing Laboratory, Fundamental Sciences Applied in Engineering Research Center, Faculty of Applied Sciences, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania.
| | - Nicolae Tarba
- Physics Department, Faculty of Applied Sciences, Doctoral School of Automatic Control and Computers, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Ana Maria Sandu
- CAMPUS Research Center, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Raul-Augustin Mitran
- "Ilie Murgulescu" Institute of Physical-Chemistry, Romanian Academy, 202 Splaiul Indepedenţei, Bucharest, 060021, Romania
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| |
Collapse
|
10
|
Mirón-Barroso S, Correia JS, Frampton AE, Lythgoe MP, Clark J, Tookman L, Ottaviani S, Castellano L, Porter AE, Georgiou TK, Krell J. Polymeric Carriers for Delivery of RNA Cancer Therapeutics. Noncoding RNA 2022; 8:ncrna8040058. [PMID: 36005826 PMCID: PMC9412371 DOI: 10.3390/ncrna8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has ‘druggable’ active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.
Collapse
Affiliation(s)
- Sofía Mirón-Barroso
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Correspondence:
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Adam E. Frampton
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - James Clark
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Laura Tookman
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Silvia Ottaviani
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | | | - Alexandra E. Porter
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| |
Collapse
|
11
|
Sadeghi-Ghadi Z, Behjou N, Ebrahimnejad P, Mahkam M, Goli HR, Lam M, Nokhodchi A. Improving Antibacterial Efficiency of Curcumin in Magnetic Polymeric Nanocomposites. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09619-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractIn recent years, resistance to chemical antibiotics, as well as their side effects, has caused a necessity to utilize natural substances and herbal components with antibacterial effects. Curcumin, the major substance of Curcuma longa’s rhizome, was used as an antibacterial agent since ancient times. This work aimed to formulate a novel nanocomposite for the delivery of curcumin to overcome orthodox drugs resistance against bacteria and improve its efficacy. To fabricate targeting nanocomposites, first, Fe3O4 nanoparticles were synthesized followed by coating the obtained nanoparticles using sodium alginate containing curcumin. A 2 by 3 factorial design was tailored to predict the optimum formulation of nanocomposites. Characterization of nanocomposites including particle size, polydispersity index (PDI), zeta potential, entrapment efficiency, and drug loading was performed. The optimum formulation was analyzed by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FT-IR), and in vitro release study at different pHs. Finally, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of samples against seven common bacteria were determined. Results showed that the optimized formulation contained 400 nm particles with the PDI and zeta potentials of 0.4 and − 58 mV, respectively. The optimized formulation with 70% entrapment efficiency reduced the MIC value 2 to 4 times in comparison with pure curcumin. Results also showed that polymer and drug concentrations can significantly affect entrapment efficiency. In conclusion, the current investigation demonstrated that this magnetic nanocomposite can be applied for the delivery of curcumin.
Graphical abstract
Collapse
|